Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rrxbase | Structured version Visualization version GIF version |
Description: The base of the generalized real Euclidean space is the set of functions with finite support. (Contributed by Thierry Arnoux, 16-Jun-2019.) (Proof shortened by AV, 22-Jul-2019.) |
Ref | Expression |
---|---|
rrxval.r | ⊢ 𝐻 = (ℝ^‘𝐼) |
rrxbase.b | ⊢ 𝐵 = (Base‘𝐻) |
Ref | Expression |
---|---|
rrxbase | ⊢ (𝐼 ∈ 𝑉 → 𝐵 = {𝑓 ∈ (ℝ ↑m 𝐼) ∣ 𝑓 finSupp 0}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxval.r | . . . . 5 ⊢ 𝐻 = (ℝ^‘𝐼) | |
2 | 1 | rrxval 24456 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
3 | 2 | fveq2d 6760 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (Base‘𝐻) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
4 | eqid 2738 | . . . 4 ⊢ (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼)) | |
5 | eqid 2738 | . . . 4 ⊢ (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼)) | |
6 | 4, 5 | tcphbas 24288 | . . 3 ⊢ (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) |
7 | 3, 6 | eqtr4di 2797 | . 2 ⊢ (𝐼 ∈ 𝑉 → (Base‘𝐻) = (Base‘(ℝfld freeLMod 𝐼))) |
8 | rrxbase.b | . . 3 ⊢ 𝐵 = (Base‘𝐻) | |
9 | 8 | a1i 11 | . 2 ⊢ (𝐼 ∈ 𝑉 → 𝐵 = (Base‘𝐻)) |
10 | refld 20736 | . . 3 ⊢ ℝfld ∈ Field | |
11 | eqid 2738 | . . . 4 ⊢ (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼) | |
12 | rebase 20723 | . . . 4 ⊢ ℝ = (Base‘ℝfld) | |
13 | re0g 20729 | . . . 4 ⊢ 0 = (0g‘ℝfld) | |
14 | eqid 2738 | . . . 4 ⊢ {𝑓 ∈ (ℝ ↑m 𝐼) ∣ 𝑓 finSupp 0} = {𝑓 ∈ (ℝ ↑m 𝐼) ∣ 𝑓 finSupp 0} | |
15 | 11, 12, 13, 14 | frlmbas 20872 | . . 3 ⊢ ((ℝfld ∈ Field ∧ 𝐼 ∈ 𝑉) → {𝑓 ∈ (ℝ ↑m 𝐼) ∣ 𝑓 finSupp 0} = (Base‘(ℝfld freeLMod 𝐼))) |
16 | 10, 15 | mpan 686 | . 2 ⊢ (𝐼 ∈ 𝑉 → {𝑓 ∈ (ℝ ↑m 𝐼) ∣ 𝑓 finSupp 0} = (Base‘(ℝfld freeLMod 𝐼))) |
17 | 7, 9, 16 | 3eqtr4d 2788 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝐵 = {𝑓 ∈ (ℝ ↑m 𝐼) ∣ 𝑓 finSupp 0}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {crab 3067 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 finSupp cfsupp 9058 ℝcr 10801 0cc0 10802 Basecbs 16840 Fieldcfield 19907 ℝfldcrefld 20721 freeLMod cfrlm 20863 toℂPreHilctcph 24236 ℝ^crrx 24452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-fz 13169 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-0g 17069 df-prds 17075 df-pws 17077 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-subg 18667 df-cmn 19303 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-drng 19908 df-field 19909 df-subrg 19937 df-sra 20349 df-rgmod 20350 df-cnfld 20511 df-refld 20722 df-dsmm 20849 df-frlm 20864 df-tng 23646 df-tcph 24238 df-rrx 24454 |
This theorem is referenced by: rrxnm 24460 rrxds 24462 rrxmval 24474 rrxmfval 24475 rrxbasefi 24479 rrxmetfi 24481 ehlbase 24484 k0004ss2 41651 rrnprjdstle 43732 |
Copyright terms: Public domain | W3C validator |