MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grporndm Structured version   Visualization version   GIF version

Theorem grporndm 29750
Description: A group's range in terms of its domain. (Contributed by NM, 6-Apr-2008.) (New usage is discouraged.)
Assertion
Ref Expression
grporndm (𝐺 ∈ GrpOp β†’ ran 𝐺 = dom dom 𝐺)

Proof of Theorem grporndm
StepHypRef Expression
1 eqid 2732 . . 3 ran 𝐺 = ran 𝐺
21grpofo 29739 . 2 (𝐺 ∈ GrpOp β†’ 𝐺:(ran 𝐺 Γ— ran 𝐺)–ontoβ†’ran 𝐺)
3 fof 6802 . . . . 5 (𝐺:(ran 𝐺 Γ— ran 𝐺)–ontoβ†’ran 𝐺 β†’ 𝐺:(ran 𝐺 Γ— ran 𝐺)⟢ran 𝐺)
43fdmd 6725 . . . 4 (𝐺:(ran 𝐺 Γ— ran 𝐺)–ontoβ†’ran 𝐺 β†’ dom 𝐺 = (ran 𝐺 Γ— ran 𝐺))
54dmeqd 5903 . . 3 (𝐺:(ran 𝐺 Γ— ran 𝐺)–ontoβ†’ran 𝐺 β†’ dom dom 𝐺 = dom (ran 𝐺 Γ— ran 𝐺))
6 dmxpid 5927 . . 3 dom (ran 𝐺 Γ— ran 𝐺) = ran 𝐺
75, 6eqtr2di 2789 . 2 (𝐺:(ran 𝐺 Γ— ran 𝐺)–ontoβ†’ran 𝐺 β†’ ran 𝐺 = dom dom 𝐺)
82, 7syl 17 1 (𝐺 ∈ GrpOp β†’ ran 𝐺 = dom dom 𝐺)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106   Γ— cxp 5673  dom cdm 5675  ran crn 5676  β€“ontoβ†’wfo 6538  GrpOpcgr 29729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fo 6546  df-fv 6548  df-ov 7408  df-grpo 29733
This theorem is referenced by:  hhshsslem1  30507  rngorn1  36789  divrngcl  36813  isdrngo2  36814
  Copyright terms: Public domain W3C validator