![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rrxplusgvscavalb | Structured version Visualization version GIF version |
Description: The result of the addition combined with scalar multiplication in a generalized Euclidean space is defined by its coordinate-wise operations. (Contributed by AV, 21-Jan-2023.) |
Ref | Expression |
---|---|
rrxval.r | β’ π» = (β^βπΌ) |
rrxbase.b | β’ π΅ = (Baseβπ») |
rrxplusgvscavalb.r | β’ β = ( Β·π βπ») |
rrxplusgvscavalb.i | β’ (π β πΌ β π) |
rrxplusgvscavalb.a | β’ (π β π΄ β β) |
rrxplusgvscavalb.x | β’ (π β π β π΅) |
rrxplusgvscavalb.y | β’ (π β π β π΅) |
rrxplusgvscavalb.z | β’ (π β π β π΅) |
rrxplusgvscavalb.p | β’ β = (+gβπ») |
rrxplusgvscavalb.c | β’ (π β πΆ β β) |
Ref | Expression |
---|---|
rrxplusgvscavalb | β’ (π β (π = ((π΄ β π) β (πΆ β π)) β βπ β πΌ (πβπ) = ((π΄ Β· (πβπ)) + (πΆ Β· (πβπ))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxplusgvscavalb.p | . . . . 5 β’ β = (+gβπ») | |
2 | rrxplusgvscavalb.i | . . . . . . 7 β’ (π β πΌ β π) | |
3 | rrxval.r | . . . . . . . 8 β’ π» = (β^βπΌ) | |
4 | 3 | rrxval 24895 | . . . . . . 7 β’ (πΌ β π β π» = (toβPreHilβ(βfld freeLMod πΌ))) |
5 | 2, 4 | syl 17 | . . . . . 6 β’ (π β π» = (toβPreHilβ(βfld freeLMod πΌ))) |
6 | 5 | fveq2d 6892 | . . . . 5 β’ (π β (+gβπ») = (+gβ(toβPreHilβ(βfld freeLMod πΌ)))) |
7 | 1, 6 | eqtrid 2784 | . . . 4 β’ (π β β = (+gβ(toβPreHilβ(βfld freeLMod πΌ)))) |
8 | rrxplusgvscavalb.r | . . . . . 6 β’ β = ( Β·π βπ») | |
9 | 5 | fveq2d 6892 | . . . . . 6 β’ (π β ( Β·π βπ») = ( Β·π β(toβPreHilβ(βfld freeLMod πΌ)))) |
10 | 8, 9 | eqtrid 2784 | . . . . 5 β’ (π β β = ( Β·π β(toβPreHilβ(βfld freeLMod πΌ)))) |
11 | 10 | oveqd 7422 | . . . 4 β’ (π β (π΄ β π) = (π΄( Β·π β(toβPreHilβ(βfld freeLMod πΌ)))π)) |
12 | 10 | oveqd 7422 | . . . 4 β’ (π β (πΆ β π) = (πΆ( Β·π β(toβPreHilβ(βfld freeLMod πΌ)))π)) |
13 | 7, 11, 12 | oveq123d 7426 | . . 3 β’ (π β ((π΄ β π) β (πΆ β π)) = ((π΄( Β·π β(toβPreHilβ(βfld freeLMod πΌ)))π)(+gβ(toβPreHilβ(βfld freeLMod πΌ)))(πΆ( Β·π β(toβPreHilβ(βfld freeLMod πΌ)))π))) |
14 | 13 | eqeq2d 2743 | . 2 β’ (π β (π = ((π΄ β π) β (πΆ β π)) β π = ((π΄( Β·π β(toβPreHilβ(βfld freeLMod πΌ)))π)(+gβ(toβPreHilβ(βfld freeLMod πΌ)))(πΆ( Β·π β(toβPreHilβ(βfld freeLMod πΌ)))π)))) |
15 | eqid 2732 | . . 3 β’ (βfld freeLMod πΌ) = (βfld freeLMod πΌ) | |
16 | eqid 2732 | . . 3 β’ (Baseβ(βfld freeLMod πΌ)) = (Baseβ(βfld freeLMod πΌ)) | |
17 | rrxplusgvscavalb.x | . . . 4 β’ (π β π β π΅) | |
18 | 5 | fveq2d 6892 | . . . . 5 β’ (π β (Baseβπ») = (Baseβ(toβPreHilβ(βfld freeLMod πΌ)))) |
19 | rrxbase.b | . . . . 5 β’ π΅ = (Baseβπ») | |
20 | eqid 2732 | . . . . . 6 β’ (toβPreHilβ(βfld freeLMod πΌ)) = (toβPreHilβ(βfld freeLMod πΌ)) | |
21 | 20, 16 | tcphbas 24727 | . . . . 5 β’ (Baseβ(βfld freeLMod πΌ)) = (Baseβ(toβPreHilβ(βfld freeLMod πΌ))) |
22 | 18, 19, 21 | 3eqtr4g 2797 | . . . 4 β’ (π β π΅ = (Baseβ(βfld freeLMod πΌ))) |
23 | 17, 22 | eleqtrd 2835 | . . 3 β’ (π β π β (Baseβ(βfld freeLMod πΌ))) |
24 | rrxplusgvscavalb.z | . . . 4 β’ (π β π β π΅) | |
25 | 24, 22 | eleqtrd 2835 | . . 3 β’ (π β π β (Baseβ(βfld freeLMod πΌ))) |
26 | resrng 21165 | . . . 4 β’ βfld β *-Ring | |
27 | srngring 20452 | . . . 4 β’ (βfld β *-Ring β βfld β Ring) | |
28 | 26, 27 | mp1i 13 | . . 3 β’ (π β βfld β Ring) |
29 | rebase 21150 | . . 3 β’ β = (Baseββfld) | |
30 | rrxplusgvscavalb.a | . . 3 β’ (π β π΄ β β) | |
31 | eqid 2732 | . . . . 5 β’ ( Β·π β(βfld freeLMod πΌ)) = ( Β·π β(βfld freeLMod πΌ)) | |
32 | 20, 31 | tcphvsca 24732 | . . . 4 β’ ( Β·π β(βfld freeLMod πΌ)) = ( Β·π β(toβPreHilβ(βfld freeLMod πΌ))) |
33 | 32 | eqcomi 2741 | . . 3 β’ ( Β·π β(toβPreHilβ(βfld freeLMod πΌ))) = ( Β·π β(βfld freeLMod πΌ)) |
34 | remulr 21155 | . . 3 β’ Β· = (.rββfld) | |
35 | rrxplusgvscavalb.y | . . . 4 β’ (π β π β π΅) | |
36 | 35, 22 | eleqtrd 2835 | . . 3 β’ (π β π β (Baseβ(βfld freeLMod πΌ))) |
37 | replusg 21154 | . . 3 β’ + = (+gββfld) | |
38 | eqid 2732 | . . . . 5 β’ (+gβ(βfld freeLMod πΌ)) = (+gβ(βfld freeLMod πΌ)) | |
39 | 20, 38 | tchplusg 24728 | . . . 4 β’ (+gβ(βfld freeLMod πΌ)) = (+gβ(toβPreHilβ(βfld freeLMod πΌ))) |
40 | 39 | eqcomi 2741 | . . 3 β’ (+gβ(toβPreHilβ(βfld freeLMod πΌ))) = (+gβ(βfld freeLMod πΌ)) |
41 | rrxplusgvscavalb.c | . . 3 β’ (π β πΆ β β) | |
42 | 15, 16, 2, 23, 25, 28, 29, 30, 33, 34, 36, 37, 40, 41 | frlmvplusgscavalb 21317 | . 2 β’ (π β (π = ((π΄( Β·π β(toβPreHilβ(βfld freeLMod πΌ)))π)(+gβ(toβPreHilβ(βfld freeLMod πΌ)))(πΆ( Β·π β(toβPreHilβ(βfld freeLMod πΌ)))π)) β βπ β πΌ (πβπ) = ((π΄ Β· (πβπ)) + (πΆ Β· (πβπ))))) |
43 | 14, 42 | bitrd 278 | 1 β’ (π β (π = ((π΄ β π) β (πΆ β π)) β βπ β πΌ (πβπ) = ((π΄ Β· (πβπ)) + (πΆ Β· (πβπ))))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1541 β wcel 2106 βwral 3061 βcfv 6540 (class class class)co 7405 βcr 11105 + caddc 11109 Β· cmul 11111 Basecbs 17140 +gcplusg 17193 Β·π cvsca 17197 Ringcrg 20049 *-Ringcsr 20444 βfldcrefld 21148 freeLMod cfrlm 21292 toβPreHilctcph 24675 β^crrx 24891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-sup 9433 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-rp 12971 df-fz 13481 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-starv 17208 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-hom 17217 df-cco 17218 df-0g 17383 df-prds 17389 df-pws 17391 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-grp 18818 df-minusg 18819 df-sbg 18820 df-subg 18997 df-ghm 19084 df-cmn 19644 df-mgp 19982 df-ur 19999 df-ring 20051 df-cring 20052 df-oppr 20142 df-dvdsr 20163 df-unit 20164 df-invr 20194 df-dvr 20207 df-rnghom 20243 df-drng 20309 df-field 20310 df-subrg 20353 df-staf 20445 df-srng 20446 df-lmod 20465 df-lss 20535 df-sra 20777 df-rgmod 20778 df-cnfld 20937 df-refld 21149 df-dsmm 21278 df-frlm 21293 df-tng 24084 df-tcph 24677 df-rrx 24893 |
This theorem is referenced by: rrxlinesc 47374 rrxlinec 47375 |
Copyright terms: Public domain | W3C validator |