![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addcj | Structured version Visualization version GIF version |
Description: A number plus its conjugate is twice its real part. Compare Proposition 10-3.4(h) of [Gleason] p. 133. (Contributed by NM, 21-Jan-2007.) (Revised by Mario Carneiro, 14-Jul-2014.) |
Ref | Expression |
---|---|
addcj | ⊢ (𝐴 ∈ ℂ → (𝐴 + (∗‘𝐴)) = (2 · (ℜ‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reval 15104 | . . 3 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) = ((𝐴 + (∗‘𝐴)) / 2)) | |
2 | 1 | oveq2d 7430 | . 2 ⊢ (𝐴 ∈ ℂ → (2 · (ℜ‘𝐴)) = (2 · ((𝐴 + (∗‘𝐴)) / 2))) |
3 | cjcl 15103 | . . . 4 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | |
4 | addcl 11229 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (∗‘𝐴) ∈ ℂ) → (𝐴 + (∗‘𝐴)) ∈ ℂ) | |
5 | 3, 4 | mpdan 685 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐴 + (∗‘𝐴)) ∈ ℂ) |
6 | 2cn 12331 | . . . 4 ⊢ 2 ∈ ℂ | |
7 | 2ne0 12360 | . . . 4 ⊢ 2 ≠ 0 | |
8 | divcan2 11920 | . . . 4 ⊢ (((𝐴 + (∗‘𝐴)) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · ((𝐴 + (∗‘𝐴)) / 2)) = (𝐴 + (∗‘𝐴))) | |
9 | 6, 7, 8 | mp3an23 1450 | . . 3 ⊢ ((𝐴 + (∗‘𝐴)) ∈ ℂ → (2 · ((𝐴 + (∗‘𝐴)) / 2)) = (𝐴 + (∗‘𝐴))) |
10 | 5, 9 | syl 17 | . 2 ⊢ (𝐴 ∈ ℂ → (2 · ((𝐴 + (∗‘𝐴)) / 2)) = (𝐴 + (∗‘𝐴))) |
11 | 2, 10 | eqtr2d 2767 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + (∗‘𝐴)) = (2 · (ℜ‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ‘cfv 6544 (class class class)co 7414 ℂcc 11145 0cc0 11147 + caddc 11150 · cmul 11152 / cdiv 11910 2c2 12311 ∗ccj 15094 ℜcre 15095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 ax-resscn 11204 ax-1cn 11205 ax-icn 11206 ax-addcl 11207 ax-addrcl 11208 ax-mulcl 11209 ax-mulrcl 11210 ax-mulcom 11211 ax-addass 11212 ax-mulass 11213 ax-distr 11214 ax-i2m1 11215 ax-1ne0 11216 ax-1rid 11217 ax-rnegex 11218 ax-rrecex 11219 ax-cnre 11220 ax-pre-lttri 11221 ax-pre-lttrn 11222 ax-pre-ltadd 11223 ax-pre-mulgt0 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3365 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5571 df-po 5585 df-so 5586 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11289 df-mnf 11290 df-xr 11291 df-ltxr 11292 df-le 11293 df-sub 11485 df-neg 11486 df-div 11911 df-2 12319 df-cj 15097 df-re 15098 |
This theorem is referenced by: addcji 15181 addcjd 15210 |
Copyright terms: Public domain | W3C validator |