![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rrxvsca | Structured version Visualization version GIF version |
Description: The scalar product over generalized Euclidean spaces is the componentwise real number multiplication. (Contributed by Thierry Arnoux, 18-Jan-2023.) |
Ref | Expression |
---|---|
rrxval.r | β’ π» = (β^βπΌ) |
rrxbase.b | β’ π΅ = (Baseβπ») |
rrxvsca.r | β’ β = ( Β·π βπ») |
rrxvsca.i | β’ (π β πΌ β π) |
rrxvsca.j | β’ (π β π½ β πΌ) |
rrxvsca.a | β’ (π β π΄ β β) |
rrxvsca.x | β’ (π β π β (Baseβπ»)) |
Ref | Expression |
---|---|
rrxvsca | β’ (π β ((π΄ β π)βπ½) = (π΄ Β· (πβπ½))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxvsca.r | . . . . 5 β’ β = ( Β·π βπ») | |
2 | rrxvsca.i | . . . . . . 7 β’ (π β πΌ β π) | |
3 | rrxval.r | . . . . . . . 8 β’ π» = (β^βπΌ) | |
4 | 3 | rrxval 25270 | . . . . . . 7 β’ (πΌ β π β π» = (toβPreHilβ(βfld freeLMod πΌ))) |
5 | 2, 4 | syl 17 | . . . . . 6 β’ (π β π» = (toβPreHilβ(βfld freeLMod πΌ))) |
6 | 5 | fveq2d 6889 | . . . . 5 β’ (π β ( Β·π βπ») = ( Β·π β(toβPreHilβ(βfld freeLMod πΌ)))) |
7 | 1, 6 | eqtrid 2778 | . . . 4 β’ (π β β = ( Β·π β(toβPreHilβ(βfld freeLMod πΌ)))) |
8 | 7 | oveqd 7422 | . . 3 β’ (π β (π΄ β π) = (π΄( Β·π β(toβPreHilβ(βfld freeLMod πΌ)))π)) |
9 | 8 | fveq1d 6887 | . 2 β’ (π β ((π΄ β π)βπ½) = ((π΄( Β·π β(toβPreHilβ(βfld freeLMod πΌ)))π)βπ½)) |
10 | eqid 2726 | . . 3 β’ (βfld freeLMod πΌ) = (βfld freeLMod πΌ) | |
11 | eqid 2726 | . . 3 β’ (Baseβ(βfld freeLMod πΌ)) = (Baseβ(βfld freeLMod πΌ)) | |
12 | rebase 21499 | . . 3 β’ β = (Baseββfld) | |
13 | rrxvsca.a | . . 3 β’ (π β π΄ β β) | |
14 | rrxvsca.x | . . . 4 β’ (π β π β (Baseβπ»)) | |
15 | 5 | fveq2d 6889 | . . . . 5 β’ (π β (Baseβπ») = (Baseβ(toβPreHilβ(βfld freeLMod πΌ)))) |
16 | eqid 2726 | . . . . . 6 β’ (toβPreHilβ(βfld freeLMod πΌ)) = (toβPreHilβ(βfld freeLMod πΌ)) | |
17 | 16, 11 | tcphbas 25102 | . . . . 5 β’ (Baseβ(βfld freeLMod πΌ)) = (Baseβ(toβPreHilβ(βfld freeLMod πΌ))) |
18 | 15, 17 | eqtr4di 2784 | . . . 4 β’ (π β (Baseβπ») = (Baseβ(βfld freeLMod πΌ))) |
19 | 14, 18 | eleqtrd 2829 | . . 3 β’ (π β π β (Baseβ(βfld freeLMod πΌ))) |
20 | rrxvsca.j | . . 3 β’ (π β π½ β πΌ) | |
21 | eqid 2726 | . . . . 5 β’ ( Β·π β(βfld freeLMod πΌ)) = ( Β·π β(βfld freeLMod πΌ)) | |
22 | 16, 21 | tcphvsca 25107 | . . . 4 β’ ( Β·π β(βfld freeLMod πΌ)) = ( Β·π β(toβPreHilβ(βfld freeLMod πΌ))) |
23 | 22 | eqcomi 2735 | . . 3 β’ ( Β·π β(toβPreHilβ(βfld freeLMod πΌ))) = ( Β·π β(βfld freeLMod πΌ)) |
24 | remulr 21504 | . . 3 β’ Β· = (.rββfld) | |
25 | 10, 11, 12, 2, 13, 19, 20, 23, 24 | frlmvscaval 21663 | . 2 β’ (π β ((π΄( Β·π β(toβPreHilβ(βfld freeLMod πΌ)))π)βπ½) = (π΄ Β· (πβπ½))) |
26 | 9, 25 | eqtrd 2766 | 1 β’ (π β ((π΄ β π)βπ½) = (π΄ Β· (πβπ½))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 βcfv 6537 (class class class)co 7405 βcr 11111 Β· cmul 11117 Basecbs 17153 Β·π cvsca 17210 βfldcrefld 21497 freeLMod cfrlm 21641 toβPreHilctcph 25050 β^crrx 25266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7667 df-om 7853 df-1st 7974 df-2nd 7975 df-supp 8147 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-map 8824 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-sup 9439 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-rp 12981 df-fz 13491 df-seq 13973 df-exp 14033 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-struct 17089 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-starv 17221 df-sca 17222 df-vsca 17223 df-ip 17224 df-tset 17225 df-ple 17226 df-ds 17228 df-unif 17229 df-hom 17230 df-cco 17231 df-0g 17396 df-prds 17402 df-pws 17404 df-sra 21021 df-rgmod 21022 df-cnfld 21241 df-refld 21498 df-dsmm 21627 df-frlm 21642 df-tng 24448 df-tcph 25052 df-rrx 25268 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |