Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngorn1 | Structured version Visualization version GIF version |
Description: In a unital ring the range of the addition equals the domain of the first variable of the multiplication. (Contributed by FL, 24-Jan-2010.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rnplrnml0.1 | ⊢ 𝐻 = (2nd ‘𝑅) |
rnplrnml0.2 | ⊢ 𝐺 = (1st ‘𝑅) |
Ref | Expression |
---|---|
rngorn1 | ⊢ (𝑅 ∈ RingOps → ran 𝐺 = dom dom 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnplrnml0.2 | . . . 4 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | 1 | rngogrpo 35995 | . . 3 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
3 | grporndm 28773 | . . 3 ⊢ (𝐺 ∈ GrpOp → ran 𝐺 = dom dom 𝐺) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝑅 ∈ RingOps → ran 𝐺 = dom dom 𝐺) |
5 | rnplrnml0.1 | . . 3 ⊢ 𝐻 = (2nd ‘𝑅) | |
6 | 5, 1 | rngodm1dm2 36017 | . 2 ⊢ (𝑅 ∈ RingOps → dom dom 𝐺 = dom dom 𝐻) |
7 | 4, 6 | eqtrd 2778 | 1 ⊢ (𝑅 ∈ RingOps → ran 𝐺 = dom dom 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 dom cdm 5580 ran crn 5581 ‘cfv 6418 1st c1st 7802 2nd c2nd 7803 GrpOpcgr 28752 RingOpscrngo 35979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 df-fv 6426 df-ov 7258 df-1st 7804 df-2nd 7805 df-grpo 28756 df-ablo 28808 df-rngo 35980 |
This theorem is referenced by: rngomndo 36020 |
Copyright terms: Public domain | W3C validator |