| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrxdim | Structured version Visualization version GIF version | ||
| Description: Dimension of the generalized Euclidean space. (Contributed by Thierry Arnoux, 20-May-2023.) |
| Ref | Expression |
|---|---|
| rrxdim.1 | ⊢ 𝐻 = (ℝ^‘𝐼) |
| Ref | Expression |
|---|---|
| rrxdim | ⊢ (𝐼 ∈ 𝑉 → (dim‘𝐻) = (♯‘𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxdim.1 | . . . . 5 ⊢ 𝐻 = (ℝ^‘𝐼) | |
| 2 | 1 | rrxval 25337 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| 3 | eqid 2735 | . . . . 5 ⊢ (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼)) | |
| 4 | eqid 2735 | . . . . 5 ⊢ (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼)) | |
| 5 | eqid 2735 | . . . . 5 ⊢ (·𝑖‘(ℝfld freeLMod 𝐼)) = (·𝑖‘(ℝfld freeLMod 𝐼)) | |
| 6 | 3, 4, 5 | tcphval 25168 | . . . 4 ⊢ (toℂPreHil‘(ℝfld freeLMod 𝐼)) = ((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥)))) |
| 7 | 2, 6 | eqtrdi 2786 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝐻 = ((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥))))) |
| 8 | 7 | fveq2d 6879 | . 2 ⊢ (𝐼 ∈ 𝑉 → (dim‘𝐻) = (dim‘((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥)))))) |
| 9 | resubdrg 21566 | . . . . 5 ⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) | |
| 10 | 9 | simpri 485 | . . . 4 ⊢ ℝfld ∈ DivRing |
| 11 | eqid 2735 | . . . . 5 ⊢ (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼) | |
| 12 | 11 | frlmlvec 21719 | . . . 4 ⊢ ((ℝfld ∈ DivRing ∧ 𝐼 ∈ 𝑉) → (ℝfld freeLMod 𝐼) ∈ LVec) |
| 13 | 10, 12 | mpan 690 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (ℝfld freeLMod 𝐼) ∈ LVec) |
| 14 | 4 | tcphex 25167 | . . 3 ⊢ (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥))) ∈ V |
| 15 | eqid 2735 | . . . 4 ⊢ ((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥)))) = ((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥)))) | |
| 16 | 15 | tngdim 33599 | . . 3 ⊢ (((ℝfld freeLMod 𝐼) ∈ LVec ∧ (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥))) ∈ V) → (dim‘(ℝfld freeLMod 𝐼)) = (dim‘((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥)))))) |
| 17 | 13, 14, 16 | sylancl 586 | . 2 ⊢ (𝐼 ∈ 𝑉 → (dim‘(ℝfld freeLMod 𝐼)) = (dim‘((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥)))))) |
| 18 | 11 | frlmdim 33597 | . . 3 ⊢ ((ℝfld ∈ DivRing ∧ 𝐼 ∈ 𝑉) → (dim‘(ℝfld freeLMod 𝐼)) = (♯‘𝐼)) |
| 19 | 10, 18 | mpan 690 | . 2 ⊢ (𝐼 ∈ 𝑉 → (dim‘(ℝfld freeLMod 𝐼)) = (♯‘𝐼)) |
| 20 | 8, 17, 19 | 3eqtr2d 2776 | 1 ⊢ (𝐼 ∈ 𝑉 → (dim‘𝐻) = (♯‘𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ↦ cmpt 5201 ‘cfv 6530 (class class class)co 7403 ℝcr 11126 ♯chash 14346 √csqrt 15250 Basecbs 17226 ·𝑖cip 17274 SubRingcsubrg 20527 DivRingcdr 20687 LVecclvec 21058 ℂfldccnfld 21313 ℝfldcrefld 21562 freeLMod cfrlm 21704 toNrmGrp ctng 24515 toℂPreHilctcph 25117 ℝ^crrx 25333 dimcldim 33584 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-reg 9604 ax-inf2 9653 ax-ac2 10475 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 ax-addf 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-rpss 7715 df-om 7860 df-1st 7986 df-2nd 7987 df-supp 8158 df-tpos 8223 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-oadd 8482 df-er 8717 df-map 8840 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9372 df-sup 9452 df-oi 9522 df-r1 9776 df-rank 9777 df-dju 9913 df-card 9951 df-acn 9954 df-ac 10128 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-xnn0 12573 df-z 12587 df-dec 12707 df-uz 12851 df-rp 13007 df-fz 13523 df-fzo 13670 df-seq 14018 df-exp 14078 df-hash 14347 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-starv 17284 df-sca 17285 df-vsca 17286 df-ip 17287 df-tset 17288 df-ple 17289 df-ocomp 17290 df-ds 17291 df-unif 17292 df-hom 17293 df-cco 17294 df-0g 17453 df-gsum 17454 df-prds 17459 df-pws 17461 df-mre 17596 df-mrc 17597 df-mri 17598 df-acs 17599 df-proset 18304 df-drs 18305 df-poset 18323 df-ipo 18536 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-mhm 18759 df-submnd 18760 df-grp 18917 df-minusg 18918 df-sbg 18919 df-mulg 19049 df-subg 19104 df-ghm 19194 df-cntz 19298 df-cmn 19761 df-abl 19762 df-mgp 20099 df-rng 20111 df-ur 20140 df-ring 20193 df-cring 20194 df-oppr 20295 df-dvdsr 20315 df-unit 20316 df-invr 20346 df-dvr 20359 df-nzr 20471 df-subrng 20504 df-subrg 20528 df-drng 20689 df-lmod 20817 df-lss 20887 df-lsp 20927 df-lmhm 20978 df-lbs 21031 df-lvec 21059 df-sra 21129 df-rgmod 21130 df-cnfld 21314 df-refld 21563 df-dsmm 21690 df-frlm 21705 df-uvc 21741 df-tng 24521 df-tcph 25119 df-rrx 25335 df-dim 33585 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |