Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngorn1 Structured version   Visualization version   GIF version

Theorem rngorn1 37920
Description: In a unital ring the range of the addition equals the domain of the first variable of the multiplication. (Contributed by FL, 24-Jan-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
rnplrnml0.1 𝐻 = (2nd𝑅)
rnplrnml0.2 𝐺 = (1st𝑅)
Assertion
Ref Expression
rngorn1 (𝑅 ∈ RingOps → ran 𝐺 = dom dom 𝐻)

Proof of Theorem rngorn1
StepHypRef Expression
1 rnplrnml0.2 . . . 4 𝐺 = (1st𝑅)
21rngogrpo 37897 . . 3 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
3 grporndm 30489 . . 3 (𝐺 ∈ GrpOp → ran 𝐺 = dom dom 𝐺)
42, 3syl 17 . 2 (𝑅 ∈ RingOps → ran 𝐺 = dom dom 𝐺)
5 rnplrnml0.1 . . 3 𝐻 = (2nd𝑅)
65, 1rngodm1dm2 37919 . 2 (𝑅 ∈ RingOps → dom dom 𝐺 = dom dom 𝐻)
74, 6eqtrd 2764 1 (𝑅 ∈ RingOps → ran 𝐺 = dom dom 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  dom cdm 5631  ran crn 5632  cfv 6499  1st c1st 7945  2nd c2nd 7946  GrpOpcgr 30468  RingOpscrngo 37881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fo 6505  df-fv 6507  df-ov 7372  df-1st 7947  df-2nd 7948  df-grpo 30472  df-ablo 30524  df-rngo 37882
This theorem is referenced by:  rngomndo  37922
  Copyright terms: Public domain W3C validator