Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrxdim Structured version   Visualization version   GIF version

Theorem rrxdim 31112
 Description: Dimension of the generalized Euclidean space. (Contributed by Thierry Arnoux, 20-May-2023.)
Hypothesis
Ref Expression
rrxdim.1 𝐻 = (ℝ^‘𝐼)
Assertion
Ref Expression
rrxdim (𝐼𝑉 → (dim‘𝐻) = (♯‘𝐼))

Proof of Theorem rrxdim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rrxdim.1 . . . . 5 𝐻 = (ℝ^‘𝐼)
21rrxval 23998 . . . 4 (𝐼𝑉𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
3 eqid 2798 . . . . 5 (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼))
4 eqid 2798 . . . . 5 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼))
5 eqid 2798 . . . . 5 (·𝑖‘(ℝfld freeLMod 𝐼)) = (·𝑖‘(ℝfld freeLMod 𝐼))
63, 4, 5tcphval 23829 . . . 4 (toℂPreHil‘(ℝfld freeLMod 𝐼)) = ((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥))))
72, 6eqtrdi 2849 . . 3 (𝐼𝑉𝐻 = ((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥)))))
87fveq2d 6649 . 2 (𝐼𝑉 → (dim‘𝐻) = (dim‘((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥))))))
9 resubdrg 20301 . . . . 5 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
109simpri 489 . . . 4 fld ∈ DivRing
11 eqid 2798 . . . . 5 (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼)
1211frlmlvec 20454 . . . 4 ((ℝfld ∈ DivRing ∧ 𝐼𝑉) → (ℝfld freeLMod 𝐼) ∈ LVec)
1310, 12mpan 689 . . 3 (𝐼𝑉 → (ℝfld freeLMod 𝐼) ∈ LVec)
144tcphex 23828 . . 3 (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥))) ∈ V
15 eqid 2798 . . . 4 ((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥)))) = ((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥))))
1615tngdim 31111 . . 3 (((ℝfld freeLMod 𝐼) ∈ LVec ∧ (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥))) ∈ V) → (dim‘(ℝfld freeLMod 𝐼)) = (dim‘((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥))))))
1713, 14, 16sylancl 589 . 2 (𝐼𝑉 → (dim‘(ℝfld freeLMod 𝐼)) = (dim‘((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥))))))
1811frlmdim 31109 . . 3 ((ℝfld ∈ DivRing ∧ 𝐼𝑉) → (dim‘(ℝfld freeLMod 𝐼)) = (♯‘𝐼))
1910, 18mpan 689 . 2 (𝐼𝑉 → (dim‘(ℝfld freeLMod 𝐼)) = (♯‘𝐼))
208, 17, 193eqtr2d 2839 1 (𝐼𝑉 → (dim‘𝐻) = (♯‘𝐼))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2111  Vcvv 3441   ↦ cmpt 5110  ‘cfv 6324  (class class class)co 7135  ℝcr 10527  ♯chash 13688  √csqrt 14586  Basecbs 16477  ·𝑖cip 16564  DivRingcdr 19498  SubRingcsubrg 19527  LVecclvec 19870  ℂfldccnfld 20094  ℝfldcrefld 20297   freeLMod cfrlm 20439   toNrmGrp ctng 23192  toℂPreHilctcph 23779  ℝ^crrx 23994  dimcldim 31099 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-reg 9042  ax-inf2 9090  ax-ac2 9876  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605  ax-pre-sup 10606  ax-addf 10607  ax-mulf 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7390  df-rpss 7431  df-om 7563  df-1st 7673  df-2nd 7674  df-supp 7816  df-tpos 7877  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-oadd 8091  df-er 8274  df-map 8393  df-ixp 8447  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-fsupp 8820  df-sup 8892  df-oi 8960  df-r1 9179  df-rank 9180  df-dju 9316  df-card 9354  df-acn 9357  df-ac 9529  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-div 11289  df-nn 11628  df-2 11690  df-3 11691  df-4 11692  df-5 11693  df-6 11694  df-7 11695  df-8 11696  df-9 11697  df-n0 11888  df-xnn0 11958  df-z 11972  df-dec 12089  df-uz 12234  df-rp 12380  df-fz 12888  df-fzo 13031  df-seq 13367  df-exp 13428  df-hash 13689  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ocomp 16580  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-0g 16709  df-gsum 16710  df-prds 16715  df-pws 16717  df-mre 16851  df-mrc 16852  df-mri 16853  df-acs 16854  df-proset 17532  df-drs 17533  df-poset 17550  df-ipo 17756  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-submnd 17951  df-grp 18100  df-minusg 18101  df-sbg 18102  df-mulg 18220  df-subg 18271  df-ghm 18351  df-cntz 18442  df-cmn 18903  df-abl 18904  df-mgp 19236  df-ur 19248  df-ring 19295  df-cring 19296  df-oppr 19372  df-dvdsr 19390  df-unit 19391  df-invr 19421  df-dvr 19432  df-drng 19500  df-subrg 19529  df-lmod 19632  df-lss 19700  df-lsp 19740  df-lmhm 19790  df-lbs 19843  df-lvec 19871  df-sra 19940  df-rgmod 19941  df-nzr 20027  df-cnfld 20095  df-refld 20298  df-dsmm 20425  df-frlm 20440  df-uvc 20476  df-tng 23198  df-tcph 23781  df-rrx 23996  df-dim 31100 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator