| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > recosval | Structured version Visualization version GIF version | ||
| Description: The cosine of a real number in terms of the exponential function. (Contributed by NM, 30-Apr-2005.) |
| Ref | Expression |
|---|---|
| recosval | ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = (ℜ‘(exp‘(i · 𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn 11188 | . . . . . . . 8 ⊢ i ∈ ℂ | |
| 2 | recn 11219 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 3 | cjmul 15161 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (∗‘(i · 𝐴)) = ((∗‘i) · (∗‘𝐴))) | |
| 4 | 1, 2, 3 | sylancr 587 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (∗‘(i · 𝐴)) = ((∗‘i) · (∗‘𝐴))) |
| 5 | cji 15178 | . . . . . . . . 9 ⊢ (∗‘i) = -i | |
| 6 | 5 | oveq1i 7415 | . . . . . . . 8 ⊢ ((∗‘i) · (∗‘𝐴)) = (-i · (∗‘𝐴)) |
| 7 | cjre 15158 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (∗‘𝐴) = 𝐴) | |
| 8 | 7 | oveq2d 7421 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (-i · (∗‘𝐴)) = (-i · 𝐴)) |
| 9 | 6, 8 | eqtrid 2782 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → ((∗‘i) · (∗‘𝐴)) = (-i · 𝐴)) |
| 10 | 4, 9 | eqtrd 2770 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (∗‘(i · 𝐴)) = (-i · 𝐴)) |
| 11 | 10 | fveq2d 6880 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (exp‘(∗‘(i · 𝐴))) = (exp‘(-i · 𝐴))) |
| 12 | mulcl 11213 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
| 13 | 1, 2, 12 | sylancr 587 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ) |
| 14 | efcj 16108 | . . . . . 6 ⊢ ((i · 𝐴) ∈ ℂ → (exp‘(∗‘(i · 𝐴))) = (∗‘(exp‘(i · 𝐴)))) | |
| 15 | 13, 14 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (exp‘(∗‘(i · 𝐴))) = (∗‘(exp‘(i · 𝐴)))) |
| 16 | 11, 15 | eqtr3d 2772 | . . . 4 ⊢ (𝐴 ∈ ℝ → (exp‘(-i · 𝐴)) = (∗‘(exp‘(i · 𝐴)))) |
| 17 | 16 | oveq2d 7421 | . . 3 ⊢ (𝐴 ∈ ℝ → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) = ((exp‘(i · 𝐴)) + (∗‘(exp‘(i · 𝐴))))) |
| 18 | 17 | oveq1d 7420 | . 2 ⊢ (𝐴 ∈ ℝ → (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) = (((exp‘(i · 𝐴)) + (∗‘(exp‘(i · 𝐴)))) / 2)) |
| 19 | cosval 16141 | . . 3 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) | |
| 20 | 2, 19 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) |
| 21 | efcl 16098 | . . 3 ⊢ ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ) | |
| 22 | reval 15125 | . . 3 ⊢ ((exp‘(i · 𝐴)) ∈ ℂ → (ℜ‘(exp‘(i · 𝐴))) = (((exp‘(i · 𝐴)) + (∗‘(exp‘(i · 𝐴)))) / 2)) | |
| 23 | 13, 21, 22 | 3syl 18 | . 2 ⊢ (𝐴 ∈ ℝ → (ℜ‘(exp‘(i · 𝐴))) = (((exp‘(i · 𝐴)) + (∗‘(exp‘(i · 𝐴)))) / 2)) |
| 24 | 18, 20, 23 | 3eqtr4d 2780 | 1 ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = (ℜ‘(exp‘(i · 𝐴)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 ℝcr 11128 ici 11131 + caddc 11132 · cmul 11134 -cneg 11467 / cdiv 11894 2c2 12295 ∗ccj 15115 ℜcre 15116 expce 16077 cosccos 16080 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-ico 13368 df-fz 13525 df-fzo 13672 df-fl 13809 df-seq 14020 df-exp 14080 df-fac 14292 df-hash 14349 df-shft 15086 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-limsup 15487 df-clim 15504 df-rlim 15505 df-sum 15703 df-ef 16083 df-cos 16086 |
| This theorem is referenced by: recos4p 16157 recoscl 16159 cos0 16168 argregt0 26571 argrege0 26572 lawcos 26778 |
| Copyright terms: Public domain | W3C validator |