| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rrx0 | Structured version Visualization version GIF version | ||
| Description: The zero ("origin") in a generalized real Euclidean space. (Contributed by AV, 11-Feb-2023.) |
| Ref | Expression |
|---|---|
| rrxsca.r | ⊢ 𝐻 = (ℝ^‘𝐼) |
| rrx0.0 | ⊢ 0 = (𝐼 × {0}) |
| Ref | Expression |
|---|---|
| rrx0 | ⊢ (𝐼 ∈ 𝑉 → (0g‘𝐻) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxsca.r | . . . 4 ⊢ 𝐻 = (ℝ^‘𝐼) | |
| 2 | 1 | rrxval 25339 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| 3 | 2 | fveq2d 6880 | . 2 ⊢ (𝐼 ∈ 𝑉 → (0g‘𝐻) = (0g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
| 4 | eqid 2735 | . . . . . 6 ⊢ (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼)) | |
| 5 | eqid 2735 | . . . . . 6 ⊢ (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼)) | |
| 6 | eqid 2735 | . . . . . 6 ⊢ (·𝑖‘(ℝfld freeLMod 𝐼)) = (·𝑖‘(ℝfld freeLMod 𝐼)) | |
| 7 | 4, 5, 6 | tcphval 25170 | . . . . 5 ⊢ (toℂPreHil‘(ℝfld freeLMod 𝐼)) = ((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥)))) |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (toℂPreHil‘(ℝfld freeLMod 𝐼)) = ((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥))))) |
| 9 | 8 | fveq2d 6880 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (0g‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (0g‘((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥)))))) |
| 10 | fvexd 6891 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → (Base‘(ℝfld freeLMod 𝐼)) ∈ V) | |
| 11 | 10 | mptexd 7216 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥))) ∈ V) |
| 12 | eqid 2735 | . . . . 5 ⊢ ((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥)))) = ((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥)))) | |
| 13 | eqid 2735 | . . . . 5 ⊢ (0g‘(ℝfld freeLMod 𝐼)) = (0g‘(ℝfld freeLMod 𝐼)) | |
| 14 | 12, 13 | tng0 24582 | . . . 4 ⊢ ((𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥))) ∈ V → (0g‘(ℝfld freeLMod 𝐼)) = (0g‘((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥)))))) |
| 15 | 11, 14 | syl 17 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (0g‘(ℝfld freeLMod 𝐼)) = (0g‘((ℝfld freeLMod 𝐼) toNrmGrp (𝑥 ∈ (Base‘(ℝfld freeLMod 𝐼)) ↦ (√‘(𝑥(·𝑖‘(ℝfld freeLMod 𝐼))𝑥)))))) |
| 16 | rrx0.0 | . . . 4 ⊢ 0 = (𝐼 × {0}) | |
| 17 | refld 21579 | . . . . . 6 ⊢ ℝfld ∈ Field | |
| 18 | isfld 20700 | . . . . . . 7 ⊢ (ℝfld ∈ Field ↔ (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing)) | |
| 19 | drngring 20696 | . . . . . . . 8 ⊢ (ℝfld ∈ DivRing → ℝfld ∈ Ring) | |
| 20 | 19 | adantr 480 | . . . . . . 7 ⊢ ((ℝfld ∈ DivRing ∧ ℝfld ∈ CRing) → ℝfld ∈ Ring) |
| 21 | 18, 20 | sylbi 217 | . . . . . 6 ⊢ (ℝfld ∈ Field → ℝfld ∈ Ring) |
| 22 | 17, 21 | ax-mp 5 | . . . . 5 ⊢ ℝfld ∈ Ring |
| 23 | eqid 2735 | . . . . . 6 ⊢ (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼) | |
| 24 | re0g 21572 | . . . . . 6 ⊢ 0 = (0g‘ℝfld) | |
| 25 | 23, 24 | frlm0 21714 | . . . . 5 ⊢ ((ℝfld ∈ Ring ∧ 𝐼 ∈ 𝑉) → (𝐼 × {0}) = (0g‘(ℝfld freeLMod 𝐼))) |
| 26 | 22, 25 | mpan 690 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (𝐼 × {0}) = (0g‘(ℝfld freeLMod 𝐼))) |
| 27 | 16, 26 | eqtr2id 2783 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (0g‘(ℝfld freeLMod 𝐼)) = 0 ) |
| 28 | 9, 15, 27 | 3eqtr2d 2776 | . 2 ⊢ (𝐼 ∈ 𝑉 → (0g‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = 0 ) |
| 29 | 3, 28 | eqtrd 2770 | 1 ⊢ (𝐼 ∈ 𝑉 → (0g‘𝐻) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 {csn 4601 ↦ cmpt 5201 × cxp 5652 ‘cfv 6531 (class class class)co 7405 0cc0 11129 √csqrt 15252 Basecbs 17228 ·𝑖cip 17276 0gc0g 17453 Ringcrg 20193 CRingccrg 20194 DivRingcdr 20689 Fieldcfield 20690 ℝfldcrefld 21564 freeLMod cfrlm 21706 toNrmGrp ctng 24517 toℂPreHilctcph 25119 ℝ^crrx 25335 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-addf 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-0g 17455 df-prds 17461 df-pws 17463 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-cring 20196 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-dvr 20361 df-subrng 20506 df-subrg 20530 df-drng 20691 df-field 20692 df-lmod 20819 df-lss 20889 df-sra 21131 df-rgmod 21132 df-cnfld 21316 df-refld 21565 df-dsmm 21692 df-frlm 21707 df-tng 24523 df-tcph 25121 df-rrx 25337 |
| This theorem is referenced by: ehl0 25369 |
| Copyright terms: Public domain | W3C validator |