MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxvsca Structured version   Visualization version   GIF version

Theorem rrxvsca 25292
Description: The scalar product over generalized Euclidean spaces is the componentwise real number multiplication. (Contributed by Thierry Arnoux, 18-Jan-2023.)
Hypotheses
Ref Expression
rrxval.r 𝐻 = (ℝ^‘𝐼)
rrxbase.b 𝐵 = (Base‘𝐻)
rrxvsca.r = ( ·𝑠𝐻)
rrxvsca.i (𝜑𝐼𝑉)
rrxvsca.j (𝜑𝐽𝐼)
rrxvsca.a (𝜑𝐴 ∈ ℝ)
rrxvsca.x (𝜑𝑋 ∈ (Base‘𝐻))
Assertion
Ref Expression
rrxvsca (𝜑 → ((𝐴 𝑋)‘𝐽) = (𝐴 · (𝑋𝐽)))

Proof of Theorem rrxvsca
StepHypRef Expression
1 rrxvsca.r . . . . 5 = ( ·𝑠𝐻)
2 rrxvsca.i . . . . . . 7 (𝜑𝐼𝑉)
3 rrxval.r . . . . . . . 8 𝐻 = (ℝ^‘𝐼)
43rrxval 25285 . . . . . . 7 (𝐼𝑉𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
52, 4syl 17 . . . . . 6 (𝜑𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
65fveq2d 6826 . . . . 5 (𝜑 → ( ·𝑠𝐻) = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
71, 6eqtrid 2776 . . . 4 (𝜑 = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
87oveqd 7366 . . 3 (𝜑 → (𝐴 𝑋) = (𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋))
98fveq1d 6824 . 2 (𝜑 → ((𝐴 𝑋)‘𝐽) = ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)‘𝐽))
10 eqid 2729 . . 3 (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼)
11 eqid 2729 . . 3 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼))
12 rebase 21513 . . 3 ℝ = (Base‘ℝfld)
13 rrxvsca.a . . 3 (𝜑𝐴 ∈ ℝ)
14 rrxvsca.x . . . 4 (𝜑𝑋 ∈ (Base‘𝐻))
155fveq2d 6826 . . . . 5 (𝜑 → (Base‘𝐻) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
16 eqid 2729 . . . . . 6 (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼))
1716, 11tcphbas 25117 . . . . 5 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
1815, 17eqtr4di 2782 . . . 4 (𝜑 → (Base‘𝐻) = (Base‘(ℝfld freeLMod 𝐼)))
1914, 18eleqtrd 2830 . . 3 (𝜑𝑋 ∈ (Base‘(ℝfld freeLMod 𝐼)))
20 rrxvsca.j . . 3 (𝜑𝐽𝐼)
21 eqid 2729 . . . . 5 ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) = ( ·𝑠 ‘(ℝfld freeLMod 𝐼))
2216, 21tcphvsca 25122 . . . 4 ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
2322eqcomi 2738 . . 3 ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = ( ·𝑠 ‘(ℝfld freeLMod 𝐼))
24 remulr 21518 . . 3 · = (.r‘ℝfld)
2510, 11, 12, 2, 13, 19, 20, 23, 24frlmvscaval 21675 . 2 (𝜑 → ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)‘𝐽) = (𝐴 · (𝑋𝐽)))
269, 25eqtrd 2764 1 (𝜑 → ((𝐴 𝑋)‘𝐽) = (𝐴 · (𝑋𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6482  (class class class)co 7349  cr 11008   · cmul 11014  Basecbs 17120   ·𝑠 cvsca 17165  fldcrefld 21511   freeLMod cfrlm 21653  toℂPreHilctcph 25065  ℝ^crrx 25281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-rp 12894  df-fz 13411  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-pws 17353  df-sra 21077  df-rgmod 21078  df-cnfld 21262  df-refld 21512  df-dsmm 21639  df-frlm 21654  df-tng 24470  df-tcph 25067  df-rrx 25283
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator