| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rrxvsca | Structured version Visualization version GIF version | ||
| Description: The scalar product over generalized Euclidean spaces is the componentwise real number multiplication. (Contributed by Thierry Arnoux, 18-Jan-2023.) |
| Ref | Expression |
|---|---|
| rrxval.r | ⊢ 𝐻 = (ℝ^‘𝐼) |
| rrxbase.b | ⊢ 𝐵 = (Base‘𝐻) |
| rrxvsca.r | ⊢ ∙ = ( ·𝑠 ‘𝐻) |
| rrxvsca.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| rrxvsca.j | ⊢ (𝜑 → 𝐽 ∈ 𝐼) |
| rrxvsca.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| rrxvsca.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐻)) |
| Ref | Expression |
|---|---|
| rrxvsca | ⊢ (𝜑 → ((𝐴 ∙ 𝑋)‘𝐽) = (𝐴 · (𝑋‘𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxvsca.r | . . . . 5 ⊢ ∙ = ( ·𝑠 ‘𝐻) | |
| 2 | rrxvsca.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 3 | rrxval.r | . . . . . . . 8 ⊢ 𝐻 = (ℝ^‘𝐼) | |
| 4 | 3 | rrxval 25285 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| 5 | 2, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| 6 | 5 | fveq2d 6826 | . . . . 5 ⊢ (𝜑 → ( ·𝑠 ‘𝐻) = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
| 7 | 1, 6 | eqtrid 2776 | . . . 4 ⊢ (𝜑 → ∙ = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
| 8 | 7 | oveqd 7366 | . . 3 ⊢ (𝜑 → (𝐴 ∙ 𝑋) = (𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)) |
| 9 | 8 | fveq1d 6824 | . 2 ⊢ (𝜑 → ((𝐴 ∙ 𝑋)‘𝐽) = ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)‘𝐽)) |
| 10 | eqid 2729 | . . 3 ⊢ (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼) | |
| 11 | eqid 2729 | . . 3 ⊢ (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼)) | |
| 12 | rebase 21513 | . . 3 ⊢ ℝ = (Base‘ℝfld) | |
| 13 | rrxvsca.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 14 | rrxvsca.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐻)) | |
| 15 | 5 | fveq2d 6826 | . . . . 5 ⊢ (𝜑 → (Base‘𝐻) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
| 16 | eqid 2729 | . . . . . 6 ⊢ (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼)) | |
| 17 | 16, 11 | tcphbas 25117 | . . . . 5 ⊢ (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| 18 | 15, 17 | eqtr4di 2782 | . . . 4 ⊢ (𝜑 → (Base‘𝐻) = (Base‘(ℝfld freeLMod 𝐼))) |
| 19 | 14, 18 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘(ℝfld freeLMod 𝐼))) |
| 20 | rrxvsca.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐼) | |
| 21 | eqid 2729 | . . . . 5 ⊢ ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) = ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) | |
| 22 | 16, 21 | tcphvsca 25122 | . . . 4 ⊢ ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| 23 | 22 | eqcomi 2738 | . . 3 ⊢ ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) |
| 24 | remulr 21518 | . . 3 ⊢ · = (.r‘ℝfld) | |
| 25 | 10, 11, 12, 2, 13, 19, 20, 23, 24 | frlmvscaval 21675 | . 2 ⊢ (𝜑 → ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)‘𝐽) = (𝐴 · (𝑋‘𝐽))) |
| 26 | 9, 25 | eqtrd 2764 | 1 ⊢ (𝜑 → ((𝐴 ∙ 𝑋)‘𝐽) = (𝐴 · (𝑋‘𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 ℝcr 11008 · cmul 11014 Basecbs 17120 ·𝑠 cvsca 17165 ℝfldcrefld 21511 freeLMod cfrlm 21653 toℂPreHilctcph 25065 ℝ^crrx 25281 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-mulf 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-rp 12894 df-fz 13411 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-prds 17351 df-pws 17353 df-sra 21077 df-rgmod 21078 df-cnfld 21262 df-refld 21512 df-dsmm 21639 df-frlm 21654 df-tng 24470 df-tcph 25067 df-rrx 25283 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |