| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rrxplusgvscavalb | Structured version Visualization version GIF version | ||
| Description: The result of the addition combined with scalar multiplication in a generalized Euclidean space is defined by its coordinate-wise operations. (Contributed by AV, 21-Jan-2023.) |
| Ref | Expression |
|---|---|
| rrxval.r | ⊢ 𝐻 = (ℝ^‘𝐼) |
| rrxbase.b | ⊢ 𝐵 = (Base‘𝐻) |
| rrxplusgvscavalb.r | ⊢ ∙ = ( ·𝑠 ‘𝐻) |
| rrxplusgvscavalb.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| rrxplusgvscavalb.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| rrxplusgvscavalb.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| rrxplusgvscavalb.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| rrxplusgvscavalb.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| rrxplusgvscavalb.p | ⊢ ✚ = (+g‘𝐻) |
| rrxplusgvscavalb.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| Ref | Expression |
|---|---|
| rrxplusgvscavalb | ⊢ (𝜑 → (𝑍 = ((𝐴 ∙ 𝑋) ✚ (𝐶 ∙ 𝑌)) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝐴 · (𝑋‘𝑖)) + (𝐶 · (𝑌‘𝑖))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxplusgvscavalb.p | . . . . 5 ⊢ ✚ = (+g‘𝐻) | |
| 2 | rrxplusgvscavalb.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 3 | rrxval.r | . . . . . . . 8 ⊢ 𝐻 = (ℝ^‘𝐼) | |
| 4 | 3 | rrxval 25314 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| 5 | 2, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| 6 | 5 | fveq2d 6826 | . . . . 5 ⊢ (𝜑 → (+g‘𝐻) = (+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
| 7 | 1, 6 | eqtrid 2778 | . . . 4 ⊢ (𝜑 → ✚ = (+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
| 8 | rrxplusgvscavalb.r | . . . . . 6 ⊢ ∙ = ( ·𝑠 ‘𝐻) | |
| 9 | 5 | fveq2d 6826 | . . . . . 6 ⊢ (𝜑 → ( ·𝑠 ‘𝐻) = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
| 10 | 8, 9 | eqtrid 2778 | . . . . 5 ⊢ (𝜑 → ∙ = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
| 11 | 10 | oveqd 7363 | . . . 4 ⊢ (𝜑 → (𝐴 ∙ 𝑋) = (𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)) |
| 12 | 10 | oveqd 7363 | . . . 4 ⊢ (𝜑 → (𝐶 ∙ 𝑌) = (𝐶( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑌)) |
| 13 | 7, 11, 12 | oveq123d 7367 | . . 3 ⊢ (𝜑 → ((𝐴 ∙ 𝑋) ✚ (𝐶 ∙ 𝑌)) = ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)(+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))(𝐶( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑌))) |
| 14 | 13 | eqeq2d 2742 | . 2 ⊢ (𝜑 → (𝑍 = ((𝐴 ∙ 𝑋) ✚ (𝐶 ∙ 𝑌)) ↔ 𝑍 = ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)(+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))(𝐶( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑌)))) |
| 15 | eqid 2731 | . . 3 ⊢ (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼) | |
| 16 | eqid 2731 | . . 3 ⊢ (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼)) | |
| 17 | rrxplusgvscavalb.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 18 | 5 | fveq2d 6826 | . . . . 5 ⊢ (𝜑 → (Base‘𝐻) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
| 19 | rrxbase.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐻) | |
| 20 | eqid 2731 | . . . . . 6 ⊢ (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼)) | |
| 21 | 20, 16 | tcphbas 25146 | . . . . 5 ⊢ (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| 22 | 18, 19, 21 | 3eqtr4g 2791 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(ℝfld freeLMod 𝐼))) |
| 23 | 17, 22 | eleqtrd 2833 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘(ℝfld freeLMod 𝐼))) |
| 24 | rrxplusgvscavalb.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 25 | 24, 22 | eleqtrd 2833 | . . 3 ⊢ (𝜑 → 𝑍 ∈ (Base‘(ℝfld freeLMod 𝐼))) |
| 26 | resrng 21558 | . . . 4 ⊢ ℝfld ∈ *-Ring | |
| 27 | srngring 20761 | . . . 4 ⊢ (ℝfld ∈ *-Ring → ℝfld ∈ Ring) | |
| 28 | 26, 27 | mp1i 13 | . . 3 ⊢ (𝜑 → ℝfld ∈ Ring) |
| 29 | rebase 21543 | . . 3 ⊢ ℝ = (Base‘ℝfld) | |
| 30 | rrxplusgvscavalb.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 31 | eqid 2731 | . . . . 5 ⊢ ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) = ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) | |
| 32 | 20, 31 | tcphvsca 25151 | . . . 4 ⊢ ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| 33 | 32 | eqcomi 2740 | . . 3 ⊢ ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) |
| 34 | remulr 21548 | . . 3 ⊢ · = (.r‘ℝfld) | |
| 35 | rrxplusgvscavalb.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 36 | 35, 22 | eleqtrd 2833 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘(ℝfld freeLMod 𝐼))) |
| 37 | replusg 21547 | . . 3 ⊢ + = (+g‘ℝfld) | |
| 38 | eqid 2731 | . . . . 5 ⊢ (+g‘(ℝfld freeLMod 𝐼)) = (+g‘(ℝfld freeLMod 𝐼)) | |
| 39 | 20, 38 | tchplusg 25147 | . . . 4 ⊢ (+g‘(ℝfld freeLMod 𝐼)) = (+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| 40 | 39 | eqcomi 2740 | . . 3 ⊢ (+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (+g‘(ℝfld freeLMod 𝐼)) |
| 41 | rrxplusgvscavalb.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 42 | 15, 16, 2, 23, 25, 28, 29, 30, 33, 34, 36, 37, 40, 41 | frlmvplusgscavalb 21708 | . 2 ⊢ (𝜑 → (𝑍 = ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)(+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))(𝐶( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑌)) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝐴 · (𝑋‘𝑖)) + (𝐶 · (𝑌‘𝑖))))) |
| 43 | 14, 42 | bitrd 279 | 1 ⊢ (𝜑 → (𝑍 = ((𝐴 ∙ 𝑋) ✚ (𝐶 ∙ 𝑌)) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝐴 · (𝑋‘𝑖)) + (𝐶 · (𝑌‘𝑖))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 + caddc 11009 · cmul 11011 Basecbs 17120 +gcplusg 17161 ·𝑠 cvsca 17165 Ringcrg 20151 *-Ringcsr 20753 ℝfldcrefld 21541 freeLMod cfrlm 21683 toℂPreHilctcph 25094 ℝ^crrx 25310 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-rp 12891 df-fz 13408 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-prds 17351 df-pws 17353 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-grp 18849 df-minusg 18850 df-sbg 18851 df-subg 19036 df-ghm 19125 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-cring 20154 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-dvr 20319 df-rhm 20390 df-subrng 20461 df-subrg 20485 df-drng 20646 df-field 20647 df-staf 20754 df-srng 20755 df-lmod 20795 df-lss 20865 df-sra 21107 df-rgmod 21108 df-cnfld 21292 df-refld 21542 df-dsmm 21669 df-frlm 21684 df-tng 24499 df-tcph 25096 df-rrx 25312 |
| This theorem is referenced by: rrxlinesc 48846 rrxlinec 48847 |
| Copyright terms: Public domain | W3C validator |