Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grporndm | Structured version Visualization version GIF version |
Description: A group's range in terms of its domain. (Contributed by NM, 6-Apr-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grporndm | ⊢ (𝐺 ∈ GrpOp → ran 𝐺 = dom dom 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ ran 𝐺 = ran 𝐺 | |
2 | 1 | grpofo 28762 | . 2 ⊢ (𝐺 ∈ GrpOp → 𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺) |
3 | fof 6672 | . . . . 5 ⊢ (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → 𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) | |
4 | 3 | fdmd 6595 | . . . 4 ⊢ (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → dom 𝐺 = (ran 𝐺 × ran 𝐺)) |
5 | 4 | dmeqd 5803 | . . 3 ⊢ (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → dom dom 𝐺 = dom (ran 𝐺 × ran 𝐺)) |
6 | dmxpid 5828 | . . 3 ⊢ dom (ran 𝐺 × ran 𝐺) = ran 𝐺 | |
7 | 5, 6 | eqtr2di 2796 | . 2 ⊢ (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → ran 𝐺 = dom dom 𝐺) |
8 | 2, 7 | syl 17 | 1 ⊢ (𝐺 ∈ GrpOp → ran 𝐺 = dom dom 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 × cxp 5578 dom cdm 5580 ran crn 5581 –onto→wfo 6416 GrpOpcgr 28752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 df-fv 6426 df-ov 7258 df-grpo 28756 |
This theorem is referenced by: hhshsslem1 29530 rngorn1 36018 divrngcl 36042 isdrngo2 36043 |
Copyright terms: Public domain | W3C validator |