MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxvsca Structured version   Visualization version   GIF version

Theorem rrxvsca 25346
Description: The scalar product over generalized Euclidean spaces is the componentwise real number multiplication. (Contributed by Thierry Arnoux, 18-Jan-2023.)
Hypotheses
Ref Expression
rrxval.r 𝐻 = (ℝ^‘𝐼)
rrxbase.b 𝐵 = (Base‘𝐻)
rrxvsca.r = ( ·𝑠𝐻)
rrxvsca.i (𝜑𝐼𝑉)
rrxvsca.j (𝜑𝐽𝐼)
rrxvsca.a (𝜑𝐴 ∈ ℝ)
rrxvsca.x (𝜑𝑋 ∈ (Base‘𝐻))
Assertion
Ref Expression
rrxvsca (𝜑 → ((𝐴 𝑋)‘𝐽) = (𝐴 · (𝑋𝐽)))

Proof of Theorem rrxvsca
StepHypRef Expression
1 rrxvsca.r . . . . 5 = ( ·𝑠𝐻)
2 rrxvsca.i . . . . . . 7 (𝜑𝐼𝑉)
3 rrxval.r . . . . . . . 8 𝐻 = (ℝ^‘𝐼)
43rrxval 25339 . . . . . . 7 (𝐼𝑉𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
52, 4syl 17 . . . . . 6 (𝜑𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
65fveq2d 6880 . . . . 5 (𝜑 → ( ·𝑠𝐻) = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
71, 6eqtrid 2782 . . . 4 (𝜑 = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
87oveqd 7422 . . 3 (𝜑 → (𝐴 𝑋) = (𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋))
98fveq1d 6878 . 2 (𝜑 → ((𝐴 𝑋)‘𝐽) = ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)‘𝐽))
10 eqid 2735 . . 3 (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼)
11 eqid 2735 . . 3 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼))
12 rebase 21566 . . 3 ℝ = (Base‘ℝfld)
13 rrxvsca.a . . 3 (𝜑𝐴 ∈ ℝ)
14 rrxvsca.x . . . 4 (𝜑𝑋 ∈ (Base‘𝐻))
155fveq2d 6880 . . . . 5 (𝜑 → (Base‘𝐻) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
16 eqid 2735 . . . . . 6 (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼))
1716, 11tcphbas 25171 . . . . 5 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
1815, 17eqtr4di 2788 . . . 4 (𝜑 → (Base‘𝐻) = (Base‘(ℝfld freeLMod 𝐼)))
1914, 18eleqtrd 2836 . . 3 (𝜑𝑋 ∈ (Base‘(ℝfld freeLMod 𝐼)))
20 rrxvsca.j . . 3 (𝜑𝐽𝐼)
21 eqid 2735 . . . . 5 ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) = ( ·𝑠 ‘(ℝfld freeLMod 𝐼))
2216, 21tcphvsca 25176 . . . 4 ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
2322eqcomi 2744 . . 3 ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = ( ·𝑠 ‘(ℝfld freeLMod 𝐼))
24 remulr 21571 . . 3 · = (.r‘ℝfld)
2510, 11, 12, 2, 13, 19, 20, 23, 24frlmvscaval 21728 . 2 (𝜑 → ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)‘𝐽) = (𝐴 · (𝑋𝐽)))
269, 25eqtrd 2770 1 (𝜑 → ((𝐴 𝑋)‘𝐽) = (𝐴 · (𝑋𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cfv 6531  (class class class)co 7405  cr 11128   · cmul 11134  Basecbs 17228   ·𝑠 cvsca 17275  fldcrefld 21564   freeLMod cfrlm 21706  toℂPreHilctcph 25119  ℝ^crrx 25335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-rp 13009  df-fz 13525  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-0g 17455  df-prds 17461  df-pws 17463  df-sra 21131  df-rgmod 21132  df-cnfld 21316  df-refld 21565  df-dsmm 21692  df-frlm 21707  df-tng 24523  df-tcph 25121  df-rrx 25337
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator