MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxbase Structured version   Visualization version   GIF version

Theorem rrxbase 25316
Description: The base of the generalized real Euclidean space is the set of functions with finite support. (Contributed by Thierry Arnoux, 16-Jun-2019.) (Proof shortened by AV, 22-Jul-2019.)
Hypotheses
Ref Expression
rrxval.r 𝐻 = (ℝ^‘𝐼)
rrxbase.b 𝐵 = (Base‘𝐻)
Assertion
Ref Expression
rrxbase (𝐼𝑉𝐵 = {𝑓 ∈ (ℝ ↑m 𝐼) ∣ 𝑓 finSupp 0})
Distinct variable groups:   𝐵,𝑓   𝑓,𝐼   𝑓,𝑉
Allowed substitution hint:   𝐻(𝑓)

Proof of Theorem rrxbase
StepHypRef Expression
1 rrxval.r . . . . 5 𝐻 = (ℝ^‘𝐼)
21rrxval 25315 . . . 4 (𝐼𝑉𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
32fveq2d 6826 . . 3 (𝐼𝑉 → (Base‘𝐻) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
4 eqid 2731 . . . 4 (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼))
5 eqid 2731 . . . 4 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼))
64, 5tcphbas 25147 . . 3 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
73, 6eqtr4di 2784 . 2 (𝐼𝑉 → (Base‘𝐻) = (Base‘(ℝfld freeLMod 𝐼)))
8 rrxbase.b . . 3 𝐵 = (Base‘𝐻)
98a1i 11 . 2 (𝐼𝑉𝐵 = (Base‘𝐻))
10 refld 21557 . . 3 fld ∈ Field
11 eqid 2731 . . . 4 (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼)
12 rebase 21544 . . . 4 ℝ = (Base‘ℝfld)
13 re0g 21550 . . . 4 0 = (0g‘ℝfld)
14 eqid 2731 . . . 4 {𝑓 ∈ (ℝ ↑m 𝐼) ∣ 𝑓 finSupp 0} = {𝑓 ∈ (ℝ ↑m 𝐼) ∣ 𝑓 finSupp 0}
1511, 12, 13, 14frlmbas 21693 . . 3 ((ℝfld ∈ Field ∧ 𝐼𝑉) → {𝑓 ∈ (ℝ ↑m 𝐼) ∣ 𝑓 finSupp 0} = (Base‘(ℝfld freeLMod 𝐼)))
1610, 15mpan 690 . 2 (𝐼𝑉 → {𝑓 ∈ (ℝ ↑m 𝐼) ∣ 𝑓 finSupp 0} = (Base‘(ℝfld freeLMod 𝐼)))
177, 9, 163eqtr4d 2776 1 (𝐼𝑉𝐵 = {𝑓 ∈ (ℝ ↑m 𝐼) ∣ 𝑓 finSupp 0})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  {crab 3395   class class class wbr 5091  cfv 6481  (class class class)co 7346  m cmap 8750   finSupp cfsupp 9245  cr 11005  0cc0 11006  Basecbs 17120  Fieldcfield 20646  fldcrefld 21542   freeLMod cfrlm 21684  toℂPreHilctcph 25095  ℝ^crrx 25311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-rp 12891  df-fz 13408  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-pws 17353  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-subg 19036  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-cring 20155  df-oppr 20256  df-dvdsr 20276  df-unit 20277  df-invr 20307  df-dvr 20320  df-subrng 20462  df-subrg 20486  df-drng 20647  df-field 20648  df-sra 21108  df-rgmod 21109  df-cnfld 21293  df-refld 21543  df-dsmm 21670  df-frlm 21685  df-tng 24500  df-tcph 25097  df-rrx 25313
This theorem is referenced by:  rrxnm  25319  rrxds  25321  rrxmval  25333  rrxmfval  25334  rrxbasefi  25338  rrxmetfi  25340  ehlbase  25343  k0004ss2  44191  rrnprjdstle  46345
  Copyright terms: Public domain W3C validator