MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxds Structured version   Visualization version   GIF version

Theorem rrxds 23988
Description: The distance over generalized Euclidean spaces. Compare with df-rrn 35096. (Contributed by Thierry Arnoux, 20-Jun-2019.) (Proof shortened by AV, 20-Jul-2019.)
Hypotheses
Ref Expression
rrxval.r 𝐻 = (ℝ^‘𝐼)
rrxbase.b 𝐵 = (Base‘𝐻)
Assertion
Ref Expression
rrxds (𝐼𝑉 → (𝑓𝐵, 𝑔𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (dist‘𝐻))
Distinct variable groups:   𝑓,𝑔,𝑥,𝐵   𝑓,𝐼,𝑔,𝑥   𝑓,𝑉,𝑔,𝑥
Allowed substitution hints:   𝐻(𝑥,𝑓,𝑔)

Proof of Theorem rrxds
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 rrxval.r . . . 4 𝐻 = (ℝ^‘𝐼)
21rrxval 23982 . . 3 (𝐼𝑉𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
32fveq2d 6667 . 2 (𝐼𝑉 → (dist‘𝐻) = (dist‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
4 recrng 20757 . . . . 5 fld ∈ *-Ring
5 srngring 19615 . . . . 5 (ℝfld ∈ *-Ring → ℝfld ∈ Ring)
64, 5ax-mp 5 . . . 4 fld ∈ Ring
7 eqid 2819 . . . . 5 (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼)
87frlmlmod 20885 . . . 4 ((ℝfld ∈ Ring ∧ 𝐼𝑉) → (ℝfld freeLMod 𝐼) ∈ LMod)
96, 8mpan 688 . . 3 (𝐼𝑉 → (ℝfld freeLMod 𝐼) ∈ LMod)
10 lmodgrp 19633 . . 3 ((ℝfld freeLMod 𝐼) ∈ LMod → (ℝfld freeLMod 𝐼) ∈ Grp)
11 eqid 2819 . . . 4 (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼))
12 eqid 2819 . . . 4 (norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
13 eqid 2819 . . . 4 (-g‘(ℝfld freeLMod 𝐼)) = (-g‘(ℝfld freeLMod 𝐼))
1411, 12, 13tcphds 23826 . . 3 ((ℝfld freeLMod 𝐼) ∈ Grp → ((norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) ∘ (-g‘(ℝfld freeLMod 𝐼))) = (dist‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
159, 10, 143syl 18 . 2 (𝐼𝑉 → ((norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) ∘ (-g‘(ℝfld freeLMod 𝐼))) = (dist‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
16 eqid 2819 . . . . . . . 8 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼))
1716, 13grpsubf 18170 . . . . . . 7 ((ℝfld freeLMod 𝐼) ∈ Grp → (-g‘(ℝfld freeLMod 𝐼)):((Base‘(ℝfld freeLMod 𝐼)) × (Base‘(ℝfld freeLMod 𝐼)))⟶(Base‘(ℝfld freeLMod 𝐼)))
189, 10, 173syl 18 . . . . . 6 (𝐼𝑉 → (-g‘(ℝfld freeLMod 𝐼)):((Base‘(ℝfld freeLMod 𝐼)) × (Base‘(ℝfld freeLMod 𝐼)))⟶(Base‘(ℝfld freeLMod 𝐼)))
19 rrxbase.b . . . . . . . . . 10 𝐵 = (Base‘𝐻)
201, 19rrxbase 23983 . . . . . . . . 9 (𝐼𝑉𝐵 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0})
21 rebase 20742 . . . . . . . . . . 11 ℝ = (Base‘ℝfld)
22 re0g 20748 . . . . . . . . . . 11 0 = (0g‘ℝfld)
23 eqid 2819 . . . . . . . . . . 11 { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0} = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
247, 21, 22, 23frlmbas 20891 . . . . . . . . . 10 ((ℝfld ∈ Ring ∧ 𝐼𝑉) → { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0} = (Base‘(ℝfld freeLMod 𝐼)))
256, 24mpan 688 . . . . . . . . 9 (𝐼𝑉 → { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0} = (Base‘(ℝfld freeLMod 𝐼)))
2620, 25eqtrd 2854 . . . . . . . 8 (𝐼𝑉𝐵 = (Base‘(ℝfld freeLMod 𝐼)))
2726sqxpeqd 5580 . . . . . . 7 (𝐼𝑉 → (𝐵 × 𝐵) = ((Base‘(ℝfld freeLMod 𝐼)) × (Base‘(ℝfld freeLMod 𝐼))))
2827, 26feq23d 6502 . . . . . 6 (𝐼𝑉 → ((-g‘(ℝfld freeLMod 𝐼)):(𝐵 × 𝐵)⟶𝐵 ↔ (-g‘(ℝfld freeLMod 𝐼)):((Base‘(ℝfld freeLMod 𝐼)) × (Base‘(ℝfld freeLMod 𝐼)))⟶(Base‘(ℝfld freeLMod 𝐼))))
2918, 28mpbird 259 . . . . 5 (𝐼𝑉 → (-g‘(ℝfld freeLMod 𝐼)):(𝐵 × 𝐵)⟶𝐵)
3029fovrnda 7311 . . . 4 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) ∈ 𝐵)
3129ffnd 6508 . . . . 5 (𝐼𝑉 → (-g‘(ℝfld freeLMod 𝐼)) Fn (𝐵 × 𝐵))
32 fnov 7274 . . . . 5 ((-g‘(ℝfld freeLMod 𝐼)) Fn (𝐵 × 𝐵) ↔ (-g‘(ℝfld freeLMod 𝐼)) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)))
3331, 32sylib 220 . . . 4 (𝐼𝑉 → (-g‘(ℝfld freeLMod 𝐼)) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)))
341, 19rrxnm 23986 . . . . 5 (𝐼𝑉 → (𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑥)↑2))))) = (norm‘𝐻))
352fveq2d 6667 . . . . 5 (𝐼𝑉 → (norm‘𝐻) = (norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
3634, 35eqtr2d 2855 . . . 4 (𝐼𝑉 → (norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑥)↑2))))))
37 fveq1 6662 . . . . . . . 8 ( = (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) → (𝑥) = ((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥))
3837oveq1d 7163 . . . . . . 7 ( = (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) → ((𝑥)↑2) = (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2))
3938mpteq2dv 5153 . . . . . 6 ( = (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) → (𝑥𝐼 ↦ ((𝑥)↑2)) = (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2)))
4039oveq2d 7164 . . . . 5 ( = (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) → (ℝfld Σg (𝑥𝐼 ↦ ((𝑥)↑2))) = (ℝfld Σg (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2))))
4140fveq2d 6667 . . . 4 ( = (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) → (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑥)↑2)))) = (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2)))))
4230, 33, 36, 41fmpoco 7782 . . 3 (𝐼𝑉 → ((norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) ∘ (-g‘(ℝfld freeLMod 𝐼))) = (𝑓𝐵, 𝑔𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2))))))
43 simp1 1131 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝐼𝑉)
44 simprl 769 . . . . . . . . . . . . . . . 16 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓𝐵)
4526adantr 483 . . . . . . . . . . . . . . . 16 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → 𝐵 = (Base‘(ℝfld freeLMod 𝐼)))
4644, 45eleqtrd 2913 . . . . . . . . . . . . . . 15 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)))
47463impb 1110 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)))
487, 21, 16frlmbasmap 20895 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 𝑓 ∈ (ℝ ↑m 𝐼))
4943, 47, 48syl2anc 586 . . . . . . . . . . . . 13 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑓 ∈ (ℝ ↑m 𝐼))
50 elmapi 8420 . . . . . . . . . . . . 13 (𝑓 ∈ (ℝ ↑m 𝐼) → 𝑓:𝐼⟶ℝ)
5149, 50syl 17 . . . . . . . . . . . 12 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑓:𝐼⟶ℝ)
5251ffnd 6508 . . . . . . . . . . 11 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑓 Fn 𝐼)
53 simprr 771 . . . . . . . . . . . . . . . 16 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔𝐵)
5453, 45eleqtrd 2913 . . . . . . . . . . . . . . 15 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔 ∈ (Base‘(ℝfld freeLMod 𝐼)))
55543impb 1110 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑔 ∈ (Base‘(ℝfld freeLMod 𝐼)))
567, 21, 16frlmbasmap 20895 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑔 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 𝑔 ∈ (ℝ ↑m 𝐼))
5743, 55, 56syl2anc 586 . . . . . . . . . . . . 13 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑔 ∈ (ℝ ↑m 𝐼))
58 elmapi 8420 . . . . . . . . . . . . 13 (𝑔 ∈ (ℝ ↑m 𝐼) → 𝑔:𝐼⟶ℝ)
5957, 58syl 17 . . . . . . . . . . . 12 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑔:𝐼⟶ℝ)
6059ffnd 6508 . . . . . . . . . . 11 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑔 Fn 𝐼)
61 inidm 4193 . . . . . . . . . . 11 (𝐼𝐼) = 𝐼
62 eqidd 2820 . . . . . . . . . . 11 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → (𝑓𝑥) = (𝑓𝑥))
63 eqidd 2820 . . . . . . . . . . 11 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → (𝑔𝑥) = (𝑔𝑥))
6452, 60, 43, 43, 61, 62, 63offval 7408 . . . . . . . . . 10 ((𝐼𝑉𝑓𝐵𝑔𝐵) → (𝑓f (-g‘ℝfld)𝑔) = (𝑥𝐼 ↦ ((𝑓𝑥)(-g‘ℝfld)(𝑔𝑥))))
656a1i 11 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → ℝfld ∈ Ring)
66 simpl 485 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → 𝐼𝑉)
67 eqid 2819 . . . . . . . . . . . 12 (-g‘ℝfld) = (-g‘ℝfld)
687, 16, 65, 66, 46, 54, 67, 13frlmsubgval 20901 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) = (𝑓f (-g‘ℝfld)𝑔))
69683impb 1110 . . . . . . . . . 10 ((𝐼𝑉𝑓𝐵𝑔𝐵) → (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) = (𝑓f (-g‘ℝfld)𝑔))
7051ffvelrnda 6844 . . . . . . . . . . . 12 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℝ)
7159ffvelrnda 6844 . . . . . . . . . . . 12 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → (𝑔𝑥) ∈ ℝ)
7267resubgval 20745 . . . . . . . . . . . 12 (((𝑓𝑥) ∈ ℝ ∧ (𝑔𝑥) ∈ ℝ) → ((𝑓𝑥) − (𝑔𝑥)) = ((𝑓𝑥)(-g‘ℝfld)(𝑔𝑥)))
7370, 71, 72syl2anc 586 . . . . . . . . . . 11 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → ((𝑓𝑥) − (𝑔𝑥)) = ((𝑓𝑥)(-g‘ℝfld)(𝑔𝑥)))
7473mpteq2dva 5152 . . . . . . . . . 10 ((𝐼𝑉𝑓𝐵𝑔𝐵) → (𝑥𝐼 ↦ ((𝑓𝑥) − (𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)(-g‘ℝfld)(𝑔𝑥))))
7564, 69, 743eqtr4d 2864 . . . . . . . . 9 ((𝐼𝑉𝑓𝐵𝑔𝐵) → (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) = (𝑥𝐼 ↦ ((𝑓𝑥) − (𝑔𝑥))))
7670, 71resubcld 11060 . . . . . . . . 9 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → ((𝑓𝑥) − (𝑔𝑥)) ∈ ℝ)
7775, 76fvmpt2d 6774 . . . . . . . 8 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → ((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥) = ((𝑓𝑥) − (𝑔𝑥)))
7877oveq1d 7163 . . . . . . 7 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2) = (((𝑓𝑥) − (𝑔𝑥))↑2))
7978mpteq2dva 5152 . . . . . 6 ((𝐼𝑉𝑓𝐵𝑔𝐵) → (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2)) = (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))
8079oveq2d 7164 . . . . 5 ((𝐼𝑉𝑓𝐵𝑔𝐵) → (ℝfld Σg (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2))) = (ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))
8180fveq2d 6667 . . . 4 ((𝐼𝑉𝑓𝐵𝑔𝐵) → (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2)))) = (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))))
8281mpoeq3dva 7223 . . 3 (𝐼𝑉 → (𝑓𝐵, 𝑔𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2))))) = (𝑓𝐵, 𝑔𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
8342, 82eqtrd 2854 . 2 (𝐼𝑉 → ((norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) ∘ (-g‘(ℝfld freeLMod 𝐼))) = (𝑓𝐵, 𝑔𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
843, 15, 833eqtr2rd 2861 1 (𝐼𝑉 → (𝑓𝐵, 𝑔𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (dist‘𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082   = wceq 1531  wcel 2108  {crab 3140   class class class wbr 5057  cmpt 5137   × cxp 5546  ccom 5552   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7148  cmpo 7150  f cof 7399  m cmap 8398   finSupp cfsupp 8825  cr 10528  0cc0 10529  cmin 10862  2c2 11684  cexp 13421  csqrt 14584  Basecbs 16475  distcds 16566   Σg cgsu 16706  Grpcgrp 18095  -gcsg 18097  Ringcrg 19289  *-Ringcsr 19607  LModclmod 19626  fldcrefld 20740   freeLMod cfrlm 20882  normcnm 23178  toℂPreHilctcph 23763  ℝ^crrx 23978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-tpos 7884  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-rp 12382  df-fz 12885  df-seq 13362  df-exp 13422  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-0g 16707  df-prds 16713  df-pws 16715  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-ghm 18348  df-cmn 18900  df-mgp 19232  df-ur 19244  df-ring 19291  df-cring 19292  df-oppr 19365  df-dvdsr 19383  df-unit 19384  df-invr 19414  df-dvr 19425  df-rnghom 19459  df-drng 19496  df-field 19497  df-subrg 19525  df-staf 19608  df-srng 19609  df-lmod 19628  df-lss 19696  df-sra 19936  df-rgmod 19937  df-cnfld 20538  df-refld 20741  df-dsmm 20868  df-frlm 20883  df-nm 23184  df-tng 23186  df-tcph 23765  df-rrx 23980
This theorem is referenced by:  rrxmval  24000  rrxmfval  24001  rrxdsfi  24006  rrxtopn  42559
  Copyright terms: Public domain W3C validator