Step | Hyp | Ref
| Expression |
1 | | rrxval.r |
. . . 4
⊢ 𝐻 = (ℝ^‘𝐼) |
2 | 1 | rrxval 24087 |
. . 3
⊢ (𝐼 ∈ 𝑉 → 𝐻 =
(toℂPreHil‘(ℝfld freeLMod 𝐼))) |
3 | 2 | fveq2d 6662 |
. 2
⊢ (𝐼 ∈ 𝑉 → (dist‘𝐻) =
(dist‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
4 | | recrng 20386 |
. . . . 5
⊢
ℝfld ∈ *-Ring |
5 | | srngring 19691 |
. . . . 5
⊢
(ℝfld ∈ *-Ring → ℝfld ∈
Ring) |
6 | 4, 5 | ax-mp 5 |
. . . 4
⊢
ℝfld ∈ Ring |
7 | | eqid 2758 |
. . . . 5
⊢
(ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼) |
8 | 7 | frlmlmod 20514 |
. . . 4
⊢
((ℝfld ∈ Ring ∧ 𝐼 ∈ 𝑉) → (ℝfld freeLMod
𝐼) ∈
LMod) |
9 | 6, 8 | mpan 689 |
. . 3
⊢ (𝐼 ∈ 𝑉 → (ℝfld freeLMod
𝐼) ∈
LMod) |
10 | | lmodgrp 19709 |
. . 3
⊢
((ℝfld freeLMod 𝐼) ∈ LMod → (ℝfld
freeLMod 𝐼) ∈
Grp) |
11 | | eqid 2758 |
. . . 4
⊢
(toℂPreHil‘(ℝfld freeLMod 𝐼)) =
(toℂPreHil‘(ℝfld freeLMod 𝐼)) |
12 | | eqid 2758 |
. . . 4
⊢
(norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) =
(norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) |
13 | | eqid 2758 |
. . . 4
⊢
(-g‘(ℝfld freeLMod 𝐼)) =
(-g‘(ℝfld freeLMod 𝐼)) |
14 | 11, 12, 13 | tcphds 23931 |
. . 3
⊢
((ℝfld freeLMod 𝐼) ∈ Grp →
((norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) ∘
(-g‘(ℝfld freeLMod 𝐼))) =
(dist‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
15 | 9, 10, 14 | 3syl 18 |
. 2
⊢ (𝐼 ∈ 𝑉 →
((norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) ∘
(-g‘(ℝfld freeLMod 𝐼))) =
(dist‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
16 | | eqid 2758 |
. . . . . . . 8
⊢
(Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld
freeLMod 𝐼)) |
17 | 16, 13 | grpsubf 18245 |
. . . . . . 7
⊢
((ℝfld freeLMod 𝐼) ∈ Grp →
(-g‘(ℝfld freeLMod 𝐼)):((Base‘(ℝfld
freeLMod 𝐼)) ×
(Base‘(ℝfld freeLMod 𝐼)))⟶(Base‘(ℝfld
freeLMod 𝐼))) |
18 | 9, 10, 17 | 3syl 18 |
. . . . . 6
⊢ (𝐼 ∈ 𝑉 →
(-g‘(ℝfld freeLMod 𝐼)):((Base‘(ℝfld
freeLMod 𝐼)) ×
(Base‘(ℝfld freeLMod 𝐼)))⟶(Base‘(ℝfld
freeLMod 𝐼))) |
19 | | rrxbase.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝐻) |
20 | 1, 19 | rrxbase 24088 |
. . . . . . . . 9
⊢ (𝐼 ∈ 𝑉 → 𝐵 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0}) |
21 | | rebase 20371 |
. . . . . . . . . . 11
⊢ ℝ =
(Base‘ℝfld) |
22 | | re0g 20377 |
. . . . . . . . . . 11
⊢ 0 =
(0g‘ℝfld) |
23 | | eqid 2758 |
. . . . . . . . . . 11
⊢ {ℎ ∈ (ℝ
↑m 𝐼)
∣ ℎ finSupp 0} =
{ℎ ∈ (ℝ
↑m 𝐼)
∣ ℎ finSupp
0} |
24 | 7, 21, 22, 23 | frlmbas 20520 |
. . . . . . . . . 10
⊢
((ℝfld ∈ Ring ∧ 𝐼 ∈ 𝑉) → {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} =
(Base‘(ℝfld freeLMod 𝐼))) |
25 | 6, 24 | mpan 689 |
. . . . . . . . 9
⊢ (𝐼 ∈ 𝑉 → {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} =
(Base‘(ℝfld freeLMod 𝐼))) |
26 | 20, 25 | eqtrd 2793 |
. . . . . . . 8
⊢ (𝐼 ∈ 𝑉 → 𝐵 = (Base‘(ℝfld
freeLMod 𝐼))) |
27 | 26 | sqxpeqd 5556 |
. . . . . . 7
⊢ (𝐼 ∈ 𝑉 → (𝐵 × 𝐵) = ((Base‘(ℝfld
freeLMod 𝐼)) ×
(Base‘(ℝfld freeLMod 𝐼)))) |
28 | 27, 26 | feq23d 6493 |
. . . . . 6
⊢ (𝐼 ∈ 𝑉 →
((-g‘(ℝfld freeLMod 𝐼)):(𝐵 × 𝐵)⟶𝐵 ↔
(-g‘(ℝfld freeLMod 𝐼)):((Base‘(ℝfld
freeLMod 𝐼)) ×
(Base‘(ℝfld freeLMod 𝐼)))⟶(Base‘(ℝfld
freeLMod 𝐼)))) |
29 | 18, 28 | mpbird 260 |
. . . . 5
⊢ (𝐼 ∈ 𝑉 →
(-g‘(ℝfld freeLMod 𝐼)):(𝐵 × 𝐵)⟶𝐵) |
30 | 29 | fovrnda 7315 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → (𝑓(-g‘(ℝfld
freeLMod 𝐼))𝑔) ∈ 𝐵) |
31 | 29 | ffnd 6499 |
. . . . 5
⊢ (𝐼 ∈ 𝑉 →
(-g‘(ℝfld freeLMod 𝐼)) Fn (𝐵 × 𝐵)) |
32 | | fnov 7277 |
. . . . 5
⊢
((-g‘(ℝfld freeLMod 𝐼)) Fn (𝐵 × 𝐵) ↔
(-g‘(ℝfld freeLMod 𝐼)) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓(-g‘(ℝfld
freeLMod 𝐼))𝑔))) |
33 | 31, 32 | sylib 221 |
. . . 4
⊢ (𝐼 ∈ 𝑉 →
(-g‘(ℝfld freeLMod 𝐼)) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓(-g‘(ℝfld
freeLMod 𝐼))𝑔))) |
34 | 1, 19 | rrxnm 24091 |
. . . . 5
⊢ (𝐼 ∈ 𝑉 → (ℎ ∈ 𝐵 ↦
(√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)↑2))))) = (norm‘𝐻)) |
35 | 2 | fveq2d 6662 |
. . . . 5
⊢ (𝐼 ∈ 𝑉 → (norm‘𝐻) =
(norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
36 | 34, 35 | eqtr2d 2794 |
. . . 4
⊢ (𝐼 ∈ 𝑉 →
(norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (ℎ ∈ 𝐵 ↦
(√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)↑2)))))) |
37 | | fveq1 6657 |
. . . . . . . 8
⊢ (ℎ = (𝑓(-g‘(ℝfld
freeLMod 𝐼))𝑔) → (ℎ‘𝑥) = ((𝑓(-g‘(ℝfld
freeLMod 𝐼))𝑔)‘𝑥)) |
38 | 37 | oveq1d 7165 |
. . . . . . 7
⊢ (ℎ = (𝑓(-g‘(ℝfld
freeLMod 𝐼))𝑔) → ((ℎ‘𝑥)↑2) = (((𝑓(-g‘(ℝfld
freeLMod 𝐼))𝑔)‘𝑥)↑2)) |
39 | 38 | mpteq2dv 5128 |
. . . . . 6
⊢ (ℎ = (𝑓(-g‘(ℝfld
freeLMod 𝐼))𝑔) → (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)↑2)) = (𝑥 ∈ 𝐼 ↦ (((𝑓(-g‘(ℝfld
freeLMod 𝐼))𝑔)‘𝑥)↑2))) |
40 | 39 | oveq2d 7166 |
. . . . 5
⊢ (ℎ = (𝑓(-g‘(ℝfld
freeLMod 𝐼))𝑔) → (ℝfld
Σg (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)↑2))) = (ℝfld
Σg (𝑥 ∈ 𝐼 ↦ (((𝑓(-g‘(ℝfld
freeLMod 𝐼))𝑔)‘𝑥)↑2)))) |
41 | 40 | fveq2d 6662 |
. . . 4
⊢ (ℎ = (𝑓(-g‘(ℝfld
freeLMod 𝐼))𝑔) →
(√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ ((ℎ‘𝑥)↑2)))) =
(√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓(-g‘(ℝfld
freeLMod 𝐼))𝑔)‘𝑥)↑2))))) |
42 | 30, 33, 36, 41 | fmpoco 7795 |
. . 3
⊢ (𝐼 ∈ 𝑉 →
((norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) ∘
(-g‘(ℝfld freeLMod 𝐼))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦
(√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓(-g‘(ℝfld
freeLMod 𝐼))𝑔)‘𝑥)↑2)))))) |
43 | | simp1 1133 |
. . . . . . . . . . . . . 14
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) → 𝐼 ∈ 𝑉) |
44 | | simprl 770 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → 𝑓 ∈ 𝐵) |
45 | 26 | adantr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → 𝐵 = (Base‘(ℝfld
freeLMod 𝐼))) |
46 | 44, 45 | eleqtrd 2854 |
. . . . . . . . . . . . . . 15
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) |
47 | 46 | 3impb 1112 |
. . . . . . . . . . . . . 14
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) → 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) |
48 | 7, 21, 16 | frlmbasmap 20524 |
. . . . . . . . . . . . . 14
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘(ℝfld
freeLMod 𝐼))) → 𝑓 ∈ (ℝ
↑m 𝐼)) |
49 | 43, 47, 48 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) → 𝑓 ∈ (ℝ ↑m 𝐼)) |
50 | | elmapi 8438 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ (ℝ
↑m 𝐼)
→ 𝑓:𝐼⟶ℝ) |
51 | 49, 50 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) → 𝑓:𝐼⟶ℝ) |
52 | 51 | ffnd 6499 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) → 𝑓 Fn 𝐼) |
53 | | simprr 772 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → 𝑔 ∈ 𝐵) |
54 | 53, 45 | eleqtrd 2854 |
. . . . . . . . . . . . . . 15
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → 𝑔 ∈ (Base‘(ℝfld
freeLMod 𝐼))) |
55 | 54 | 3impb 1112 |
. . . . . . . . . . . . . 14
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) → 𝑔 ∈ (Base‘(ℝfld
freeLMod 𝐼))) |
56 | 7, 21, 16 | frlmbasmap 20524 |
. . . . . . . . . . . . . 14
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑔 ∈ (Base‘(ℝfld
freeLMod 𝐼))) → 𝑔 ∈ (ℝ
↑m 𝐼)) |
57 | 43, 55, 56 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) → 𝑔 ∈ (ℝ ↑m 𝐼)) |
58 | | elmapi 8438 |
. . . . . . . . . . . . 13
⊢ (𝑔 ∈ (ℝ
↑m 𝐼)
→ 𝑔:𝐼⟶ℝ) |
59 | 57, 58 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) → 𝑔:𝐼⟶ℝ) |
60 | 59 | ffnd 6499 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) → 𝑔 Fn 𝐼) |
61 | | inidm 4123 |
. . . . . . . . . . 11
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
62 | | eqidd 2759 |
. . . . . . . . . . 11
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) ∧ 𝑥 ∈ 𝐼) → (𝑓‘𝑥) = (𝑓‘𝑥)) |
63 | | eqidd 2759 |
. . . . . . . . . . 11
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) ∧ 𝑥 ∈ 𝐼) → (𝑔‘𝑥) = (𝑔‘𝑥)) |
64 | 52, 60, 43, 43, 61, 62, 63 | offval 7413 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) → (𝑓 ∘f
(-g‘ℝfld)𝑔) = (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(-g‘ℝfld)(𝑔‘𝑥)))) |
65 | 6 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → ℝfld ∈
Ring) |
66 | | simpl 486 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → 𝐼 ∈ 𝑉) |
67 | | eqid 2758 |
. . . . . . . . . . . 12
⊢
(-g‘ℝfld) =
(-g‘ℝfld) |
68 | 7, 16, 65, 66, 46, 54, 67, 13 | frlmsubgval 20530 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → (𝑓(-g‘(ℝfld
freeLMod 𝐼))𝑔) = (𝑓 ∘f
(-g‘ℝfld)𝑔)) |
69 | 68 | 3impb 1112 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) → (𝑓(-g‘(ℝfld
freeLMod 𝐼))𝑔) = (𝑓 ∘f
(-g‘ℝfld)𝑔)) |
70 | 51 | ffvelrnda 6842 |
. . . . . . . . . . . 12
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) ∧ 𝑥 ∈ 𝐼) → (𝑓‘𝑥) ∈ ℝ) |
71 | 59 | ffvelrnda 6842 |
. . . . . . . . . . . 12
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) ∧ 𝑥 ∈ 𝐼) → (𝑔‘𝑥) ∈ ℝ) |
72 | 67 | resubgval 20374 |
. . . . . . . . . . . 12
⊢ (((𝑓‘𝑥) ∈ ℝ ∧ (𝑔‘𝑥) ∈ ℝ) → ((𝑓‘𝑥) − (𝑔‘𝑥)) = ((𝑓‘𝑥)(-g‘ℝfld)(𝑔‘𝑥))) |
73 | 70, 71, 72 | syl2anc 587 |
. . . . . . . . . . 11
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) ∧ 𝑥 ∈ 𝐼) → ((𝑓‘𝑥) − (𝑔‘𝑥)) = ((𝑓‘𝑥)(-g‘ℝfld)(𝑔‘𝑥))) |
74 | 73 | mpteq2dva 5127 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) → (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥) − (𝑔‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(-g‘ℝfld)(𝑔‘𝑥)))) |
75 | 64, 69, 74 | 3eqtr4d 2803 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) → (𝑓(-g‘(ℝfld
freeLMod 𝐼))𝑔) = (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥) − (𝑔‘𝑥)))) |
76 | 70, 71 | resubcld 11106 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) ∧ 𝑥 ∈ 𝐼) → ((𝑓‘𝑥) − (𝑔‘𝑥)) ∈ ℝ) |
77 | 75, 76 | fvmpt2d 6772 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) ∧ 𝑥 ∈ 𝐼) → ((𝑓(-g‘(ℝfld
freeLMod 𝐼))𝑔)‘𝑥) = ((𝑓‘𝑥) − (𝑔‘𝑥))) |
78 | 77 | oveq1d 7165 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) ∧ 𝑥 ∈ 𝐼) → (((𝑓(-g‘(ℝfld
freeLMod 𝐼))𝑔)‘𝑥)↑2) = (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)) |
79 | 78 | mpteq2dva 5127 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) → (𝑥 ∈ 𝐼 ↦ (((𝑓(-g‘(ℝfld
freeLMod 𝐼))𝑔)‘𝑥)↑2)) = (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))) |
80 | 79 | oveq2d 7166 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) → (ℝfld
Σg (𝑥 ∈ 𝐼 ↦ (((𝑓(-g‘(ℝfld
freeLMod 𝐼))𝑔)‘𝑥)↑2))) = (ℝfld
Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)))) |
81 | 80 | fveq2d 6662 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) →
(√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓(-g‘(ℝfld
freeLMod 𝐼))𝑔)‘𝑥)↑2)))) =
(√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))))) |
82 | 81 | mpoeq3dva 7225 |
. . 3
⊢ (𝐼 ∈ 𝑉 → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦
(√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓(-g‘(ℝfld
freeLMod 𝐼))𝑔)‘𝑥)↑2))))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦
(√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)))))) |
83 | 42, 82 | eqtrd 2793 |
. 2
⊢ (𝐼 ∈ 𝑉 →
((norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) ∘
(-g‘(ℝfld freeLMod 𝐼))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦
(√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)))))) |
84 | 3, 15, 83 | 3eqtr2rd 2800 |
1
⊢ (𝐼 ∈ 𝑉 → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦
(√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))))) = (dist‘𝐻)) |