![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rrxvsca | Structured version Visualization version GIF version |
Description: The scalar product over generalized Euclidean spaces is the componentwise real number multiplication. (Contributed by Thierry Arnoux, 18-Jan-2023.) |
Ref | Expression |
---|---|
rrxval.r | ⊢ 𝐻 = (ℝ^‘𝐼) |
rrxbase.b | ⊢ 𝐵 = (Base‘𝐻) |
rrxvsca.r | ⊢ ∙ = ( ·𝑠 ‘𝐻) |
rrxvsca.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
rrxvsca.j | ⊢ (𝜑 → 𝐽 ∈ 𝐼) |
rrxvsca.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
rrxvsca.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐻)) |
Ref | Expression |
---|---|
rrxvsca | ⊢ (𝜑 → ((𝐴 ∙ 𝑋)‘𝐽) = (𝐴 · (𝑋‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxvsca.r | . . . . 5 ⊢ ∙ = ( ·𝑠 ‘𝐻) | |
2 | rrxvsca.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
3 | rrxval.r | . . . . . . . 8 ⊢ 𝐻 = (ℝ^‘𝐼) | |
4 | 3 | rrxval 24703 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
5 | 2, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
6 | 5 | fveq2d 6844 | . . . . 5 ⊢ (𝜑 → ( ·𝑠 ‘𝐻) = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
7 | 1, 6 | eqtrid 2790 | . . . 4 ⊢ (𝜑 → ∙ = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
8 | 7 | oveqd 7369 | . . 3 ⊢ (𝜑 → (𝐴 ∙ 𝑋) = (𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)) |
9 | 8 | fveq1d 6842 | . 2 ⊢ (𝜑 → ((𝐴 ∙ 𝑋)‘𝐽) = ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)‘𝐽)) |
10 | eqid 2738 | . . 3 ⊢ (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼) | |
11 | eqid 2738 | . . 3 ⊢ (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼)) | |
12 | rebase 20963 | . . 3 ⊢ ℝ = (Base‘ℝfld) | |
13 | rrxvsca.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
14 | rrxvsca.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐻)) | |
15 | 5 | fveq2d 6844 | . . . . 5 ⊢ (𝜑 → (Base‘𝐻) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
16 | eqid 2738 | . . . . . 6 ⊢ (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼)) | |
17 | 16, 11 | tcphbas 24535 | . . . . 5 ⊢ (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) |
18 | 15, 17 | eqtr4di 2796 | . . . 4 ⊢ (𝜑 → (Base‘𝐻) = (Base‘(ℝfld freeLMod 𝐼))) |
19 | 14, 18 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘(ℝfld freeLMod 𝐼))) |
20 | rrxvsca.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐼) | |
21 | eqid 2738 | . . . . 5 ⊢ ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) = ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) | |
22 | 16, 21 | tcphvsca 24540 | . . . 4 ⊢ ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) |
23 | 22 | eqcomi 2747 | . . 3 ⊢ ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) |
24 | remulr 20968 | . . 3 ⊢ · = (.r‘ℝfld) | |
25 | 10, 11, 12, 2, 13, 19, 20, 23, 24 | frlmvscaval 21127 | . 2 ⊢ (𝜑 → ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)‘𝐽) = (𝐴 · (𝑋‘𝐽))) |
26 | 9, 25 | eqtrd 2778 | 1 ⊢ (𝜑 → ((𝐴 ∙ 𝑋)‘𝐽) = (𝐴 · (𝑋‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ‘cfv 6494 (class class class)co 7352 ℝcr 11009 · cmul 11015 Basecbs 17043 ·𝑠 cvsca 17097 ℝfldcrefld 20961 freeLMod cfrlm 21105 toℂPreHilctcph 24483 ℝ^crrx 24699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2709 ax-rep 5241 ax-sep 5255 ax-nul 5262 ax-pow 5319 ax-pr 5383 ax-un 7665 ax-cnex 11066 ax-resscn 11067 ax-1cn 11068 ax-icn 11069 ax-addcl 11070 ax-addrcl 11071 ax-mulcl 11072 ax-mulrcl 11073 ax-mulcom 11074 ax-addass 11075 ax-mulass 11076 ax-distr 11077 ax-i2m1 11078 ax-1ne0 11079 ax-1rid 11080 ax-rnegex 11081 ax-rrecex 11082 ax-cnre 11083 ax-pre-lttri 11084 ax-pre-lttrn 11085 ax-pre-ltadd 11086 ax-pre-mulgt0 11087 ax-pre-sup 11088 ax-mulf 11090 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3739 df-csb 3855 df-dif 3912 df-un 3914 df-in 3916 df-ss 3926 df-pss 3928 df-nul 4282 df-if 4486 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4865 df-iun 4955 df-br 5105 df-opab 5167 df-mpt 5188 df-tr 5222 df-id 5530 df-eprel 5536 df-po 5544 df-so 5545 df-fr 5587 df-we 5589 df-xp 5638 df-rel 5639 df-cnv 5640 df-co 5641 df-dm 5642 df-rn 5643 df-res 5644 df-ima 5645 df-pred 6252 df-ord 6319 df-on 6320 df-lim 6321 df-suc 6322 df-iota 6446 df-fun 6496 df-fn 6497 df-f 6498 df-f1 6499 df-fo 6500 df-f1o 6501 df-fv 6502 df-riota 7308 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7610 df-om 7796 df-1st 7914 df-2nd 7915 df-supp 8086 df-frecs 8205 df-wrecs 8236 df-recs 8310 df-rdg 8349 df-1o 8405 df-er 8607 df-map 8726 df-ixp 8795 df-en 8843 df-dom 8844 df-sdom 8845 df-fin 8846 df-fsupp 9265 df-sup 9337 df-pnf 11150 df-mnf 11151 df-xr 11152 df-ltxr 11153 df-le 11154 df-sub 11346 df-neg 11347 df-div 11772 df-nn 12113 df-2 12175 df-3 12176 df-4 12177 df-5 12178 df-6 12179 df-7 12180 df-8 12181 df-9 12182 df-n0 12373 df-z 12459 df-dec 12578 df-uz 12723 df-rp 12871 df-fz 13380 df-seq 13862 df-exp 13923 df-cj 14944 df-re 14945 df-im 14946 df-sqrt 15080 df-abs 15081 df-struct 16979 df-sets 16996 df-slot 17014 df-ndx 17026 df-base 17044 df-ress 17073 df-plusg 17106 df-mulr 17107 df-starv 17108 df-sca 17109 df-vsca 17110 df-ip 17111 df-tset 17112 df-ple 17113 df-ds 17115 df-unif 17116 df-hom 17117 df-cco 17118 df-0g 17283 df-prds 17289 df-pws 17291 df-sra 20586 df-rgmod 20587 df-cnfld 20750 df-refld 20962 df-dsmm 21091 df-frlm 21106 df-tng 23892 df-tcph 24485 df-rrx 24701 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |