| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > recosval | Structured version Visualization version GIF version | ||
| Description: The cosine of a real number in terms of the exponential function. (Contributed by NM, 30-Apr-2005.) |
| Ref | Expression |
|---|---|
| recosval | ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = (ℜ‘(exp‘(i · 𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn 11074 | . . . . . . . 8 ⊢ i ∈ ℂ | |
| 2 | recn 11105 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 3 | cjmul 15053 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (∗‘(i · 𝐴)) = ((∗‘i) · (∗‘𝐴))) | |
| 4 | 1, 2, 3 | sylancr 587 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (∗‘(i · 𝐴)) = ((∗‘i) · (∗‘𝐴))) |
| 5 | cji 15070 | . . . . . . . . 9 ⊢ (∗‘i) = -i | |
| 6 | 5 | oveq1i 7364 | . . . . . . . 8 ⊢ ((∗‘i) · (∗‘𝐴)) = (-i · (∗‘𝐴)) |
| 7 | cjre 15050 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (∗‘𝐴) = 𝐴) | |
| 8 | 7 | oveq2d 7370 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (-i · (∗‘𝐴)) = (-i · 𝐴)) |
| 9 | 6, 8 | eqtrid 2780 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → ((∗‘i) · (∗‘𝐴)) = (-i · 𝐴)) |
| 10 | 4, 9 | eqtrd 2768 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (∗‘(i · 𝐴)) = (-i · 𝐴)) |
| 11 | 10 | fveq2d 6834 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (exp‘(∗‘(i · 𝐴))) = (exp‘(-i · 𝐴))) |
| 12 | mulcl 11099 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
| 13 | 1, 2, 12 | sylancr 587 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ) |
| 14 | efcj 16003 | . . . . . 6 ⊢ ((i · 𝐴) ∈ ℂ → (exp‘(∗‘(i · 𝐴))) = (∗‘(exp‘(i · 𝐴)))) | |
| 15 | 13, 14 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (exp‘(∗‘(i · 𝐴))) = (∗‘(exp‘(i · 𝐴)))) |
| 16 | 11, 15 | eqtr3d 2770 | . . . 4 ⊢ (𝐴 ∈ ℝ → (exp‘(-i · 𝐴)) = (∗‘(exp‘(i · 𝐴)))) |
| 17 | 16 | oveq2d 7370 | . . 3 ⊢ (𝐴 ∈ ℝ → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) = ((exp‘(i · 𝐴)) + (∗‘(exp‘(i · 𝐴))))) |
| 18 | 17 | oveq1d 7369 | . 2 ⊢ (𝐴 ∈ ℝ → (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) = (((exp‘(i · 𝐴)) + (∗‘(exp‘(i · 𝐴)))) / 2)) |
| 19 | cosval 16036 | . . 3 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) | |
| 20 | 2, 19 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) |
| 21 | efcl 15993 | . . 3 ⊢ ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ) | |
| 22 | reval 15017 | . . 3 ⊢ ((exp‘(i · 𝐴)) ∈ ℂ → (ℜ‘(exp‘(i · 𝐴))) = (((exp‘(i · 𝐴)) + (∗‘(exp‘(i · 𝐴)))) / 2)) | |
| 23 | 13, 21, 22 | 3syl 18 | . 2 ⊢ (𝐴 ∈ ℝ → (ℜ‘(exp‘(i · 𝐴))) = (((exp‘(i · 𝐴)) + (∗‘(exp‘(i · 𝐴)))) / 2)) |
| 24 | 18, 20, 23 | 3eqtr4d 2778 | 1 ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = (ℜ‘(exp‘(i · 𝐴)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ‘cfv 6488 (class class class)co 7354 ℂcc 11013 ℝcr 11014 ici 11017 + caddc 11018 · cmul 11020 -cneg 11354 / cdiv 11783 2c2 12189 ∗ccj 15007 ℜcre 15008 expce 15972 cosccos 15975 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-inf2 9540 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-pm 8761 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-sup 9335 df-inf 9336 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-n0 12391 df-z 12478 df-uz 12741 df-rp 12895 df-ico 13255 df-fz 13412 df-fzo 13559 df-fl 13700 df-seq 13913 df-exp 13973 df-fac 14185 df-hash 14242 df-shft 14978 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-limsup 15382 df-clim 15399 df-rlim 15400 df-sum 15598 df-ef 15978 df-cos 15981 |
| This theorem is referenced by: recos4p 16052 recoscl 16054 cos0 16063 argregt0 26549 argrege0 26550 lawcos 26756 |
| Copyright terms: Public domain | W3C validator |