Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rrx0 | Structured version Visualization version GIF version |
Description: The zero ("origin") in a generalized real Euclidean space. (Contributed by AV, 11-Feb-2023.) |
Ref | Expression |
---|---|
rrxsca.r | ⊢ 𝐻 = (ℝ^‘𝐼) |
rrx0.0 | ⊢ 0 = (𝐼 × {0}) |
Ref | Expression |
---|---|
rrx0 | ⊢ (𝐼 ∈ 𝑉 → (0g‘𝐻) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxsca.r | . . . 4 ⊢ 𝐻 = (ℝ^‘𝐼) | |
2 | 1 | rrxval 24549 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
3 | 2 | fveq2d 6775 | . 2 ⊢ (𝐼 ∈ 𝑉 → (0g‘𝐻) = (0g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
4 | eqid 2740 | . . . . . 6 ⊢ (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼)) | |
5 | eqid 2740 | . . . . . 6 ⊢ (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼)) | |
6 | eqid 2740 | . . . . . 6 ⊢ (·𝑖‘(ℝfld freeLMod 𝐼)) = (·𝑖‘(ℝfld freeLMod 𝐼)) | |
7 | 4, 5, 6 | tcphval 24380 | . . . . 5 ⊢ (toℂPreHil‘(ℝfld freeLMod 𝐼)) = ((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥)))) |
8 | 7 | a1i 11 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (toℂPreHil‘(ℝfld freeLMod 𝐼)) = ((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥))))) |
9 | 8 | fveq2d 6775 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (0g‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (0g‘((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥)))))) |
10 | fvexd 6786 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → (Base‘(ℝfld freeLMod 𝐼)) ∈ V) | |
11 | 10 | mptexd 7097 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥))) ∈ V) |
12 | eqid 2740 | . . . . 5 ⊢ ((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥)))) = ((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥)))) | |
13 | eqid 2740 | . . . . 5 ⊢ (0g‘(ℝfld freeLMod 𝐼)) = (0g‘(ℝfld freeLMod 𝐼)) | |
14 | 12, 13 | tng0 23800 | . . . 4 ⊢ ((𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥))) ∈ V → (0g‘(ℝfld freeLMod 𝐼)) = (0g‘((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥)))))) |
15 | 11, 14 | syl 17 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (0g‘(ℝfld freeLMod 𝐼)) = (0g‘((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥)))))) |
16 | rrx0.0 | . . . 4 ⊢ 0 = (𝐼 × {0}) | |
17 | refld 20822 | . . . . . 6 ⊢ ℝfld ∈ Field | |
18 | isfld 19998 | . . . . . . 7 ⊢ (ℝfld ∈ Field ↔ (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing)) | |
19 | drngring 19996 | . . . . . . . 8 ⊢ (ℝfld ∈ DivRing → ℝfld ∈ Ring) | |
20 | 19 | adantr 481 | . . . . . . 7 ⊢ ((ℝfld ∈ DivRing ∧ ℝfld ∈ CRing) → ℝfld ∈ Ring) |
21 | 18, 20 | sylbi 216 | . . . . . 6 ⊢ (ℝfld ∈ Field → ℝfld ∈ Ring) |
22 | 17, 21 | ax-mp 5 | . . . . 5 ⊢ ℝfld ∈ Ring |
23 | eqid 2740 | . . . . . 6 ⊢ (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼) | |
24 | re0g 20815 | . . . . . 6 ⊢ 0 = (0g‘ℝfld) | |
25 | 23, 24 | frlm0 20959 | . . . . 5 ⊢ ((ℝfld ∈ Ring ∧ 𝐼 ∈ 𝑉) → (𝐼 × {0}) = (0g‘(ℝfld freeLMod 𝐼))) |
26 | 22, 25 | mpan 687 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (𝐼 × {0}) = (0g‘(ℝfld freeLMod 𝐼))) |
27 | 16, 26 | eqtr2id 2793 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (0g‘(ℝfld freeLMod 𝐼)) = 0 ) |
28 | 9, 15, 27 | 3eqtr2d 2786 | . 2 ⊢ (𝐼 ∈ 𝑉 → (0g‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = 0 ) |
29 | 3, 28 | eqtrd 2780 | 1 ⊢ (𝐼 ∈ 𝑉 → (0g‘𝐻) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 Vcvv 3431 {csn 4567 ↦ cmpt 5162 × cxp 5588 ‘cfv 6432 (class class class)co 7271 0cc0 10872 √csqrt 14942 Basecbs 16910 ·𝑖cip 16965 0gc0g 17148 Ringcrg 19781 CRingccrg 19782 DivRingcdr 19989 Fieldcfield 19990 ℝfldcrefld 20807 freeLMod cfrlm 20951 toNrmGrp ctng 23732 toℂPreHilctcph 24329 ℝ^crrx 24545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-addf 10951 ax-mulf 10952 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-tpos 8033 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-er 8481 df-map 8600 df-ixp 8669 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-sup 9179 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12437 df-uz 12582 df-fz 13239 df-struct 16846 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-mulr 16974 df-starv 16975 df-sca 16976 df-vsca 16977 df-ip 16978 df-tset 16979 df-ple 16980 df-ds 16982 df-unif 16983 df-hom 16984 df-cco 16985 df-0g 17150 df-prds 17156 df-pws 17158 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-grp 18578 df-minusg 18579 df-sbg 18580 df-subg 18750 df-cmn 19386 df-mgp 19719 df-ur 19736 df-ring 19783 df-cring 19784 df-oppr 19860 df-dvdsr 19881 df-unit 19882 df-invr 19912 df-dvr 19923 df-drng 19991 df-field 19992 df-subrg 20020 df-lmod 20123 df-lss 20192 df-sra 20432 df-rgmod 20433 df-cnfld 20596 df-refld 20808 df-dsmm 20937 df-frlm 20952 df-tng 23738 df-tcph 24331 df-rrx 24547 |
This theorem is referenced by: ehl0 24579 |
Copyright terms: Public domain | W3C validator |