| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cosargd | Structured version Visualization version GIF version | ||
| Description: The cosine of the argument is the quotient of the real part and the absolute value. Compare to efiarg 26523. (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| cosargd.1 | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| cosargd.2 | ⊢ (𝜑 → 𝑋 ≠ 0) |
| Ref | Expression |
|---|---|
| cosargd | ⊢ (𝜑 → (cos‘(ℑ‘(log‘𝑋))) = ((ℜ‘𝑋) / (abs‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cosargd.1 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℂ) | |
| 2 | 1 | cjcld 15169 | . . . 4 ⊢ (𝜑 → (∗‘𝑋) ∈ ℂ) |
| 3 | 1, 2 | addcld 11200 | . . 3 ⊢ (𝜑 → (𝑋 + (∗‘𝑋)) ∈ ℂ) |
| 4 | 1 | abscld 15412 | . . . 4 ⊢ (𝜑 → (abs‘𝑋) ∈ ℝ) |
| 5 | 4 | recnd 11209 | . . 3 ⊢ (𝜑 → (abs‘𝑋) ∈ ℂ) |
| 6 | 2cnd 12271 | . . 3 ⊢ (𝜑 → 2 ∈ ℂ) | |
| 7 | cosargd.2 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 0) | |
| 8 | 1, 7 | absne0d 15423 | . . 3 ⊢ (𝜑 → (abs‘𝑋) ≠ 0) |
| 9 | 2ne0 12297 | . . . 4 ⊢ 2 ≠ 0 | |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → 2 ≠ 0) |
| 11 | 3, 5, 6, 8, 10 | divdiv32d 11990 | . 2 ⊢ (𝜑 → (((𝑋 + (∗‘𝑋)) / (abs‘𝑋)) / 2) = (((𝑋 + (∗‘𝑋)) / 2) / (abs‘𝑋))) |
| 12 | 1, 7 | logcld 26486 | . . . . . 6 ⊢ (𝜑 → (log‘𝑋) ∈ ℂ) |
| 13 | 12 | imcld 15168 | . . . . 5 ⊢ (𝜑 → (ℑ‘(log‘𝑋)) ∈ ℝ) |
| 14 | 13 | recnd 11209 | . . . 4 ⊢ (𝜑 → (ℑ‘(log‘𝑋)) ∈ ℂ) |
| 15 | cosval 16098 | . . . 4 ⊢ ((ℑ‘(log‘𝑋)) ∈ ℂ → (cos‘(ℑ‘(log‘𝑋))) = (((exp‘(i · (ℑ‘(log‘𝑋)))) + (exp‘(-i · (ℑ‘(log‘𝑋))))) / 2)) | |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ (𝜑 → (cos‘(ℑ‘(log‘𝑋))) = (((exp‘(i · (ℑ‘(log‘𝑋)))) + (exp‘(-i · (ℑ‘(log‘𝑋))))) / 2)) |
| 17 | efiarg 26523 | . . . . . . 7 ⊢ ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → (exp‘(i · (ℑ‘(log‘𝑋)))) = (𝑋 / (abs‘𝑋))) | |
| 18 | 1, 7, 17 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (exp‘(i · (ℑ‘(log‘𝑋)))) = (𝑋 / (abs‘𝑋))) |
| 19 | ax-icn 11134 | . . . . . . . . . . 11 ⊢ i ∈ ℂ | |
| 20 | 19 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → i ∈ ℂ) |
| 21 | 20, 14 | mulcld 11201 | . . . . . . . . 9 ⊢ (𝜑 → (i · (ℑ‘(log‘𝑋))) ∈ ℂ) |
| 22 | efcj 16065 | . . . . . . . . 9 ⊢ ((i · (ℑ‘(log‘𝑋))) ∈ ℂ → (exp‘(∗‘(i · (ℑ‘(log‘𝑋))))) = (∗‘(exp‘(i · (ℑ‘(log‘𝑋)))))) | |
| 23 | 21, 22 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (exp‘(∗‘(i · (ℑ‘(log‘𝑋))))) = (∗‘(exp‘(i · (ℑ‘(log‘𝑋)))))) |
| 24 | 20, 14 | cjmuld 15194 | . . . . . . . . . 10 ⊢ (𝜑 → (∗‘(i · (ℑ‘(log‘𝑋)))) = ((∗‘i) · (∗‘(ℑ‘(log‘𝑋))))) |
| 25 | cji 15132 | . . . . . . . . . . . 12 ⊢ (∗‘i) = -i | |
| 26 | 25 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝜑 → (∗‘i) = -i) |
| 27 | 13 | cjred 15199 | . . . . . . . . . . 11 ⊢ (𝜑 → (∗‘(ℑ‘(log‘𝑋))) = (ℑ‘(log‘𝑋))) |
| 28 | 26, 27 | oveq12d 7408 | . . . . . . . . . 10 ⊢ (𝜑 → ((∗‘i) · (∗‘(ℑ‘(log‘𝑋)))) = (-i · (ℑ‘(log‘𝑋)))) |
| 29 | 24, 28 | eqtrd 2765 | . . . . . . . . 9 ⊢ (𝜑 → (∗‘(i · (ℑ‘(log‘𝑋)))) = (-i · (ℑ‘(log‘𝑋)))) |
| 30 | 29 | fveq2d 6865 | . . . . . . . 8 ⊢ (𝜑 → (exp‘(∗‘(i · (ℑ‘(log‘𝑋))))) = (exp‘(-i · (ℑ‘(log‘𝑋))))) |
| 31 | 18 | fveq2d 6865 | . . . . . . . 8 ⊢ (𝜑 → (∗‘(exp‘(i · (ℑ‘(log‘𝑋))))) = (∗‘(𝑋 / (abs‘𝑋)))) |
| 32 | 23, 30, 31 | 3eqtr3d 2773 | . . . . . . 7 ⊢ (𝜑 → (exp‘(-i · (ℑ‘(log‘𝑋)))) = (∗‘(𝑋 / (abs‘𝑋)))) |
| 33 | 1, 5, 8 | cjdivd 15196 | . . . . . . 7 ⊢ (𝜑 → (∗‘(𝑋 / (abs‘𝑋))) = ((∗‘𝑋) / (∗‘(abs‘𝑋)))) |
| 34 | 4 | cjred 15199 | . . . . . . . 8 ⊢ (𝜑 → (∗‘(abs‘𝑋)) = (abs‘𝑋)) |
| 35 | 34 | oveq2d 7406 | . . . . . . 7 ⊢ (𝜑 → ((∗‘𝑋) / (∗‘(abs‘𝑋))) = ((∗‘𝑋) / (abs‘𝑋))) |
| 36 | 32, 33, 35 | 3eqtrd 2769 | . . . . . 6 ⊢ (𝜑 → (exp‘(-i · (ℑ‘(log‘𝑋)))) = ((∗‘𝑋) / (abs‘𝑋))) |
| 37 | 18, 36 | oveq12d 7408 | . . . . 5 ⊢ (𝜑 → ((exp‘(i · (ℑ‘(log‘𝑋)))) + (exp‘(-i · (ℑ‘(log‘𝑋))))) = ((𝑋 / (abs‘𝑋)) + ((∗‘𝑋) / (abs‘𝑋)))) |
| 38 | 1, 2, 5, 8 | divdird 12003 | . . . . 5 ⊢ (𝜑 → ((𝑋 + (∗‘𝑋)) / (abs‘𝑋)) = ((𝑋 / (abs‘𝑋)) + ((∗‘𝑋) / (abs‘𝑋)))) |
| 39 | 37, 38 | eqtr4d 2768 | . . . 4 ⊢ (𝜑 → ((exp‘(i · (ℑ‘(log‘𝑋)))) + (exp‘(-i · (ℑ‘(log‘𝑋))))) = ((𝑋 + (∗‘𝑋)) / (abs‘𝑋))) |
| 40 | 39 | oveq1d 7405 | . . 3 ⊢ (𝜑 → (((exp‘(i · (ℑ‘(log‘𝑋)))) + (exp‘(-i · (ℑ‘(log‘𝑋))))) / 2) = (((𝑋 + (∗‘𝑋)) / (abs‘𝑋)) / 2)) |
| 41 | 16, 40 | eqtrd 2765 | . 2 ⊢ (𝜑 → (cos‘(ℑ‘(log‘𝑋))) = (((𝑋 + (∗‘𝑋)) / (abs‘𝑋)) / 2)) |
| 42 | reval 15079 | . . . 4 ⊢ (𝑋 ∈ ℂ → (ℜ‘𝑋) = ((𝑋 + (∗‘𝑋)) / 2)) | |
| 43 | 1, 42 | syl 17 | . . 3 ⊢ (𝜑 → (ℜ‘𝑋) = ((𝑋 + (∗‘𝑋)) / 2)) |
| 44 | 43 | oveq1d 7405 | . 2 ⊢ (𝜑 → ((ℜ‘𝑋) / (abs‘𝑋)) = (((𝑋 + (∗‘𝑋)) / 2) / (abs‘𝑋))) |
| 45 | 11, 41, 44 | 3eqtr4d 2775 | 1 ⊢ (𝜑 → (cos‘(ℑ‘(log‘𝑋))) = ((ℜ‘𝑋) / (abs‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 0cc0 11075 ici 11077 + caddc 11078 · cmul 11080 -cneg 11413 / cdiv 11842 2c2 12248 ∗ccj 15069 ℜcre 15070 ℑcim 15071 abscabs 15207 expce 16034 cosccos 16037 logclog 26470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ioc 13318 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-fac 14246 df-bc 14275 df-hash 14303 df-shft 15040 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-ef 16040 df-sin 16042 df-cos 16043 df-pi 16045 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-xrs 17472 df-qtop 17477 df-imas 17478 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-mulg 19007 df-cntz 19256 df-cmn 19719 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-fbas 21268 df-fg 21269 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-ntr 22914 df-cls 22915 df-nei 22992 df-lp 23030 df-perf 23031 df-cn 23121 df-cnp 23122 df-haus 23209 df-tx 23456 df-hmeo 23649 df-fil 23740 df-fm 23832 df-flim 23833 df-flf 23834 df-xms 24215 df-ms 24216 df-tms 24217 df-cncf 24778 df-limc 25774 df-dv 25775 df-log 26472 |
| This theorem is referenced by: cosarg0d 26525 cosangneg2d 26724 |
| Copyright terms: Public domain | W3C validator |