![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rrxbase | Structured version Visualization version GIF version |
Description: The base of the generalized real Euclidean space is the set of functions with finite support. (Contributed by Thierry Arnoux, 16-Jun-2019.) (Proof shortened by AV, 22-Jul-2019.) |
Ref | Expression |
---|---|
rrxval.r | β’ π» = (β^βπΌ) |
rrxbase.b | β’ π΅ = (Baseβπ») |
Ref | Expression |
---|---|
rrxbase | β’ (πΌ β π β π΅ = {π β (β βm πΌ) β£ π finSupp 0}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxval.r | . . . . 5 β’ π» = (β^βπΌ) | |
2 | 1 | rrxval 24903 | . . . 4 β’ (πΌ β π β π» = (toβPreHilβ(βfld freeLMod πΌ))) |
3 | 2 | fveq2d 6895 | . . 3 β’ (πΌ β π β (Baseβπ») = (Baseβ(toβPreHilβ(βfld freeLMod πΌ)))) |
4 | eqid 2732 | . . . 4 β’ (toβPreHilβ(βfld freeLMod πΌ)) = (toβPreHilβ(βfld freeLMod πΌ)) | |
5 | eqid 2732 | . . . 4 β’ (Baseβ(βfld freeLMod πΌ)) = (Baseβ(βfld freeLMod πΌ)) | |
6 | 4, 5 | tcphbas 24735 | . . 3 β’ (Baseβ(βfld freeLMod πΌ)) = (Baseβ(toβPreHilβ(βfld freeLMod πΌ))) |
7 | 3, 6 | eqtr4di 2790 | . 2 β’ (πΌ β π β (Baseβπ») = (Baseβ(βfld freeLMod πΌ))) |
8 | rrxbase.b | . . 3 β’ π΅ = (Baseβπ») | |
9 | 8 | a1i 11 | . 2 β’ (πΌ β π β π΅ = (Baseβπ»)) |
10 | refld 21171 | . . 3 β’ βfld β Field | |
11 | eqid 2732 | . . . 4 β’ (βfld freeLMod πΌ) = (βfld freeLMod πΌ) | |
12 | rebase 21158 | . . . 4 β’ β = (Baseββfld) | |
13 | re0g 21164 | . . . 4 β’ 0 = (0gββfld) | |
14 | eqid 2732 | . . . 4 β’ {π β (β βm πΌ) β£ π finSupp 0} = {π β (β βm πΌ) β£ π finSupp 0} | |
15 | 11, 12, 13, 14 | frlmbas 21309 | . . 3 β’ ((βfld β Field β§ πΌ β π) β {π β (β βm πΌ) β£ π finSupp 0} = (Baseβ(βfld freeLMod πΌ))) |
16 | 10, 15 | mpan 688 | . 2 β’ (πΌ β π β {π β (β βm πΌ) β£ π finSupp 0} = (Baseβ(βfld freeLMod πΌ))) |
17 | 7, 9, 16 | 3eqtr4d 2782 | 1 β’ (πΌ β π β π΅ = {π β (β βm πΌ) β£ π finSupp 0}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 {crab 3432 class class class wbr 5148 βcfv 6543 (class class class)co 7408 βm cmap 8819 finSupp cfsupp 9360 βcr 11108 0cc0 11109 Basecbs 17143 Fieldcfield 20357 βfldcrefld 21156 freeLMod cfrlm 21300 toβPreHilctcph 24683 β^crrx 24899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 ax-mulf 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-tpos 8210 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-sup 9436 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-rp 12974 df-fz 13484 df-seq 13966 df-exp 14027 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-0g 17386 df-prds 17392 df-pws 17394 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-grp 18821 df-minusg 18822 df-subg 19002 df-cmn 19649 df-mgp 19987 df-ur 20004 df-ring 20057 df-cring 20058 df-oppr 20149 df-dvdsr 20170 df-unit 20171 df-invr 20201 df-dvr 20214 df-subrg 20316 df-drng 20358 df-field 20359 df-sra 20784 df-rgmod 20785 df-cnfld 20944 df-refld 21157 df-dsmm 21286 df-frlm 21301 df-tng 24092 df-tcph 24685 df-rrx 24901 |
This theorem is referenced by: rrxnm 24907 rrxds 24909 rrxmval 24921 rrxmfval 24922 rrxbasefi 24926 rrxmetfi 24928 ehlbase 24931 k0004ss2 42893 rrnprjdstle 45007 |
Copyright terms: Public domain | W3C validator |