Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngorn1 Structured version   Visualization version   GIF version

Theorem rngorn1 37312
Description: In a unital ring the range of the addition equals the domain of the first variable of the multiplication. (Contributed by FL, 24-Jan-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
rnplrnml0.1 𝐻 = (2nd𝑅)
rnplrnml0.2 𝐺 = (1st𝑅)
Assertion
Ref Expression
rngorn1 (𝑅 ∈ RingOps → ran 𝐺 = dom dom 𝐻)

Proof of Theorem rngorn1
StepHypRef Expression
1 rnplrnml0.2 . . . 4 𝐺 = (1st𝑅)
21rngogrpo 37289 . . 3 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
3 grporndm 30268 . . 3 (𝐺 ∈ GrpOp → ran 𝐺 = dom dom 𝐺)
42, 3syl 17 . 2 (𝑅 ∈ RingOps → ran 𝐺 = dom dom 𝐺)
5 rnplrnml0.1 . . 3 𝐻 = (2nd𝑅)
65, 1rngodm1dm2 37311 . 2 (𝑅 ∈ RingOps → dom dom 𝐺 = dom dom 𝐻)
74, 6eqtrd 2766 1 (𝑅 ∈ RingOps → ran 𝐺 = dom dom 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  dom cdm 5669  ran crn 5670  cfv 6536  1st c1st 7969  2nd c2nd 7970  GrpOpcgr 30247  RingOpscrngo 37273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-fo 6542  df-fv 6544  df-ov 7407  df-1st 7971  df-2nd 7972  df-grpo 30251  df-ablo 30303  df-rngo 37274
This theorem is referenced by:  rngomndo  37314
  Copyright terms: Public domain W3C validator