Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cosargd | Structured version Visualization version GIF version |
Description: The cosine of the argument is the quotient of the real part and the absolute value. Compare to efiarg 25762. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
cosargd.1 | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
cosargd.2 | ⊢ (𝜑 → 𝑋 ≠ 0) |
Ref | Expression |
---|---|
cosargd | ⊢ (𝜑 → (cos‘(ℑ‘(log‘𝑋))) = ((ℜ‘𝑋) / (abs‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cosargd.1 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℂ) | |
2 | 1 | cjcld 14907 | . . . 4 ⊢ (𝜑 → (∗‘𝑋) ∈ ℂ) |
3 | 1, 2 | addcld 10994 | . . 3 ⊢ (𝜑 → (𝑋 + (∗‘𝑋)) ∈ ℂ) |
4 | 1 | abscld 15148 | . . . 4 ⊢ (𝜑 → (abs‘𝑋) ∈ ℝ) |
5 | 4 | recnd 11003 | . . 3 ⊢ (𝜑 → (abs‘𝑋) ∈ ℂ) |
6 | 2cnd 12051 | . . 3 ⊢ (𝜑 → 2 ∈ ℂ) | |
7 | cosargd.2 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 0) | |
8 | 1, 7 | absne0d 15159 | . . 3 ⊢ (𝜑 → (abs‘𝑋) ≠ 0) |
9 | 2ne0 12077 | . . . 4 ⊢ 2 ≠ 0 | |
10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → 2 ≠ 0) |
11 | 3, 5, 6, 8, 10 | divdiv32d 11776 | . 2 ⊢ (𝜑 → (((𝑋 + (∗‘𝑋)) / (abs‘𝑋)) / 2) = (((𝑋 + (∗‘𝑋)) / 2) / (abs‘𝑋))) |
12 | 1, 7 | logcld 25726 | . . . . . 6 ⊢ (𝜑 → (log‘𝑋) ∈ ℂ) |
13 | 12 | imcld 14906 | . . . . 5 ⊢ (𝜑 → (ℑ‘(log‘𝑋)) ∈ ℝ) |
14 | 13 | recnd 11003 | . . . 4 ⊢ (𝜑 → (ℑ‘(log‘𝑋)) ∈ ℂ) |
15 | cosval 15832 | . . . 4 ⊢ ((ℑ‘(log‘𝑋)) ∈ ℂ → (cos‘(ℑ‘(log‘𝑋))) = (((exp‘(i · (ℑ‘(log‘𝑋)))) + (exp‘(-i · (ℑ‘(log‘𝑋))))) / 2)) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ (𝜑 → (cos‘(ℑ‘(log‘𝑋))) = (((exp‘(i · (ℑ‘(log‘𝑋)))) + (exp‘(-i · (ℑ‘(log‘𝑋))))) / 2)) |
17 | efiarg 25762 | . . . . . . 7 ⊢ ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → (exp‘(i · (ℑ‘(log‘𝑋)))) = (𝑋 / (abs‘𝑋))) | |
18 | 1, 7, 17 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (exp‘(i · (ℑ‘(log‘𝑋)))) = (𝑋 / (abs‘𝑋))) |
19 | ax-icn 10930 | . . . . . . . . . . 11 ⊢ i ∈ ℂ | |
20 | 19 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → i ∈ ℂ) |
21 | 20, 14 | mulcld 10995 | . . . . . . . . 9 ⊢ (𝜑 → (i · (ℑ‘(log‘𝑋))) ∈ ℂ) |
22 | efcj 15801 | . . . . . . . . 9 ⊢ ((i · (ℑ‘(log‘𝑋))) ∈ ℂ → (exp‘(∗‘(i · (ℑ‘(log‘𝑋))))) = (∗‘(exp‘(i · (ℑ‘(log‘𝑋)))))) | |
23 | 21, 22 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (exp‘(∗‘(i · (ℑ‘(log‘𝑋))))) = (∗‘(exp‘(i · (ℑ‘(log‘𝑋)))))) |
24 | 20, 14 | cjmuld 14932 | . . . . . . . . . 10 ⊢ (𝜑 → (∗‘(i · (ℑ‘(log‘𝑋)))) = ((∗‘i) · (∗‘(ℑ‘(log‘𝑋))))) |
25 | cji 14870 | . . . . . . . . . . . 12 ⊢ (∗‘i) = -i | |
26 | 25 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝜑 → (∗‘i) = -i) |
27 | 13 | cjred 14937 | . . . . . . . . . . 11 ⊢ (𝜑 → (∗‘(ℑ‘(log‘𝑋))) = (ℑ‘(log‘𝑋))) |
28 | 26, 27 | oveq12d 7293 | . . . . . . . . . 10 ⊢ (𝜑 → ((∗‘i) · (∗‘(ℑ‘(log‘𝑋)))) = (-i · (ℑ‘(log‘𝑋)))) |
29 | 24, 28 | eqtrd 2778 | . . . . . . . . 9 ⊢ (𝜑 → (∗‘(i · (ℑ‘(log‘𝑋)))) = (-i · (ℑ‘(log‘𝑋)))) |
30 | 29 | fveq2d 6778 | . . . . . . . 8 ⊢ (𝜑 → (exp‘(∗‘(i · (ℑ‘(log‘𝑋))))) = (exp‘(-i · (ℑ‘(log‘𝑋))))) |
31 | 18 | fveq2d 6778 | . . . . . . . 8 ⊢ (𝜑 → (∗‘(exp‘(i · (ℑ‘(log‘𝑋))))) = (∗‘(𝑋 / (abs‘𝑋)))) |
32 | 23, 30, 31 | 3eqtr3d 2786 | . . . . . . 7 ⊢ (𝜑 → (exp‘(-i · (ℑ‘(log‘𝑋)))) = (∗‘(𝑋 / (abs‘𝑋)))) |
33 | 1, 5, 8 | cjdivd 14934 | . . . . . . 7 ⊢ (𝜑 → (∗‘(𝑋 / (abs‘𝑋))) = ((∗‘𝑋) / (∗‘(abs‘𝑋)))) |
34 | 4 | cjred 14937 | . . . . . . . 8 ⊢ (𝜑 → (∗‘(abs‘𝑋)) = (abs‘𝑋)) |
35 | 34 | oveq2d 7291 | . . . . . . 7 ⊢ (𝜑 → ((∗‘𝑋) / (∗‘(abs‘𝑋))) = ((∗‘𝑋) / (abs‘𝑋))) |
36 | 32, 33, 35 | 3eqtrd 2782 | . . . . . 6 ⊢ (𝜑 → (exp‘(-i · (ℑ‘(log‘𝑋)))) = ((∗‘𝑋) / (abs‘𝑋))) |
37 | 18, 36 | oveq12d 7293 | . . . . 5 ⊢ (𝜑 → ((exp‘(i · (ℑ‘(log‘𝑋)))) + (exp‘(-i · (ℑ‘(log‘𝑋))))) = ((𝑋 / (abs‘𝑋)) + ((∗‘𝑋) / (abs‘𝑋)))) |
38 | 1, 2, 5, 8 | divdird 11789 | . . . . 5 ⊢ (𝜑 → ((𝑋 + (∗‘𝑋)) / (abs‘𝑋)) = ((𝑋 / (abs‘𝑋)) + ((∗‘𝑋) / (abs‘𝑋)))) |
39 | 37, 38 | eqtr4d 2781 | . . . 4 ⊢ (𝜑 → ((exp‘(i · (ℑ‘(log‘𝑋)))) + (exp‘(-i · (ℑ‘(log‘𝑋))))) = ((𝑋 + (∗‘𝑋)) / (abs‘𝑋))) |
40 | 39 | oveq1d 7290 | . . 3 ⊢ (𝜑 → (((exp‘(i · (ℑ‘(log‘𝑋)))) + (exp‘(-i · (ℑ‘(log‘𝑋))))) / 2) = (((𝑋 + (∗‘𝑋)) / (abs‘𝑋)) / 2)) |
41 | 16, 40 | eqtrd 2778 | . 2 ⊢ (𝜑 → (cos‘(ℑ‘(log‘𝑋))) = (((𝑋 + (∗‘𝑋)) / (abs‘𝑋)) / 2)) |
42 | reval 14817 | . . . 4 ⊢ (𝑋 ∈ ℂ → (ℜ‘𝑋) = ((𝑋 + (∗‘𝑋)) / 2)) | |
43 | 1, 42 | syl 17 | . . 3 ⊢ (𝜑 → (ℜ‘𝑋) = ((𝑋 + (∗‘𝑋)) / 2)) |
44 | 43 | oveq1d 7290 | . 2 ⊢ (𝜑 → ((ℜ‘𝑋) / (abs‘𝑋)) = (((𝑋 + (∗‘𝑋)) / 2) / (abs‘𝑋))) |
45 | 11, 41, 44 | 3eqtr4d 2788 | 1 ⊢ (𝜑 → (cos‘(ℑ‘(log‘𝑋))) = ((ℜ‘𝑋) / (abs‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 0cc0 10871 ici 10873 + caddc 10874 · cmul 10876 -cneg 11206 / cdiv 11632 2c2 12028 ∗ccj 14807 ℜcre 14808 ℑcim 14809 abscabs 14945 expce 15771 cosccos 15774 logclog 25710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ioo 13083 df-ioc 13084 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-fac 13988 df-bc 14017 df-hash 14045 df-shft 14778 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-limsup 15180 df-clim 15197 df-rlim 15198 df-sum 15398 df-ef 15777 df-sin 15779 df-cos 15780 df-pi 15782 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-rest 17133 df-topn 17134 df-0g 17152 df-gsum 17153 df-topgen 17154 df-pt 17155 df-prds 17158 df-xrs 17213 df-qtop 17218 df-imas 17219 df-xps 17221 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-mulg 18701 df-cntz 18923 df-cmn 19388 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-fbas 20594 df-fg 20595 df-cnfld 20598 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cld 22170 df-ntr 22171 df-cls 22172 df-nei 22249 df-lp 22287 df-perf 22288 df-cn 22378 df-cnp 22379 df-haus 22466 df-tx 22713 df-hmeo 22906 df-fil 22997 df-fm 23089 df-flim 23090 df-flf 23091 df-xms 23473 df-ms 23474 df-tms 23475 df-cncf 24041 df-limc 25030 df-dv 25031 df-log 25712 |
This theorem is referenced by: cosarg0d 25764 cosangneg2d 25957 |
Copyright terms: Public domain | W3C validator |