![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngorn1 | Structured version Visualization version GIF version |
Description: In a unital ring the range of the addition equals the domain of the first variable of the multiplication. (Contributed by FL, 24-Jan-2010.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rnplrnml0.1 | ⊢ 𝐻 = (2nd ‘𝑅) |
rnplrnml0.2 | ⊢ 𝐺 = (1st ‘𝑅) |
Ref | Expression |
---|---|
rngorn1 | ⊢ (𝑅 ∈ RingOps → ran 𝐺 = dom dom 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnplrnml0.2 | . . . 4 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | 1 | rngogrpo 37819 | . . 3 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
3 | grporndm 30533 | . . 3 ⊢ (𝐺 ∈ GrpOp → ran 𝐺 = dom dom 𝐺) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝑅 ∈ RingOps → ran 𝐺 = dom dom 𝐺) |
5 | rnplrnml0.1 | . . 3 ⊢ 𝐻 = (2nd ‘𝑅) | |
6 | 5, 1 | rngodm1dm2 37841 | . 2 ⊢ (𝑅 ∈ RingOps → dom dom 𝐺 = dom dom 𝐻) |
7 | 4, 6 | eqtrd 2774 | 1 ⊢ (𝑅 ∈ RingOps → ran 𝐺 = dom dom 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2103 dom cdm 5699 ran crn 5700 ‘cfv 6572 1st c1st 8024 2nd c2nd 8025 GrpOpcgr 30512 RingOpscrngo 37803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-sep 5320 ax-nul 5327 ax-pr 5450 ax-un 7766 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-ral 3064 df-rex 3073 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-nul 4348 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5021 df-br 5170 df-opab 5232 df-mpt 5253 df-id 5597 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-fo 6578 df-fv 6580 df-ov 7448 df-1st 8026 df-2nd 8027 df-grpo 30516 df-ablo 30568 df-rngo 37804 |
This theorem is referenced by: rngomndo 37844 |
Copyright terms: Public domain | W3C validator |