Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cosargd Structured version   Visualization version   GIF version

Theorem cosargd 25202
 Description: The cosine of the argument is the quotient of the real part and the absolute value. Compare to efiarg 25201. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
cosargd.1 (𝜑𝑋 ∈ ℂ)
cosargd.2 (𝜑𝑋 ≠ 0)
Assertion
Ref Expression
cosargd (𝜑 → (cos‘(ℑ‘(log‘𝑋))) = ((ℜ‘𝑋) / (abs‘𝑋)))

Proof of Theorem cosargd
StepHypRef Expression
1 cosargd.1 . . . 4 (𝜑𝑋 ∈ ℂ)
21cjcld 14550 . . . 4 (𝜑 → (∗‘𝑋) ∈ ℂ)
31, 2addcld 10653 . . 3 (𝜑 → (𝑋 + (∗‘𝑋)) ∈ ℂ)
41abscld 14791 . . . 4 (𝜑 → (abs‘𝑋) ∈ ℝ)
54recnd 10662 . . 3 (𝜑 → (abs‘𝑋) ∈ ℂ)
6 2cnd 11707 . . 3 (𝜑 → 2 ∈ ℂ)
7 cosargd.2 . . . 4 (𝜑𝑋 ≠ 0)
81, 7absne0d 14802 . . 3 (𝜑 → (abs‘𝑋) ≠ 0)
9 2ne0 11733 . . . 4 2 ≠ 0
109a1i 11 . . 3 (𝜑 → 2 ≠ 0)
113, 5, 6, 8, 10divdiv32d 11434 . 2 (𝜑 → (((𝑋 + (∗‘𝑋)) / (abs‘𝑋)) / 2) = (((𝑋 + (∗‘𝑋)) / 2) / (abs‘𝑋)))
121, 7logcld 25165 . . . . . 6 (𝜑 → (log‘𝑋) ∈ ℂ)
1312imcld 14549 . . . . 5 (𝜑 → (ℑ‘(log‘𝑋)) ∈ ℝ)
1413recnd 10662 . . . 4 (𝜑 → (ℑ‘(log‘𝑋)) ∈ ℂ)
15 cosval 15471 . . . 4 ((ℑ‘(log‘𝑋)) ∈ ℂ → (cos‘(ℑ‘(log‘𝑋))) = (((exp‘(i · (ℑ‘(log‘𝑋)))) + (exp‘(-i · (ℑ‘(log‘𝑋))))) / 2))
1614, 15syl 17 . . 3 (𝜑 → (cos‘(ℑ‘(log‘𝑋))) = (((exp‘(i · (ℑ‘(log‘𝑋)))) + (exp‘(-i · (ℑ‘(log‘𝑋))))) / 2))
17 efiarg 25201 . . . . . . 7 ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → (exp‘(i · (ℑ‘(log‘𝑋)))) = (𝑋 / (abs‘𝑋)))
181, 7, 17syl2anc 587 . . . . . 6 (𝜑 → (exp‘(i · (ℑ‘(log‘𝑋)))) = (𝑋 / (abs‘𝑋)))
19 ax-icn 10589 . . . . . . . . . . 11 i ∈ ℂ
2019a1i 11 . . . . . . . . . 10 (𝜑 → i ∈ ℂ)
2120, 14mulcld 10654 . . . . . . . . 9 (𝜑 → (i · (ℑ‘(log‘𝑋))) ∈ ℂ)
22 efcj 15440 . . . . . . . . 9 ((i · (ℑ‘(log‘𝑋))) ∈ ℂ → (exp‘(∗‘(i · (ℑ‘(log‘𝑋))))) = (∗‘(exp‘(i · (ℑ‘(log‘𝑋))))))
2321, 22syl 17 . . . . . . . 8 (𝜑 → (exp‘(∗‘(i · (ℑ‘(log‘𝑋))))) = (∗‘(exp‘(i · (ℑ‘(log‘𝑋))))))
2420, 14cjmuld 14575 . . . . . . . . . 10 (𝜑 → (∗‘(i · (ℑ‘(log‘𝑋)))) = ((∗‘i) · (∗‘(ℑ‘(log‘𝑋)))))
25 cji 14513 . . . . . . . . . . . 12 (∗‘i) = -i
2625a1i 11 . . . . . . . . . . 11 (𝜑 → (∗‘i) = -i)
2713cjred 14580 . . . . . . . . . . 11 (𝜑 → (∗‘(ℑ‘(log‘𝑋))) = (ℑ‘(log‘𝑋)))
2826, 27oveq12d 7157 . . . . . . . . . 10 (𝜑 → ((∗‘i) · (∗‘(ℑ‘(log‘𝑋)))) = (-i · (ℑ‘(log‘𝑋))))
2924, 28eqtrd 2836 . . . . . . . . 9 (𝜑 → (∗‘(i · (ℑ‘(log‘𝑋)))) = (-i · (ℑ‘(log‘𝑋))))
3029fveq2d 6653 . . . . . . . 8 (𝜑 → (exp‘(∗‘(i · (ℑ‘(log‘𝑋))))) = (exp‘(-i · (ℑ‘(log‘𝑋)))))
3118fveq2d 6653 . . . . . . . 8 (𝜑 → (∗‘(exp‘(i · (ℑ‘(log‘𝑋))))) = (∗‘(𝑋 / (abs‘𝑋))))
3223, 30, 313eqtr3d 2844 . . . . . . 7 (𝜑 → (exp‘(-i · (ℑ‘(log‘𝑋)))) = (∗‘(𝑋 / (abs‘𝑋))))
331, 5, 8cjdivd 14577 . . . . . . 7 (𝜑 → (∗‘(𝑋 / (abs‘𝑋))) = ((∗‘𝑋) / (∗‘(abs‘𝑋))))
344cjred 14580 . . . . . . . 8 (𝜑 → (∗‘(abs‘𝑋)) = (abs‘𝑋))
3534oveq2d 7155 . . . . . . 7 (𝜑 → ((∗‘𝑋) / (∗‘(abs‘𝑋))) = ((∗‘𝑋) / (abs‘𝑋)))
3632, 33, 353eqtrd 2840 . . . . . 6 (𝜑 → (exp‘(-i · (ℑ‘(log‘𝑋)))) = ((∗‘𝑋) / (abs‘𝑋)))
3718, 36oveq12d 7157 . . . . 5 (𝜑 → ((exp‘(i · (ℑ‘(log‘𝑋)))) + (exp‘(-i · (ℑ‘(log‘𝑋))))) = ((𝑋 / (abs‘𝑋)) + ((∗‘𝑋) / (abs‘𝑋))))
381, 2, 5, 8divdird 11447 . . . . 5 (𝜑 → ((𝑋 + (∗‘𝑋)) / (abs‘𝑋)) = ((𝑋 / (abs‘𝑋)) + ((∗‘𝑋) / (abs‘𝑋))))
3937, 38eqtr4d 2839 . . . 4 (𝜑 → ((exp‘(i · (ℑ‘(log‘𝑋)))) + (exp‘(-i · (ℑ‘(log‘𝑋))))) = ((𝑋 + (∗‘𝑋)) / (abs‘𝑋)))
4039oveq1d 7154 . . 3 (𝜑 → (((exp‘(i · (ℑ‘(log‘𝑋)))) + (exp‘(-i · (ℑ‘(log‘𝑋))))) / 2) = (((𝑋 + (∗‘𝑋)) / (abs‘𝑋)) / 2))
4116, 40eqtrd 2836 . 2 (𝜑 → (cos‘(ℑ‘(log‘𝑋))) = (((𝑋 + (∗‘𝑋)) / (abs‘𝑋)) / 2))
42 reval 14460 . . . 4 (𝑋 ∈ ℂ → (ℜ‘𝑋) = ((𝑋 + (∗‘𝑋)) / 2))
431, 42syl 17 . . 3 (𝜑 → (ℜ‘𝑋) = ((𝑋 + (∗‘𝑋)) / 2))
4443oveq1d 7154 . 2 (𝜑 → ((ℜ‘𝑋) / (abs‘𝑋)) = (((𝑋 + (∗‘𝑋)) / 2) / (abs‘𝑋)))
4511, 41, 443eqtr4d 2846 1 (𝜑 → (cos‘(ℑ‘(log‘𝑋))) = ((ℜ‘𝑋) / (abs‘𝑋)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2112   ≠ wne 2990  ‘cfv 6328  (class class class)co 7139  ℂcc 10528  0cc0 10530  ici 10532   + caddc 10533   · cmul 10535  -cneg 10864   / cdiv 11290  2c2 11684  ∗ccj 14450  ℜcre 14451  ℑcim 14452  abscabs 14588  expce 15410  cosccos 15413  logclog 25149 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-fac 13634  df-bc 13663  df-hash 13691  df-shft 14421  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-limsup 14823  df-clim 14840  df-rlim 14841  df-sum 15038  df-ef 15416  df-sin 15418  df-cos 15419  df-pi 15421  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-rest 16691  df-topn 16692  df-0g 16710  df-gsum 16711  df-topgen 16712  df-pt 16713  df-prds 16716  df-xrs 16770  df-qtop 16775  df-imas 16776  df-xps 16778  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-mulg 18220  df-cntz 18442  df-cmn 18903  df-psmet 20086  df-xmet 20087  df-met 20088  df-bl 20089  df-mopn 20090  df-fbas 20091  df-fg 20092  df-cnfld 20095  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-limc 24472  df-dv 24473  df-log 25151 This theorem is referenced by:  cosarg0d  25203  cosangneg2d  25396
 Copyright terms: Public domain W3C validator