| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grporndm | Structured version Visualization version GIF version | ||
| Description: A group's range in terms of its domain. (Contributed by NM, 6-Apr-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grporndm | ⊢ (𝐺 ∈ GrpOp → ran 𝐺 = dom dom 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . 3 ⊢ ran 𝐺 = ran 𝐺 | |
| 2 | 1 | grpofo 30485 | . 2 ⊢ (𝐺 ∈ GrpOp → 𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺) |
| 3 | fof 6795 | . . . . 5 ⊢ (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → 𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) | |
| 4 | 3 | fdmd 6721 | . . . 4 ⊢ (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → dom 𝐺 = (ran 𝐺 × ran 𝐺)) |
| 5 | 4 | dmeqd 5890 | . . 3 ⊢ (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → dom dom 𝐺 = dom (ran 𝐺 × ran 𝐺)) |
| 6 | dmxpid 5915 | . . 3 ⊢ dom (ran 𝐺 × ran 𝐺) = ran 𝐺 | |
| 7 | 5, 6 | eqtr2di 2788 | . 2 ⊢ (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → ran 𝐺 = dom dom 𝐺) |
| 8 | 2, 7 | syl 17 | 1 ⊢ (𝐺 ∈ GrpOp → ran 𝐺 = dom dom 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 × cxp 5657 dom cdm 5659 ran crn 5660 –onto→wfo 6534 GrpOpcgr 30475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fo 6542 df-fv 6544 df-ov 7413 df-grpo 30479 |
| This theorem is referenced by: hhshsslem1 31253 rngorn1 37962 divrngcl 37986 isdrngo2 37987 |
| Copyright terms: Public domain | W3C validator |