MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxplusgvscavalb Structured version   Visualization version   GIF version

Theorem rrxplusgvscavalb 25448
Description: The result of the addition combined with scalar multiplication in a generalized Euclidean space is defined by its coordinate-wise operations. (Contributed by AV, 21-Jan-2023.)
Hypotheses
Ref Expression
rrxval.r 𝐻 = (ℝ^‘𝐼)
rrxbase.b 𝐵 = (Base‘𝐻)
rrxplusgvscavalb.r = ( ·𝑠𝐻)
rrxplusgvscavalb.i (𝜑𝐼𝑉)
rrxplusgvscavalb.a (𝜑𝐴 ∈ ℝ)
rrxplusgvscavalb.x (𝜑𝑋𝐵)
rrxplusgvscavalb.y (𝜑𝑌𝐵)
rrxplusgvscavalb.z (𝜑𝑍𝐵)
rrxplusgvscavalb.p = (+g𝐻)
rrxplusgvscavalb.c (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
rrxplusgvscavalb (𝜑 → (𝑍 = ((𝐴 𝑋) (𝐶 𝑌)) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝐴 · (𝑋𝑖)) + (𝐶 · (𝑌𝑖)))))
Distinct variable groups:   𝑖,𝐼   𝐴,𝑖   𝐶,𝑖   𝑖,𝑋   𝑖,𝑌   𝑖,𝑍   𝜑,𝑖
Allowed substitution hints:   𝐵(𝑖)   (𝑖)   (𝑖)   𝐻(𝑖)   𝑉(𝑖)

Proof of Theorem rrxplusgvscavalb
StepHypRef Expression
1 rrxplusgvscavalb.p . . . . 5 = (+g𝐻)
2 rrxplusgvscavalb.i . . . . . . 7 (𝜑𝐼𝑉)
3 rrxval.r . . . . . . . 8 𝐻 = (ℝ^‘𝐼)
43rrxval 25440 . . . . . . 7 (𝐼𝑉𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
52, 4syl 17 . . . . . 6 (𝜑𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
65fveq2d 6924 . . . . 5 (𝜑 → (+g𝐻) = (+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
71, 6eqtrid 2792 . . . 4 (𝜑 = (+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
8 rrxplusgvscavalb.r . . . . . 6 = ( ·𝑠𝐻)
95fveq2d 6924 . . . . . 6 (𝜑 → ( ·𝑠𝐻) = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
108, 9eqtrid 2792 . . . . 5 (𝜑 = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
1110oveqd 7465 . . . 4 (𝜑 → (𝐴 𝑋) = (𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋))
1210oveqd 7465 . . . 4 (𝜑 → (𝐶 𝑌) = (𝐶( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑌))
137, 11, 12oveq123d 7469 . . 3 (𝜑 → ((𝐴 𝑋) (𝐶 𝑌)) = ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)(+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))(𝐶( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑌)))
1413eqeq2d 2751 . 2 (𝜑 → (𝑍 = ((𝐴 𝑋) (𝐶 𝑌)) ↔ 𝑍 = ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)(+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))(𝐶( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑌))))
15 eqid 2740 . . 3 (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼)
16 eqid 2740 . . 3 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼))
17 rrxplusgvscavalb.x . . . 4 (𝜑𝑋𝐵)
185fveq2d 6924 . . . . 5 (𝜑 → (Base‘𝐻) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
19 rrxbase.b . . . . 5 𝐵 = (Base‘𝐻)
20 eqid 2740 . . . . . 6 (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼))
2120, 16tcphbas 25272 . . . . 5 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
2218, 19, 213eqtr4g 2805 . . . 4 (𝜑𝐵 = (Base‘(ℝfld freeLMod 𝐼)))
2317, 22eleqtrd 2846 . . 3 (𝜑𝑋 ∈ (Base‘(ℝfld freeLMod 𝐼)))
24 rrxplusgvscavalb.z . . . 4 (𝜑𝑍𝐵)
2524, 22eleqtrd 2846 . . 3 (𝜑𝑍 ∈ (Base‘(ℝfld freeLMod 𝐼)))
26 resrng 21662 . . . 4 fld ∈ *-Ring
27 srngring 20869 . . . 4 (ℝfld ∈ *-Ring → ℝfld ∈ Ring)
2826, 27mp1i 13 . . 3 (𝜑 → ℝfld ∈ Ring)
29 rebase 21647 . . 3 ℝ = (Base‘ℝfld)
30 rrxplusgvscavalb.a . . 3 (𝜑𝐴 ∈ ℝ)
31 eqid 2740 . . . . 5 ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) = ( ·𝑠 ‘(ℝfld freeLMod 𝐼))
3220, 31tcphvsca 25277 . . . 4 ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
3332eqcomi 2749 . . 3 ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = ( ·𝑠 ‘(ℝfld freeLMod 𝐼))
34 remulr 21652 . . 3 · = (.r‘ℝfld)
35 rrxplusgvscavalb.y . . . 4 (𝜑𝑌𝐵)
3635, 22eleqtrd 2846 . . 3 (𝜑𝑌 ∈ (Base‘(ℝfld freeLMod 𝐼)))
37 replusg 21651 . . 3 + = (+g‘ℝfld)
38 eqid 2740 . . . . 5 (+g‘(ℝfld freeLMod 𝐼)) = (+g‘(ℝfld freeLMod 𝐼))
3920, 38tchplusg 25273 . . . 4 (+g‘(ℝfld freeLMod 𝐼)) = (+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
4039eqcomi 2749 . . 3 (+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (+g‘(ℝfld freeLMod 𝐼))
41 rrxplusgvscavalb.c . . 3 (𝜑𝐶 ∈ ℝ)
4215, 16, 2, 23, 25, 28, 29, 30, 33, 34, 36, 37, 40, 41frlmvplusgscavalb 21814 . 2 (𝜑 → (𝑍 = ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)(+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))(𝐶( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑌)) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝐴 · (𝑋𝑖)) + (𝐶 · (𝑌𝑖)))))
4314, 42bitrd 279 1 (𝜑 → (𝑍 = ((𝐴 𝑋) (𝐶 𝑌)) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝐴 · (𝑋𝑖)) + (𝐶 · (𝑌𝑖)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  wral 3067  cfv 6573  (class class class)co 7448  cr 11183   + caddc 11187   · cmul 11189  Basecbs 17258  +gcplusg 17311   ·𝑠 cvsca 17315  Ringcrg 20260  *-Ringcsr 20861  fldcrefld 21645   freeLMod cfrlm 21789  toℂPreHilctcph 25220  ℝ^crrx 25436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-prds 17507  df-pws 17509  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-ghm 19253  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-drng 20753  df-field 20754  df-staf 20862  df-srng 20863  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-cnfld 21388  df-refld 21646  df-dsmm 21775  df-frlm 21790  df-tng 24618  df-tcph 25222  df-rrx 25438
This theorem is referenced by:  rrxlinesc  48469  rrxlinec  48470
  Copyright terms: Public domain W3C validator