![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rrx0 | Structured version Visualization version GIF version |
Description: The zero ("origin") in a generalized real Euclidean space. (Contributed by AV, 11-Feb-2023.) |
Ref | Expression |
---|---|
rrxsca.r | β’ π» = (β^βπΌ) |
rrx0.0 | β’ 0 = (πΌ Γ {0}) |
Ref | Expression |
---|---|
rrx0 | β’ (πΌ β π β (0gβπ») = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxsca.r | . . . 4 β’ π» = (β^βπΌ) | |
2 | 1 | rrxval 25314 | . . 3 β’ (πΌ β π β π» = (toβPreHilβ(βfld freeLMod πΌ))) |
3 | 2 | fveq2d 6901 | . 2 β’ (πΌ β π β (0gβπ») = (0gβ(toβPreHilβ(βfld freeLMod πΌ)))) |
4 | eqid 2728 | . . . . . 6 β’ (toβPreHilβ(βfld freeLMod πΌ)) = (toβPreHilβ(βfld freeLMod πΌ)) | |
5 | eqid 2728 | . . . . . 6 β’ (Baseβ(βfld freeLMod πΌ)) = (Baseβ(βfld freeLMod πΌ)) | |
6 | eqid 2728 | . . . . . 6 β’ (Β·πβ(βfld freeLMod πΌ)) = (Β·πβ(βfld freeLMod πΌ)) | |
7 | 4, 5, 6 | tcphval 25145 | . . . . 5 β’ (toβPreHilβ(βfld freeLMod πΌ)) = ((βfld freeLMod πΌ) toNrmGrp (π₯ β (Baseβ(βfld freeLMod πΌ)) β¦ (ββ(π₯(Β·πβ(βfld freeLMod πΌ))π₯)))) |
8 | 7 | a1i 11 | . . . 4 β’ (πΌ β π β (toβPreHilβ(βfld freeLMod πΌ)) = ((βfld freeLMod πΌ) toNrmGrp (π₯ β (Baseβ(βfld freeLMod πΌ)) β¦ (ββ(π₯(Β·πβ(βfld freeLMod πΌ))π₯))))) |
9 | 8 | fveq2d 6901 | . . 3 β’ (πΌ β π β (0gβ(toβPreHilβ(βfld freeLMod πΌ))) = (0gβ((βfld freeLMod πΌ) toNrmGrp (π₯ β (Baseβ(βfld freeLMod πΌ)) β¦ (ββ(π₯(Β·πβ(βfld freeLMod πΌ))π₯)))))) |
10 | fvexd 6912 | . . . . 5 β’ (πΌ β π β (Baseβ(βfld freeLMod πΌ)) β V) | |
11 | 10 | mptexd 7236 | . . . 4 β’ (πΌ β π β (π₯ β (Baseβ(βfld freeLMod πΌ)) β¦ (ββ(π₯(Β·πβ(βfld freeLMod πΌ))π₯))) β V) |
12 | eqid 2728 | . . . . 5 β’ ((βfld freeLMod πΌ) toNrmGrp (π₯ β (Baseβ(βfld freeLMod πΌ)) β¦ (ββ(π₯(Β·πβ(βfld freeLMod πΌ))π₯)))) = ((βfld freeLMod πΌ) toNrmGrp (π₯ β (Baseβ(βfld freeLMod πΌ)) β¦ (ββ(π₯(Β·πβ(βfld freeLMod πΌ))π₯)))) | |
13 | eqid 2728 | . . . . 5 β’ (0gβ(βfld freeLMod πΌ)) = (0gβ(βfld freeLMod πΌ)) | |
14 | 12, 13 | tng0 24554 | . . . 4 β’ ((π₯ β (Baseβ(βfld freeLMod πΌ)) β¦ (ββ(π₯(Β·πβ(βfld freeLMod πΌ))π₯))) β V β (0gβ(βfld freeLMod πΌ)) = (0gβ((βfld freeLMod πΌ) toNrmGrp (π₯ β (Baseβ(βfld freeLMod πΌ)) β¦ (ββ(π₯(Β·πβ(βfld freeLMod πΌ))π₯)))))) |
15 | 11, 14 | syl 17 | . . 3 β’ (πΌ β π β (0gβ(βfld freeLMod πΌ)) = (0gβ((βfld freeLMod πΌ) toNrmGrp (π₯ β (Baseβ(βfld freeLMod πΌ)) β¦ (ββ(π₯(Β·πβ(βfld freeLMod πΌ))π₯)))))) |
16 | rrx0.0 | . . . 4 β’ 0 = (πΌ Γ {0}) | |
17 | refld 21550 | . . . . . 6 β’ βfld β Field | |
18 | isfld 20634 | . . . . . . 7 β’ (βfld β Field β (βfld β DivRing β§ βfld β CRing)) | |
19 | drngring 20630 | . . . . . . . 8 β’ (βfld β DivRing β βfld β Ring) | |
20 | 19 | adantr 480 | . . . . . . 7 β’ ((βfld β DivRing β§ βfld β CRing) β βfld β Ring) |
21 | 18, 20 | sylbi 216 | . . . . . 6 β’ (βfld β Field β βfld β Ring) |
22 | 17, 21 | ax-mp 5 | . . . . 5 β’ βfld β Ring |
23 | eqid 2728 | . . . . . 6 β’ (βfld freeLMod πΌ) = (βfld freeLMod πΌ) | |
24 | re0g 21543 | . . . . . 6 β’ 0 = (0gββfld) | |
25 | 23, 24 | frlm0 21687 | . . . . 5 β’ ((βfld β Ring β§ πΌ β π) β (πΌ Γ {0}) = (0gβ(βfld freeLMod πΌ))) |
26 | 22, 25 | mpan 689 | . . . 4 β’ (πΌ β π β (πΌ Γ {0}) = (0gβ(βfld freeLMod πΌ))) |
27 | 16, 26 | eqtr2id 2781 | . . 3 β’ (πΌ β π β (0gβ(βfld freeLMod πΌ)) = 0 ) |
28 | 9, 15, 27 | 3eqtr2d 2774 | . 2 β’ (πΌ β π β (0gβ(toβPreHilβ(βfld freeLMod πΌ))) = 0 ) |
29 | 3, 28 | eqtrd 2768 | 1 β’ (πΌ β π β (0gβπ») = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β wcel 2099 Vcvv 3471 {csn 4629 β¦ cmpt 5231 Γ cxp 5676 βcfv 6548 (class class class)co 7420 0cc0 11138 βcsqrt 15212 Basecbs 17179 Β·πcip 17237 0gc0g 17420 Ringcrg 20172 CRingccrg 20173 DivRingcdr 20623 Fieldcfield 20624 βfldcrefld 21535 freeLMod cfrlm 21679 toNrmGrp ctng 24486 toβPreHilctcph 25094 β^crrx 25310 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-addf 11217 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-tpos 8231 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-er 8724 df-map 8846 df-ixp 8916 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-sup 9465 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-fz 13517 df-struct 17115 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-mulr 17246 df-starv 17247 df-sca 17248 df-vsca 17249 df-ip 17250 df-tset 17251 df-ple 17252 df-ds 17254 df-unif 17255 df-hom 17256 df-cco 17257 df-0g 17422 df-prds 17428 df-pws 17430 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-grp 18892 df-minusg 18893 df-sbg 18894 df-subg 19077 df-cmn 19736 df-abl 19737 df-mgp 20074 df-rng 20092 df-ur 20121 df-ring 20174 df-cring 20175 df-oppr 20272 df-dvdsr 20295 df-unit 20296 df-invr 20326 df-dvr 20339 df-subrng 20482 df-subrg 20507 df-drng 20625 df-field 20626 df-lmod 20744 df-lss 20815 df-sra 21057 df-rgmod 21058 df-cnfld 21279 df-refld 21536 df-dsmm 21665 df-frlm 21680 df-tng 24492 df-tcph 25096 df-rrx 25312 |
This theorem is referenced by: ehl0 25344 |
Copyright terms: Public domain | W3C validator |