Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngorn1 Structured version   Visualization version   GIF version

Theorem rngorn1 35364
Description: In a unital ring the range of the addition equals the domain of the first variable of the multiplication. (Contributed by FL, 24-Jan-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
rnplrnml0.1 𝐻 = (2nd𝑅)
rnplrnml0.2 𝐺 = (1st𝑅)
Assertion
Ref Expression
rngorn1 (𝑅 ∈ RingOps → ran 𝐺 = dom dom 𝐻)

Proof of Theorem rngorn1
StepHypRef Expression
1 rnplrnml0.2 . . . 4 𝐺 = (1st𝑅)
21rngogrpo 35341 . . 3 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
3 grporndm 28296 . . 3 (𝐺 ∈ GrpOp → ran 𝐺 = dom dom 𝐺)
42, 3syl 17 . 2 (𝑅 ∈ RingOps → ran 𝐺 = dom dom 𝐺)
5 rnplrnml0.1 . . 3 𝐻 = (2nd𝑅)
65, 1rngodm1dm2 35363 . 2 (𝑅 ∈ RingOps → dom dom 𝐺 = dom dom 𝐻)
74, 6eqtrd 2836 1 (𝑅 ∈ RingOps → ran 𝐺 = dom dom 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2112  dom cdm 5523  ran crn 5524  cfv 6328  1st c1st 7673  2nd c2nd 7674  GrpOpcgr 28275  RingOpscrngo 35325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-fo 6334  df-fv 6336  df-ov 7142  df-1st 7675  df-2nd 7676  df-grpo 28279  df-ablo 28331  df-rngo 35326
This theorem is referenced by:  rngomndo  35366
  Copyright terms: Public domain W3C validator