![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvmptre | Structured version Visualization version GIF version |
Description: Function-builder for derivative, real part. (Contributed by Mario Carneiro, 1-Sep-2014.) |
Ref | Expression |
---|---|
dvmptcj.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
dvmptcj.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) |
dvmptcj.da | ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
Ref | Expression |
---|---|
dvmptre | ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ (ℜ‘𝐴))) = (𝑥 ∈ 𝑋 ↦ (ℜ‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reelprrecn 11239 | . . . 4 ⊢ ℝ ∈ {ℝ, ℂ} | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → ℝ ∈ {ℝ, ℂ}) |
3 | dvmptcj.a | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) | |
4 | 3 | cjcld 15194 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (∗‘𝐴) ∈ ℂ) |
5 | 3, 4 | addcld 11272 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴 + (∗‘𝐴)) ∈ ℂ) |
6 | dvmptcj.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) | |
7 | dvmptcj.da | . . . . 5 ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
8 | 2, 3, 6, 7 | dvmptcl 25977 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) |
9 | 8 | cjcld 15194 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (∗‘𝐵) ∈ ℂ) |
10 | 8, 9 | addcld 11272 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐵 + (∗‘𝐵)) ∈ ℂ) |
11 | 3, 6, 7 | dvmptcj 25986 | . . . 4 ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ (∗‘𝐴))) = (𝑥 ∈ 𝑋 ↦ (∗‘𝐵))) |
12 | 2, 3, 6, 7, 4, 9, 11 | dvmptadd 25978 | . . 3 ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ (𝐴 + (∗‘𝐴)))) = (𝑥 ∈ 𝑋 ↦ (𝐵 + (∗‘𝐵)))) |
13 | halfcn 12471 | . . . 4 ⊢ (1 / 2) ∈ ℂ | |
14 | 13 | a1i 11 | . . 3 ⊢ (𝜑 → (1 / 2) ∈ ℂ) |
15 | 2, 5, 10, 12, 14 | dvmptcmul 25982 | . 2 ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ ((1 / 2) · (𝐴 + (∗‘𝐴))))) = (𝑥 ∈ 𝑋 ↦ ((1 / 2) · (𝐵 + (∗‘𝐵))))) |
16 | reval 15104 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) = ((𝐴 + (∗‘𝐴)) / 2)) | |
17 | 3, 16 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (ℜ‘𝐴) = ((𝐴 + (∗‘𝐴)) / 2)) |
18 | 2cn 12331 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
19 | 2ne0 12360 | . . . . . . 7 ⊢ 2 ≠ 0 | |
20 | divrec2 11929 | . . . . . . 7 ⊢ (((𝐴 + (∗‘𝐴)) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((𝐴 + (∗‘𝐴)) / 2) = ((1 / 2) · (𝐴 + (∗‘𝐴)))) | |
21 | 18, 19, 20 | mp3an23 1450 | . . . . . 6 ⊢ ((𝐴 + (∗‘𝐴)) ∈ ℂ → ((𝐴 + (∗‘𝐴)) / 2) = ((1 / 2) · (𝐴 + (∗‘𝐴)))) |
22 | 5, 21 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐴 + (∗‘𝐴)) / 2) = ((1 / 2) · (𝐴 + (∗‘𝐴)))) |
23 | 17, 22 | eqtrd 2766 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (ℜ‘𝐴) = ((1 / 2) · (𝐴 + (∗‘𝐴)))) |
24 | 23 | mpteq2dva 5244 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (ℜ‘𝐴)) = (𝑥 ∈ 𝑋 ↦ ((1 / 2) · (𝐴 + (∗‘𝐴))))) |
25 | 24 | oveq2d 7430 | . 2 ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ (ℜ‘𝐴))) = (ℝ D (𝑥 ∈ 𝑋 ↦ ((1 / 2) · (𝐴 + (∗‘𝐴)))))) |
26 | reval 15104 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (ℜ‘𝐵) = ((𝐵 + (∗‘𝐵)) / 2)) | |
27 | 8, 26 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (ℜ‘𝐵) = ((𝐵 + (∗‘𝐵)) / 2)) |
28 | divrec2 11929 | . . . . . 6 ⊢ (((𝐵 + (∗‘𝐵)) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((𝐵 + (∗‘𝐵)) / 2) = ((1 / 2) · (𝐵 + (∗‘𝐵)))) | |
29 | 18, 19, 28 | mp3an23 1450 | . . . . 5 ⊢ ((𝐵 + (∗‘𝐵)) ∈ ℂ → ((𝐵 + (∗‘𝐵)) / 2) = ((1 / 2) · (𝐵 + (∗‘𝐵)))) |
30 | 10, 29 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐵 + (∗‘𝐵)) / 2) = ((1 / 2) · (𝐵 + (∗‘𝐵)))) |
31 | 27, 30 | eqtrd 2766 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (ℜ‘𝐵) = ((1 / 2) · (𝐵 + (∗‘𝐵)))) |
32 | 31 | mpteq2dva 5244 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (ℜ‘𝐵)) = (𝑥 ∈ 𝑋 ↦ ((1 / 2) · (𝐵 + (∗‘𝐵))))) |
33 | 15, 25, 32 | 3eqtr4d 2776 | 1 ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ (ℜ‘𝐴))) = (𝑥 ∈ 𝑋 ↦ (ℜ‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 {cpr 4626 ↦ cmpt 5227 ‘cfv 6544 (class class class)co 7414 ℂcc 11145 ℝcr 11146 0cc0 11147 1c1 11148 + caddc 11150 · cmul 11152 / cdiv 11910 2c2 12311 ∗ccj 15094 ℜcre 15095 D cdv 25878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 ax-cnex 11203 ax-resscn 11204 ax-1cn 11205 ax-icn 11206 ax-addcl 11207 ax-addrcl 11208 ax-mulcl 11209 ax-mulrcl 11210 ax-mulcom 11211 ax-addass 11212 ax-mulass 11213 ax-distr 11214 ax-i2m1 11215 ax-1ne0 11216 ax-1rid 11217 ax-rnegex 11218 ax-rrecex 11219 ax-cnre 11220 ax-pre-lttri 11221 ax-pre-lttrn 11222 ax-pre-ltadd 11223 ax-pre-mulgt0 11224 ax-pre-sup 11225 ax-addf 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3365 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4907 df-int 4948 df-iun 4996 df-iin 4997 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6303 df-ord 6369 df-on 6370 df-lim 6371 df-suc 6372 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-2o 8487 df-er 8724 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9397 df-fi 9445 df-sup 9476 df-inf 9477 df-oi 9544 df-card 9973 df-pnf 11289 df-mnf 11290 df-xr 11291 df-ltxr 11292 df-le 11293 df-sub 11485 df-neg 11486 df-div 11911 df-nn 12257 df-2 12319 df-3 12320 df-4 12321 df-5 12322 df-6 12323 df-7 12324 df-8 12325 df-9 12326 df-n0 12517 df-z 12603 df-dec 12722 df-uz 12867 df-q 12977 df-rp 13021 df-xneg 13138 df-xadd 13139 df-xmul 13140 df-ioo 13374 df-icc 13377 df-fz 13531 df-fzo 13674 df-seq 14014 df-exp 14074 df-hash 14341 df-cj 15097 df-re 15098 df-im 15099 df-sqrt 15233 df-abs 15234 df-struct 17142 df-sets 17159 df-slot 17177 df-ndx 17189 df-base 17207 df-ress 17236 df-plusg 17272 df-mulr 17273 df-starv 17274 df-sca 17275 df-vsca 17276 df-ip 17277 df-tset 17278 df-ple 17279 df-ds 17281 df-unif 17282 df-hom 17283 df-cco 17284 df-rest 17430 df-topn 17431 df-0g 17449 df-gsum 17450 df-topgen 17451 df-pt 17452 df-prds 17455 df-xrs 17510 df-qtop 17515 df-imas 17516 df-xps 17518 df-mre 17592 df-mrc 17593 df-acs 17595 df-mgm 18626 df-sgrp 18705 df-mnd 18721 df-submnd 18767 df-mulg 19056 df-cntz 19305 df-cmn 19774 df-psmet 21329 df-xmet 21330 df-met 21331 df-bl 21332 df-mopn 21333 df-fbas 21334 df-fg 21335 df-cnfld 21338 df-top 22882 df-topon 22899 df-topsp 22921 df-bases 22935 df-cld 23009 df-ntr 23010 df-cls 23011 df-nei 23088 df-lp 23126 df-perf 23127 df-cn 23217 df-cnp 23218 df-haus 23305 df-tx 23552 df-hmeo 23745 df-fil 23836 df-fm 23928 df-flim 23929 df-flf 23930 df-xms 24312 df-ms 24313 df-tms 24314 df-cncf 24884 df-limc 25881 df-dv 25882 |
This theorem is referenced by: dvlip 26012 |
Copyright terms: Public domain | W3C validator |