| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rrxplusgvscavalb | Structured version Visualization version GIF version | ||
| Description: The result of the addition combined with scalar multiplication in a generalized Euclidean space is defined by its coordinate-wise operations. (Contributed by AV, 21-Jan-2023.) |
| Ref | Expression |
|---|---|
| rrxval.r | ⊢ 𝐻 = (ℝ^‘𝐼) |
| rrxbase.b | ⊢ 𝐵 = (Base‘𝐻) |
| rrxplusgvscavalb.r | ⊢ ∙ = ( ·𝑠 ‘𝐻) |
| rrxplusgvscavalb.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| rrxplusgvscavalb.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| rrxplusgvscavalb.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| rrxplusgvscavalb.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| rrxplusgvscavalb.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| rrxplusgvscavalb.p | ⊢ ✚ = (+g‘𝐻) |
| rrxplusgvscavalb.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| Ref | Expression |
|---|---|
| rrxplusgvscavalb | ⊢ (𝜑 → (𝑍 = ((𝐴 ∙ 𝑋) ✚ (𝐶 ∙ 𝑌)) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝐴 · (𝑋‘𝑖)) + (𝐶 · (𝑌‘𝑖))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxplusgvscavalb.p | . . . . 5 ⊢ ✚ = (+g‘𝐻) | |
| 2 | rrxplusgvscavalb.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 3 | rrxval.r | . . . . . . . 8 ⊢ 𝐻 = (ℝ^‘𝐼) | |
| 4 | 3 | rrxval 25287 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| 5 | 2, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| 6 | 5 | fveq2d 6862 | . . . . 5 ⊢ (𝜑 → (+g‘𝐻) = (+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
| 7 | 1, 6 | eqtrid 2776 | . . . 4 ⊢ (𝜑 → ✚ = (+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
| 8 | rrxplusgvscavalb.r | . . . . . 6 ⊢ ∙ = ( ·𝑠 ‘𝐻) | |
| 9 | 5 | fveq2d 6862 | . . . . . 6 ⊢ (𝜑 → ( ·𝑠 ‘𝐻) = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
| 10 | 8, 9 | eqtrid 2776 | . . . . 5 ⊢ (𝜑 → ∙ = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
| 11 | 10 | oveqd 7404 | . . . 4 ⊢ (𝜑 → (𝐴 ∙ 𝑋) = (𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)) |
| 12 | 10 | oveqd 7404 | . . . 4 ⊢ (𝜑 → (𝐶 ∙ 𝑌) = (𝐶( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑌)) |
| 13 | 7, 11, 12 | oveq123d 7408 | . . 3 ⊢ (𝜑 → ((𝐴 ∙ 𝑋) ✚ (𝐶 ∙ 𝑌)) = ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)(+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))(𝐶( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑌))) |
| 14 | 13 | eqeq2d 2740 | . 2 ⊢ (𝜑 → (𝑍 = ((𝐴 ∙ 𝑋) ✚ (𝐶 ∙ 𝑌)) ↔ 𝑍 = ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)(+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))(𝐶( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑌)))) |
| 15 | eqid 2729 | . . 3 ⊢ (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼) | |
| 16 | eqid 2729 | . . 3 ⊢ (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼)) | |
| 17 | rrxplusgvscavalb.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 18 | 5 | fveq2d 6862 | . . . . 5 ⊢ (𝜑 → (Base‘𝐻) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
| 19 | rrxbase.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐻) | |
| 20 | eqid 2729 | . . . . . 6 ⊢ (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼)) | |
| 21 | 20, 16 | tcphbas 25119 | . . . . 5 ⊢ (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| 22 | 18, 19, 21 | 3eqtr4g 2789 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(ℝfld freeLMod 𝐼))) |
| 23 | 17, 22 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘(ℝfld freeLMod 𝐼))) |
| 24 | rrxplusgvscavalb.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 25 | 24, 22 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → 𝑍 ∈ (Base‘(ℝfld freeLMod 𝐼))) |
| 26 | resrng 21530 | . . . 4 ⊢ ℝfld ∈ *-Ring | |
| 27 | srngring 20755 | . . . 4 ⊢ (ℝfld ∈ *-Ring → ℝfld ∈ Ring) | |
| 28 | 26, 27 | mp1i 13 | . . 3 ⊢ (𝜑 → ℝfld ∈ Ring) |
| 29 | rebase 21515 | . . 3 ⊢ ℝ = (Base‘ℝfld) | |
| 30 | rrxplusgvscavalb.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 31 | eqid 2729 | . . . . 5 ⊢ ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) = ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) | |
| 32 | 20, 31 | tcphvsca 25124 | . . . 4 ⊢ ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| 33 | 32 | eqcomi 2738 | . . 3 ⊢ ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) |
| 34 | remulr 21520 | . . 3 ⊢ · = (.r‘ℝfld) | |
| 35 | rrxplusgvscavalb.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 36 | 35, 22 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘(ℝfld freeLMod 𝐼))) |
| 37 | replusg 21519 | . . 3 ⊢ + = (+g‘ℝfld) | |
| 38 | eqid 2729 | . . . . 5 ⊢ (+g‘(ℝfld freeLMod 𝐼)) = (+g‘(ℝfld freeLMod 𝐼)) | |
| 39 | 20, 38 | tchplusg 25120 | . . . 4 ⊢ (+g‘(ℝfld freeLMod 𝐼)) = (+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| 40 | 39 | eqcomi 2738 | . . 3 ⊢ (+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (+g‘(ℝfld freeLMod 𝐼)) |
| 41 | rrxplusgvscavalb.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 42 | 15, 16, 2, 23, 25, 28, 29, 30, 33, 34, 36, 37, 40, 41 | frlmvplusgscavalb 21680 | . 2 ⊢ (𝜑 → (𝑍 = ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)(+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))(𝐶( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑌)) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝐴 · (𝑋‘𝑖)) + (𝐶 · (𝑌‘𝑖))))) |
| 43 | 14, 42 | bitrd 279 | 1 ⊢ (𝜑 → (𝑍 = ((𝐴 ∙ 𝑋) ✚ (𝐶 ∙ 𝑌)) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝐴 · (𝑋‘𝑖)) + (𝐶 · (𝑌‘𝑖))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 + caddc 11071 · cmul 11073 Basecbs 17179 +gcplusg 17220 ·𝑠 cvsca 17224 Ringcrg 20142 *-Ringcsr 20747 ℝfldcrefld 21513 freeLMod cfrlm 21655 toℂPreHilctcph 25067 ℝ^crrx 25283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-fz 13469 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-0g 17404 df-prds 17410 df-pws 17412 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-ghm 19145 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-dvr 20310 df-rhm 20381 df-subrng 20455 df-subrg 20479 df-drng 20640 df-field 20641 df-staf 20748 df-srng 20749 df-lmod 20768 df-lss 20838 df-sra 21080 df-rgmod 21081 df-cnfld 21265 df-refld 21514 df-dsmm 21641 df-frlm 21656 df-tng 24472 df-tcph 25069 df-rrx 25285 |
| This theorem is referenced by: rrxlinesc 48724 rrxlinec 48725 |
| Copyright terms: Public domain | W3C validator |