MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grporndm Structured version   Visualization version   GIF version

Theorem grporndm 30446
Description: A group's range in terms of its domain. (Contributed by NM, 6-Apr-2008.) (New usage is discouraged.)
Assertion
Ref Expression
grporndm (𝐺 ∈ GrpOp → ran 𝐺 = dom dom 𝐺)

Proof of Theorem grporndm
StepHypRef Expression
1 eqid 2730 . . 3 ran 𝐺 = ran 𝐺
21grpofo 30435 . 2 (𝐺 ∈ GrpOp → 𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺)
3 fof 6775 . . . . 5 (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺)
43fdmd 6701 . . . 4 (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → dom 𝐺 = (ran 𝐺 × ran 𝐺))
54dmeqd 5872 . . 3 (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → dom dom 𝐺 = dom (ran 𝐺 × ran 𝐺))
6 dmxpid 5897 . . 3 dom (ran 𝐺 × ran 𝐺) = ran 𝐺
75, 6eqtr2di 2782 . 2 (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → ran 𝐺 = dom dom 𝐺)
82, 7syl 17 1 (𝐺 ∈ GrpOp → ran 𝐺 = dom dom 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   × cxp 5639  dom cdm 5641  ran crn 5642  ontowfo 6512  GrpOpcgr 30425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fo 6520  df-fv 6522  df-ov 7393  df-grpo 30429
This theorem is referenced by:  hhshsslem1  31203  rngorn1  37934  divrngcl  37958  isdrngo2  37959
  Copyright terms: Public domain W3C validator