MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxvsca Structured version   Visualization version   GIF version

Theorem rrxvsca 25321
Description: The scalar product over generalized Euclidean spaces is the componentwise real number multiplication. (Contributed by Thierry Arnoux, 18-Jan-2023.)
Hypotheses
Ref Expression
rrxval.r 𝐻 = (ℝ^‘𝐼)
rrxbase.b 𝐵 = (Base‘𝐻)
rrxvsca.r = ( ·𝑠𝐻)
rrxvsca.i (𝜑𝐼𝑉)
rrxvsca.j (𝜑𝐽𝐼)
rrxvsca.a (𝜑𝐴 ∈ ℝ)
rrxvsca.x (𝜑𝑋 ∈ (Base‘𝐻))
Assertion
Ref Expression
rrxvsca (𝜑 → ((𝐴 𝑋)‘𝐽) = (𝐴 · (𝑋𝐽)))

Proof of Theorem rrxvsca
StepHypRef Expression
1 rrxvsca.r . . . . 5 = ( ·𝑠𝐻)
2 rrxvsca.i . . . . . . 7 (𝜑𝐼𝑉)
3 rrxval.r . . . . . . . 8 𝐻 = (ℝ^‘𝐼)
43rrxval 25314 . . . . . . 7 (𝐼𝑉𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
52, 4syl 17 . . . . . 6 (𝜑𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
65fveq2d 6826 . . . . 5 (𝜑 → ( ·𝑠𝐻) = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
71, 6eqtrid 2778 . . . 4 (𝜑 = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
87oveqd 7363 . . 3 (𝜑 → (𝐴 𝑋) = (𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋))
98fveq1d 6824 . 2 (𝜑 → ((𝐴 𝑋)‘𝐽) = ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)‘𝐽))
10 eqid 2731 . . 3 (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼)
11 eqid 2731 . . 3 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼))
12 rebase 21543 . . 3 ℝ = (Base‘ℝfld)
13 rrxvsca.a . . 3 (𝜑𝐴 ∈ ℝ)
14 rrxvsca.x . . . 4 (𝜑𝑋 ∈ (Base‘𝐻))
155fveq2d 6826 . . . . 5 (𝜑 → (Base‘𝐻) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
16 eqid 2731 . . . . . 6 (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼))
1716, 11tcphbas 25146 . . . . 5 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
1815, 17eqtr4di 2784 . . . 4 (𝜑 → (Base‘𝐻) = (Base‘(ℝfld freeLMod 𝐼)))
1914, 18eleqtrd 2833 . . 3 (𝜑𝑋 ∈ (Base‘(ℝfld freeLMod 𝐼)))
20 rrxvsca.j . . 3 (𝜑𝐽𝐼)
21 eqid 2731 . . . . 5 ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) = ( ·𝑠 ‘(ℝfld freeLMod 𝐼))
2216, 21tcphvsca 25151 . . . 4 ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
2322eqcomi 2740 . . 3 ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = ( ·𝑠 ‘(ℝfld freeLMod 𝐼))
24 remulr 21548 . . 3 · = (.r‘ℝfld)
2510, 11, 12, 2, 13, 19, 20, 23, 24frlmvscaval 21705 . 2 (𝜑 → ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)‘𝐽) = (𝐴 · (𝑋𝐽)))
269, 25eqtrd 2766 1 (𝜑 → ((𝐴 𝑋)‘𝐽) = (𝐴 · (𝑋𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  cr 11005   · cmul 11011  Basecbs 17120   ·𝑠 cvsca 17165  fldcrefld 21541   freeLMod cfrlm 21683  toℂPreHilctcph 25094  ℝ^crrx 25310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-rp 12891  df-fz 13408  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-pws 17353  df-sra 21107  df-rgmod 21108  df-cnfld 21292  df-refld 21542  df-dsmm 21669  df-frlm 21684  df-tng 24499  df-tcph 25096  df-rrx 25312
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator