Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrxdim Structured version   Visualization version   GIF version

Theorem rrxdim 31837
Description: Dimension of the generalized Euclidean space. (Contributed by Thierry Arnoux, 20-May-2023.)
Hypothesis
Ref Expression
rrxdim.1 𝐻 = (ℝ^‘𝐼)
Assertion
Ref Expression
rrxdim (𝐼𝑉 → (dim‘𝐻) = (♯‘𝐼))

Proof of Theorem rrxdim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rrxdim.1 . . . . 5 𝐻 = (ℝ^‘𝐼)
21rrxval 24634 . . . 4 (𝐼𝑉𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
3 eqid 2737 . . . . 5 (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼))
4 eqid 2737 . . . . 5 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼))
5 eqid 2737 . . . . 5 (·𝑖‘(ℝfld freeLMod 𝐼)) = (·𝑖‘(ℝfld freeLMod 𝐼))
63, 4, 5tcphval 24465 . . . 4 (toℂPreHil‘(ℝfld freeLMod 𝐼)) = ((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥))))
72, 6eqtrdi 2793 . . 3 (𝐼𝑉𝐻 = ((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥)))))
87fveq2d 6816 . 2 (𝐼𝑉 → (dim‘𝐻) = (dim‘((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥))))))
9 resubdrg 20896 . . . . 5 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
109simpri 486 . . . 4 fld ∈ DivRing
11 eqid 2737 . . . . 5 (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼)
1211frlmlvec 21051 . . . 4 ((ℝfld ∈ DivRing ∧ 𝐼𝑉) → (ℝfld freeLMod 𝐼) ∈ LVec)
1310, 12mpan 687 . . 3 (𝐼𝑉 → (ℝfld freeLMod 𝐼) ∈ LVec)
144tcphex 24464 . . 3 (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥))) ∈ V
15 eqid 2737 . . . 4 ((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥)))) = ((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥))))
1615tngdim 31836 . . 3 (((ℝfld freeLMod 𝐼) ∈ LVec ∧ (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥))) ∈ V) → (dim‘(ℝfld freeLMod 𝐼)) = (dim‘((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥))))))
1713, 14, 16sylancl 586 . 2 (𝐼𝑉 → (dim‘(ℝfld freeLMod 𝐼)) = (dim‘((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥))))))
1811frlmdim 31834 . . 3 ((ℝfld ∈ DivRing ∧ 𝐼𝑉) → (dim‘(ℝfld freeLMod 𝐼)) = (♯‘𝐼))
1910, 18mpan 687 . 2 (𝐼𝑉 → (dim‘(ℝfld freeLMod 𝐼)) = (♯‘𝐼))
208, 17, 193eqtr2d 2783 1 (𝐼𝑉 → (dim‘𝐻) = (♯‘𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  Vcvv 3441  cmpt 5170  cfv 6466  (class class class)co 7317  cr 10950  chash 14124  csqrt 15023  Basecbs 16989  ·𝑖cip 17044  DivRingcdr 20070  SubRingcsubrg 20102  LVecclvec 20447  fldccnfld 20680  fldcrefld 20892   freeLMod cfrlm 21036   toNrmGrp ctng 23817  toℂPreHilctcph 24414  ℝ^crrx 24630  dimcldim 31824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630  ax-reg 9428  ax-inf2 9477  ax-ac2 10299  ax-cnex 11007  ax-resscn 11008  ax-1cn 11009  ax-icn 11010  ax-addcl 11011  ax-addrcl 11012  ax-mulcl 11013  ax-mulrcl 11014  ax-mulcom 11015  ax-addass 11016  ax-mulass 11017  ax-distr 11018  ax-i2m1 11019  ax-1ne0 11020  ax-1rid 11021  ax-rnegex 11022  ax-rrecex 11023  ax-cnre 11024  ax-pre-lttri 11025  ax-pre-lttrn 11026  ax-pre-ltadd 11027  ax-pre-mulgt0 11028  ax-pre-sup 11029  ax-addf 11030  ax-mulf 11031
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4851  df-int 4893  df-iun 4939  df-iin 4940  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-se 5564  df-we 5565  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-pred 6225  df-ord 6292  df-on 6293  df-lim 6294  df-suc 6295  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-isom 6475  df-riota 7274  df-ov 7320  df-oprab 7321  df-mpo 7322  df-of 7575  df-rpss 7618  df-om 7760  df-1st 7878  df-2nd 7879  df-supp 8027  df-tpos 8091  df-frecs 8146  df-wrecs 8177  df-recs 8251  df-rdg 8290  df-1o 8346  df-oadd 8350  df-er 8548  df-map 8667  df-ixp 8736  df-en 8784  df-dom 8785  df-sdom 8786  df-fin 8787  df-fsupp 9206  df-sup 9278  df-oi 9346  df-r1 9600  df-rank 9601  df-dju 9737  df-card 9775  df-acn 9778  df-ac 9952  df-pnf 11091  df-mnf 11092  df-xr 11093  df-ltxr 11094  df-le 11095  df-sub 11287  df-neg 11288  df-div 11713  df-nn 12054  df-2 12116  df-3 12117  df-4 12118  df-5 12119  df-6 12120  df-7 12121  df-8 12122  df-9 12123  df-n0 12314  df-xnn0 12386  df-z 12400  df-dec 12518  df-uz 12663  df-rp 12811  df-fz 13320  df-fzo 13463  df-seq 13802  df-exp 13863  df-hash 14125  df-cj 14889  df-re 14890  df-im 14891  df-sqrt 15025  df-abs 15026  df-struct 16925  df-sets 16942  df-slot 16960  df-ndx 16972  df-base 16990  df-ress 17019  df-plusg 17052  df-mulr 17053  df-starv 17054  df-sca 17055  df-vsca 17056  df-ip 17057  df-tset 17058  df-ple 17059  df-ocomp 17060  df-ds 17061  df-unif 17062  df-hom 17063  df-cco 17064  df-0g 17229  df-gsum 17230  df-prds 17235  df-pws 17237  df-mre 17372  df-mrc 17373  df-mri 17374  df-acs 17375  df-proset 18090  df-drs 18091  df-poset 18108  df-ipo 18323  df-mgm 18403  df-sgrp 18452  df-mnd 18463  df-mhm 18507  df-submnd 18508  df-grp 18656  df-minusg 18657  df-sbg 18658  df-mulg 18777  df-subg 18828  df-ghm 18908  df-cntz 18999  df-cmn 19463  df-abl 19464  df-mgp 19796  df-ur 19813  df-ring 19860  df-cring 19861  df-oppr 19937  df-dvdsr 19958  df-unit 19959  df-invr 19989  df-dvr 20000  df-drng 20072  df-subrg 20104  df-lmod 20208  df-lss 20277  df-lsp 20317  df-lmhm 20367  df-lbs 20420  df-lvec 20448  df-sra 20517  df-rgmod 20518  df-nzr 20612  df-cnfld 20681  df-refld 20893  df-dsmm 21022  df-frlm 21037  df-uvc 21073  df-tng 23823  df-tcph 24416  df-rrx 24632  df-dim 31825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator