MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrx0 Structured version   Visualization version   GIF version

Theorem rrx0 25450
Description: The zero ("origin") in a generalized real Euclidean space. (Contributed by AV, 11-Feb-2023.)
Hypotheses
Ref Expression
rrxsca.r 𝐻 = (ℝ^‘𝐼)
rrx0.0 0 = (𝐼 × {0})
Assertion
Ref Expression
rrx0 (𝐼𝑉 → (0g𝐻) = 0 )

Proof of Theorem rrx0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rrxsca.r . . . 4 𝐻 = (ℝ^‘𝐼)
21rrxval 25440 . . 3 (𝐼𝑉𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
32fveq2d 6924 . 2 (𝐼𝑉 → (0g𝐻) = (0g‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
4 eqid 2740 . . . . . 6 (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼))
5 eqid 2740 . . . . . 6 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼))
6 eqid 2740 . . . . . 6 (·𝑖‘(ℝfld freeLMod 𝐼)) = (·𝑖‘(ℝfld freeLMod 𝐼))
74, 5, 6tcphval 25271 . . . . 5 (toℂPreHil‘(ℝfld freeLMod 𝐼)) = ((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥))))
87a1i 11 . . . 4 (𝐼𝑉 → (toℂPreHil‘(ℝfld freeLMod 𝐼)) = ((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥)))))
98fveq2d 6924 . . 3 (𝐼𝑉 → (0g‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (0g‘((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥))))))
10 fvexd 6935 . . . . 5 (𝐼𝑉 → (Base‘(ℝfld freeLMod 𝐼)) ∈ V)
1110mptexd 7261 . . . 4 (𝐼𝑉 → (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥))) ∈ V)
12 eqid 2740 . . . . 5 ((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥)))) = ((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥))))
13 eqid 2740 . . . . 5 (0g‘(ℝfld freeLMod 𝐼)) = (0g‘(ℝfld freeLMod 𝐼))
1412, 13tng0 24680 . . . 4 ((𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥))) ∈ V → (0g‘(ℝfld freeLMod 𝐼)) = (0g‘((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥))))))
1511, 14syl 17 . . 3 (𝐼𝑉 → (0g‘(ℝfld freeLMod 𝐼)) = (0g‘((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥))))))
16 rrx0.0 . . . 4 0 = (𝐼 × {0})
17 refld 21660 . . . . . 6 fld ∈ Field
18 isfld 20762 . . . . . . 7 (ℝfld ∈ Field ↔ (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing))
19 drngring 20758 . . . . . . . 8 (ℝfld ∈ DivRing → ℝfld ∈ Ring)
2019adantr 480 . . . . . . 7 ((ℝfld ∈ DivRing ∧ ℝfld ∈ CRing) → ℝfld ∈ Ring)
2118, 20sylbi 217 . . . . . 6 (ℝfld ∈ Field → ℝfld ∈ Ring)
2217, 21ax-mp 5 . . . . 5 fld ∈ Ring
23 eqid 2740 . . . . . 6 (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼)
24 re0g 21653 . . . . . 6 0 = (0g‘ℝfld)
2523, 24frlm0 21797 . . . . 5 ((ℝfld ∈ Ring ∧ 𝐼𝑉) → (𝐼 × {0}) = (0g‘(ℝfld freeLMod 𝐼)))
2622, 25mpan 689 . . . 4 (𝐼𝑉 → (𝐼 × {0}) = (0g‘(ℝfld freeLMod 𝐼)))
2716, 26eqtr2id 2793 . . 3 (𝐼𝑉 → (0g‘(ℝfld freeLMod 𝐼)) = 0 )
289, 15, 273eqtr2d 2786 . 2 (𝐼𝑉 → (0g‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = 0 )
293, 28eqtrd 2780 1 (𝐼𝑉 → (0g𝐻) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  {csn 4648  cmpt 5249   × cxp 5698  cfv 6573  (class class class)co 7448  0cc0 11184  csqrt 15282  Basecbs 17258  ·𝑖cip 17316  0gc0g 17499  Ringcrg 20260  CRingccrg 20261  DivRingcdr 20751  Fieldcfield 20752  fldcrefld 21645   freeLMod cfrlm 21789   toNrmGrp ctng 24612  toℂPreHilctcph 25220  ℝ^crrx 25436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-prds 17507  df-pws 17509  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-subrng 20572  df-subrg 20597  df-drng 20753  df-field 20754  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-cnfld 21388  df-refld 21646  df-dsmm 21775  df-frlm 21790  df-tng 24618  df-tcph 25222  df-rrx 25438
This theorem is referenced by:  ehl0  25470
  Copyright terms: Public domain W3C validator