Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rrxvsca | Structured version Visualization version GIF version |
Description: The scalar product over generalized Euclidean spaces is the componentwise real number multiplication. (Contributed by Thierry Arnoux, 18-Jan-2023.) |
Ref | Expression |
---|---|
rrxval.r | ⊢ 𝐻 = (ℝ^‘𝐼) |
rrxbase.b | ⊢ 𝐵 = (Base‘𝐻) |
rrxvsca.r | ⊢ ∙ = ( ·𝑠 ‘𝐻) |
rrxvsca.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
rrxvsca.j | ⊢ (𝜑 → 𝐽 ∈ 𝐼) |
rrxvsca.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
rrxvsca.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐻)) |
Ref | Expression |
---|---|
rrxvsca | ⊢ (𝜑 → ((𝐴 ∙ 𝑋)‘𝐽) = (𝐴 · (𝑋‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxvsca.r | . . . . 5 ⊢ ∙ = ( ·𝑠 ‘𝐻) | |
2 | rrxvsca.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
3 | rrxval.r | . . . . . . . 8 ⊢ 𝐻 = (ℝ^‘𝐼) | |
4 | 3 | rrxval 24551 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
5 | 2, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
6 | 5 | fveq2d 6778 | . . . . 5 ⊢ (𝜑 → ( ·𝑠 ‘𝐻) = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
7 | 1, 6 | eqtrid 2790 | . . . 4 ⊢ (𝜑 → ∙ = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
8 | 7 | oveqd 7292 | . . 3 ⊢ (𝜑 → (𝐴 ∙ 𝑋) = (𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)) |
9 | 8 | fveq1d 6776 | . 2 ⊢ (𝜑 → ((𝐴 ∙ 𝑋)‘𝐽) = ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)‘𝐽)) |
10 | eqid 2738 | . . 3 ⊢ (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼) | |
11 | eqid 2738 | . . 3 ⊢ (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼)) | |
12 | rebase 20811 | . . 3 ⊢ ℝ = (Base‘ℝfld) | |
13 | rrxvsca.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
14 | rrxvsca.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐻)) | |
15 | 5 | fveq2d 6778 | . . . . 5 ⊢ (𝜑 → (Base‘𝐻) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
16 | eqid 2738 | . . . . . 6 ⊢ (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼)) | |
17 | 16, 11 | tcphbas 24383 | . . . . 5 ⊢ (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) |
18 | 15, 17 | eqtr4di 2796 | . . . 4 ⊢ (𝜑 → (Base‘𝐻) = (Base‘(ℝfld freeLMod 𝐼))) |
19 | 14, 18 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘(ℝfld freeLMod 𝐼))) |
20 | rrxvsca.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐼) | |
21 | eqid 2738 | . . . . 5 ⊢ ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) = ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) | |
22 | 16, 21 | tcphvsca 24388 | . . . 4 ⊢ ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) |
23 | 22 | eqcomi 2747 | . . 3 ⊢ ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) |
24 | remulr 20816 | . . 3 ⊢ · = (.r‘ℝfld) | |
25 | 10, 11, 12, 2, 13, 19, 20, 23, 24 | frlmvscaval 20975 | . 2 ⊢ (𝜑 → ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)‘𝐽) = (𝐴 · (𝑋‘𝐽))) |
26 | 9, 25 | eqtrd 2778 | 1 ⊢ (𝜑 → ((𝐴 ∙ 𝑋)‘𝐽) = (𝐴 · (𝑋‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 · cmul 10876 Basecbs 16912 ·𝑠 cvsca 16966 ℝfldcrefld 20809 freeLMod cfrlm 20953 toℂPreHilctcph 24331 ℝ^crrx 24547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-rp 12731 df-fz 13240 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-0g 17152 df-prds 17158 df-pws 17160 df-sra 20434 df-rgmod 20435 df-cnfld 20598 df-refld 20810 df-dsmm 20939 df-frlm 20954 df-tng 23740 df-tcph 24333 df-rrx 24549 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |