MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxds Structured version   Visualization version   GIF version

Theorem rrxds 25350
Description: The distance over generalized Euclidean spaces. Compare with df-rrn 37855. (Contributed by Thierry Arnoux, 20-Jun-2019.) (Proof shortened by AV, 20-Jul-2019.)
Hypotheses
Ref Expression
rrxval.r 𝐻 = (ℝ^‘𝐼)
rrxbase.b 𝐵 = (Base‘𝐻)
Assertion
Ref Expression
rrxds (𝐼𝑉 → (𝑓𝐵, 𝑔𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (dist‘𝐻))
Distinct variable groups:   𝑓,𝑔,𝑥,𝐵   𝑓,𝐼,𝑔,𝑥   𝑓,𝑉,𝑔,𝑥
Allowed substitution hints:   𝐻(𝑥,𝑓,𝑔)

Proof of Theorem rrxds
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 rrxval.r . . . 4 𝐻 = (ℝ^‘𝐼)
21rrxval 25344 . . 3 (𝐼𝑉𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
32fveq2d 6885 . 2 (𝐼𝑉 → (dist‘𝐻) = (dist‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
4 resrng 21586 . . . . 5 fld ∈ *-Ring
5 srngring 20811 . . . . 5 (ℝfld ∈ *-Ring → ℝfld ∈ Ring)
64, 5ax-mp 5 . . . 4 fld ∈ Ring
7 eqid 2736 . . . . 5 (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼)
87frlmlmod 21714 . . . 4 ((ℝfld ∈ Ring ∧ 𝐼𝑉) → (ℝfld freeLMod 𝐼) ∈ LMod)
96, 8mpan 690 . . 3 (𝐼𝑉 → (ℝfld freeLMod 𝐼) ∈ LMod)
10 lmodgrp 20829 . . 3 ((ℝfld freeLMod 𝐼) ∈ LMod → (ℝfld freeLMod 𝐼) ∈ Grp)
11 eqid 2736 . . . 4 (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼))
12 eqid 2736 . . . 4 (norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
13 eqid 2736 . . . 4 (-g‘(ℝfld freeLMod 𝐼)) = (-g‘(ℝfld freeLMod 𝐼))
1411, 12, 13tcphds 25188 . . 3 ((ℝfld freeLMod 𝐼) ∈ Grp → ((norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) ∘ (-g‘(ℝfld freeLMod 𝐼))) = (dist‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
159, 10, 143syl 18 . 2 (𝐼𝑉 → ((norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) ∘ (-g‘(ℝfld freeLMod 𝐼))) = (dist‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
16 eqid 2736 . . . . . . . 8 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼))
1716, 13grpsubf 19007 . . . . . . 7 ((ℝfld freeLMod 𝐼) ∈ Grp → (-g‘(ℝfld freeLMod 𝐼)):((Base‘(ℝfld freeLMod 𝐼)) × (Base‘(ℝfld freeLMod 𝐼)))⟶(Base‘(ℝfld freeLMod 𝐼)))
189, 10, 173syl 18 . . . . . 6 (𝐼𝑉 → (-g‘(ℝfld freeLMod 𝐼)):((Base‘(ℝfld freeLMod 𝐼)) × (Base‘(ℝfld freeLMod 𝐼)))⟶(Base‘(ℝfld freeLMod 𝐼)))
19 rrxbase.b . . . . . . . . . 10 𝐵 = (Base‘𝐻)
201, 19rrxbase 25345 . . . . . . . . 9 (𝐼𝑉𝐵 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0})
21 rebase 21571 . . . . . . . . . . 11 ℝ = (Base‘ℝfld)
22 re0g 21577 . . . . . . . . . . 11 0 = (0g‘ℝfld)
23 eqid 2736 . . . . . . . . . . 11 { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0} = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
247, 21, 22, 23frlmbas 21720 . . . . . . . . . 10 ((ℝfld ∈ Ring ∧ 𝐼𝑉) → { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0} = (Base‘(ℝfld freeLMod 𝐼)))
256, 24mpan 690 . . . . . . . . 9 (𝐼𝑉 → { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0} = (Base‘(ℝfld freeLMod 𝐼)))
2620, 25eqtrd 2771 . . . . . . . 8 (𝐼𝑉𝐵 = (Base‘(ℝfld freeLMod 𝐼)))
2726sqxpeqd 5691 . . . . . . 7 (𝐼𝑉 → (𝐵 × 𝐵) = ((Base‘(ℝfld freeLMod 𝐼)) × (Base‘(ℝfld freeLMod 𝐼))))
2827, 26feq23d 6706 . . . . . 6 (𝐼𝑉 → ((-g‘(ℝfld freeLMod 𝐼)):(𝐵 × 𝐵)⟶𝐵 ↔ (-g‘(ℝfld freeLMod 𝐼)):((Base‘(ℝfld freeLMod 𝐼)) × (Base‘(ℝfld freeLMod 𝐼)))⟶(Base‘(ℝfld freeLMod 𝐼))))
2918, 28mpbird 257 . . . . 5 (𝐼𝑉 → (-g‘(ℝfld freeLMod 𝐼)):(𝐵 × 𝐵)⟶𝐵)
3029fovcdmda 7583 . . . 4 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) ∈ 𝐵)
3129ffnd 6712 . . . . 5 (𝐼𝑉 → (-g‘(ℝfld freeLMod 𝐼)) Fn (𝐵 × 𝐵))
32 fnov 7543 . . . . 5 ((-g‘(ℝfld freeLMod 𝐼)) Fn (𝐵 × 𝐵) ↔ (-g‘(ℝfld freeLMod 𝐼)) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)))
3331, 32sylib 218 . . . 4 (𝐼𝑉 → (-g‘(ℝfld freeLMod 𝐼)) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)))
341, 19rrxnm 25348 . . . . 5 (𝐼𝑉 → (𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑥)↑2))))) = (norm‘𝐻))
352fveq2d 6885 . . . . 5 (𝐼𝑉 → (norm‘𝐻) = (norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
3634, 35eqtr2d 2772 . . . 4 (𝐼𝑉 → (norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑥)↑2))))))
37 fveq1 6880 . . . . . . . 8 ( = (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) → (𝑥) = ((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥))
3837oveq1d 7425 . . . . . . 7 ( = (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) → ((𝑥)↑2) = (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2))
3938mpteq2dv 5220 . . . . . 6 ( = (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) → (𝑥𝐼 ↦ ((𝑥)↑2)) = (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2)))
4039oveq2d 7426 . . . . 5 ( = (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) → (ℝfld Σg (𝑥𝐼 ↦ ((𝑥)↑2))) = (ℝfld Σg (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2))))
4140fveq2d 6885 . . . 4 ( = (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) → (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑥)↑2)))) = (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2)))))
4230, 33, 36, 41fmpoco 8099 . . 3 (𝐼𝑉 → ((norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) ∘ (-g‘(ℝfld freeLMod 𝐼))) = (𝑓𝐵, 𝑔𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2))))))
43 simp1 1136 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝐼𝑉)
44 simprl 770 . . . . . . . . . . . . . . . 16 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓𝐵)
4526adantr 480 . . . . . . . . . . . . . . . 16 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → 𝐵 = (Base‘(ℝfld freeLMod 𝐼)))
4644, 45eleqtrd 2837 . . . . . . . . . . . . . . 15 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)))
47463impb 1114 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)))
487, 21, 16frlmbasmap 21724 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 𝑓 ∈ (ℝ ↑m 𝐼))
4943, 47, 48syl2anc 584 . . . . . . . . . . . . 13 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑓 ∈ (ℝ ↑m 𝐼))
50 elmapi 8868 . . . . . . . . . . . . 13 (𝑓 ∈ (ℝ ↑m 𝐼) → 𝑓:𝐼⟶ℝ)
5149, 50syl 17 . . . . . . . . . . . 12 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑓:𝐼⟶ℝ)
5251ffnd 6712 . . . . . . . . . . 11 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑓 Fn 𝐼)
53 simprr 772 . . . . . . . . . . . . . . . 16 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔𝐵)
5453, 45eleqtrd 2837 . . . . . . . . . . . . . . 15 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔 ∈ (Base‘(ℝfld freeLMod 𝐼)))
55543impb 1114 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑔 ∈ (Base‘(ℝfld freeLMod 𝐼)))
567, 21, 16frlmbasmap 21724 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑔 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 𝑔 ∈ (ℝ ↑m 𝐼))
5743, 55, 56syl2anc 584 . . . . . . . . . . . . 13 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑔 ∈ (ℝ ↑m 𝐼))
58 elmapi 8868 . . . . . . . . . . . . 13 (𝑔 ∈ (ℝ ↑m 𝐼) → 𝑔:𝐼⟶ℝ)
5957, 58syl 17 . . . . . . . . . . . 12 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑔:𝐼⟶ℝ)
6059ffnd 6712 . . . . . . . . . . 11 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑔 Fn 𝐼)
61 inidm 4207 . . . . . . . . . . 11 (𝐼𝐼) = 𝐼
62 eqidd 2737 . . . . . . . . . . 11 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → (𝑓𝑥) = (𝑓𝑥))
63 eqidd 2737 . . . . . . . . . . 11 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → (𝑔𝑥) = (𝑔𝑥))
6452, 60, 43, 43, 61, 62, 63offval 7685 . . . . . . . . . 10 ((𝐼𝑉𝑓𝐵𝑔𝐵) → (𝑓f (-g‘ℝfld)𝑔) = (𝑥𝐼 ↦ ((𝑓𝑥)(-g‘ℝfld)(𝑔𝑥))))
656a1i 11 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → ℝfld ∈ Ring)
66 simpl 482 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → 𝐼𝑉)
67 eqid 2736 . . . . . . . . . . . 12 (-g‘ℝfld) = (-g‘ℝfld)
687, 16, 65, 66, 46, 54, 67, 13frlmsubgval 21730 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) = (𝑓f (-g‘ℝfld)𝑔))
69683impb 1114 . . . . . . . . . 10 ((𝐼𝑉𝑓𝐵𝑔𝐵) → (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) = (𝑓f (-g‘ℝfld)𝑔))
7051ffvelcdmda 7079 . . . . . . . . . . . 12 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℝ)
7159ffvelcdmda 7079 . . . . . . . . . . . 12 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → (𝑔𝑥) ∈ ℝ)
7267resubgval 21574 . . . . . . . . . . . 12 (((𝑓𝑥) ∈ ℝ ∧ (𝑔𝑥) ∈ ℝ) → ((𝑓𝑥) − (𝑔𝑥)) = ((𝑓𝑥)(-g‘ℝfld)(𝑔𝑥)))
7370, 71, 72syl2anc 584 . . . . . . . . . . 11 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → ((𝑓𝑥) − (𝑔𝑥)) = ((𝑓𝑥)(-g‘ℝfld)(𝑔𝑥)))
7473mpteq2dva 5219 . . . . . . . . . 10 ((𝐼𝑉𝑓𝐵𝑔𝐵) → (𝑥𝐼 ↦ ((𝑓𝑥) − (𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)(-g‘ℝfld)(𝑔𝑥))))
7564, 69, 743eqtr4d 2781 . . . . . . . . 9 ((𝐼𝑉𝑓𝐵𝑔𝐵) → (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) = (𝑥𝐼 ↦ ((𝑓𝑥) − (𝑔𝑥))))
7670, 71resubcld 11670 . . . . . . . . 9 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → ((𝑓𝑥) − (𝑔𝑥)) ∈ ℝ)
7775, 76fvmpt2d 7004 . . . . . . . 8 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → ((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥) = ((𝑓𝑥) − (𝑔𝑥)))
7877oveq1d 7425 . . . . . . 7 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2) = (((𝑓𝑥) − (𝑔𝑥))↑2))
7978mpteq2dva 5219 . . . . . 6 ((𝐼𝑉𝑓𝐵𝑔𝐵) → (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2)) = (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))
8079oveq2d 7426 . . . . 5 ((𝐼𝑉𝑓𝐵𝑔𝐵) → (ℝfld Σg (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2))) = (ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))
8180fveq2d 6885 . . . 4 ((𝐼𝑉𝑓𝐵𝑔𝐵) → (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2)))) = (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))))
8281mpoeq3dva 7489 . . 3 (𝐼𝑉 → (𝑓𝐵, 𝑔𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2))))) = (𝑓𝐵, 𝑔𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
8342, 82eqtrd 2771 . 2 (𝐼𝑉 → ((norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) ∘ (-g‘(ℝfld freeLMod 𝐼))) = (𝑓𝐵, 𝑔𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
843, 15, 833eqtr2rd 2778 1 (𝐼𝑉 → (𝑓𝐵, 𝑔𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (dist‘𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3420   class class class wbr 5124  cmpt 5206   × cxp 5657  ccom 5663   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  cmpo 7412  f cof 7674  m cmap 8845   finSupp cfsupp 9378  cr 11133  0cc0 11134  cmin 11471  2c2 12300  cexp 14084  csqrt 15257  Basecbs 17233  distcds 17285   Σg cgsu 17459  Grpcgrp 18921  -gcsg 18923  Ringcrg 20198  *-Ringcsr 20803  LModclmod 20822  fldcrefld 21569   freeLMod cfrlm 21711  normcnm 24520  toℂPreHilctcph 25124  ℝ^crrx 25340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213  ax-mulf 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-rp 13014  df-fz 13530  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-0g 17460  df-prds 17466  df-pws 17468  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-ghm 19201  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-dvr 20366  df-rhm 20437  df-subrng 20511  df-subrg 20535  df-drng 20696  df-field 20697  df-staf 20804  df-srng 20805  df-lmod 20824  df-lss 20894  df-sra 21136  df-rgmod 21137  df-cnfld 21321  df-refld 21570  df-dsmm 21697  df-frlm 21712  df-nm 24526  df-tng 24528  df-tcph 25126  df-rrx 25342
This theorem is referenced by:  rrxmval  25362  rrxmfval  25363  rrxdsfi  25368  rrxtopn  46280
  Copyright terms: Public domain W3C validator