![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rrxplusgvscavalb | Structured version Visualization version GIF version |
Description: The result of the addition combined with scalar multiplication in a generalized Euclidean space is defined by its coordinate-wise operations. (Contributed by AV, 21-Jan-2023.) |
Ref | Expression |
---|---|
rrxval.r | β’ π» = (β^βπΌ) |
rrxbase.b | β’ π΅ = (Baseβπ») |
rrxplusgvscavalb.r | β’ β = ( Β·π βπ») |
rrxplusgvscavalb.i | β’ (π β πΌ β π) |
rrxplusgvscavalb.a | β’ (π β π΄ β β) |
rrxplusgvscavalb.x | β’ (π β π β π΅) |
rrxplusgvscavalb.y | β’ (π β π β π΅) |
rrxplusgvscavalb.z | β’ (π β π β π΅) |
rrxplusgvscavalb.p | β’ β = (+gβπ») |
rrxplusgvscavalb.c | β’ (π β πΆ β β) |
Ref | Expression |
---|---|
rrxplusgvscavalb | β’ (π β (π = ((π΄ β π) β (πΆ β π)) β βπ β πΌ (πβπ) = ((π΄ Β· (πβπ)) + (πΆ Β· (πβπ))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxplusgvscavalb.p | . . . . 5 β’ β = (+gβπ») | |
2 | rrxplusgvscavalb.i | . . . . . . 7 β’ (π β πΌ β π) | |
3 | rrxval.r | . . . . . . . 8 β’ π» = (β^βπΌ) | |
4 | 3 | rrxval 25345 | . . . . . . 7 β’ (πΌ β π β π» = (toβPreHilβ(βfld freeLMod πΌ))) |
5 | 2, 4 | syl 17 | . . . . . 6 β’ (π β π» = (toβPreHilβ(βfld freeLMod πΌ))) |
6 | 5 | fveq2d 6898 | . . . . 5 β’ (π β (+gβπ») = (+gβ(toβPreHilβ(βfld freeLMod πΌ)))) |
7 | 1, 6 | eqtrid 2777 | . . . 4 β’ (π β β = (+gβ(toβPreHilβ(βfld freeLMod πΌ)))) |
8 | rrxplusgvscavalb.r | . . . . . 6 β’ β = ( Β·π βπ») | |
9 | 5 | fveq2d 6898 | . . . . . 6 β’ (π β ( Β·π βπ») = ( Β·π β(toβPreHilβ(βfld freeLMod πΌ)))) |
10 | 8, 9 | eqtrid 2777 | . . . . 5 β’ (π β β = ( Β·π β(toβPreHilβ(βfld freeLMod πΌ)))) |
11 | 10 | oveqd 7434 | . . . 4 β’ (π β (π΄ β π) = (π΄( Β·π β(toβPreHilβ(βfld freeLMod πΌ)))π)) |
12 | 10 | oveqd 7434 | . . . 4 β’ (π β (πΆ β π) = (πΆ( Β·π β(toβPreHilβ(βfld freeLMod πΌ)))π)) |
13 | 7, 11, 12 | oveq123d 7438 | . . 3 β’ (π β ((π΄ β π) β (πΆ β π)) = ((π΄( Β·π β(toβPreHilβ(βfld freeLMod πΌ)))π)(+gβ(toβPreHilβ(βfld freeLMod πΌ)))(πΆ( Β·π β(toβPreHilβ(βfld freeLMod πΌ)))π))) |
14 | 13 | eqeq2d 2736 | . 2 β’ (π β (π = ((π΄ β π) β (πΆ β π)) β π = ((π΄( Β·π β(toβPreHilβ(βfld freeLMod πΌ)))π)(+gβ(toβPreHilβ(βfld freeLMod πΌ)))(πΆ( Β·π β(toβPreHilβ(βfld freeLMod πΌ)))π)))) |
15 | eqid 2725 | . . 3 β’ (βfld freeLMod πΌ) = (βfld freeLMod πΌ) | |
16 | eqid 2725 | . . 3 β’ (Baseβ(βfld freeLMod πΌ)) = (Baseβ(βfld freeLMod πΌ)) | |
17 | rrxplusgvscavalb.x | . . . 4 β’ (π β π β π΅) | |
18 | 5 | fveq2d 6898 | . . . . 5 β’ (π β (Baseβπ») = (Baseβ(toβPreHilβ(βfld freeLMod πΌ)))) |
19 | rrxbase.b | . . . . 5 β’ π΅ = (Baseβπ») | |
20 | eqid 2725 | . . . . . 6 β’ (toβPreHilβ(βfld freeLMod πΌ)) = (toβPreHilβ(βfld freeLMod πΌ)) | |
21 | 20, 16 | tcphbas 25177 | . . . . 5 β’ (Baseβ(βfld freeLMod πΌ)) = (Baseβ(toβPreHilβ(βfld freeLMod πΌ))) |
22 | 18, 19, 21 | 3eqtr4g 2790 | . . . 4 β’ (π β π΅ = (Baseβ(βfld freeLMod πΌ))) |
23 | 17, 22 | eleqtrd 2827 | . . 3 β’ (π β π β (Baseβ(βfld freeLMod πΌ))) |
24 | rrxplusgvscavalb.z | . . . 4 β’ (π β π β π΅) | |
25 | 24, 22 | eleqtrd 2827 | . . 3 β’ (π β π β (Baseβ(βfld freeLMod πΌ))) |
26 | resrng 21557 | . . . 4 β’ βfld β *-Ring | |
27 | srngring 20736 | . . . 4 β’ (βfld β *-Ring β βfld β Ring) | |
28 | 26, 27 | mp1i 13 | . . 3 β’ (π β βfld β Ring) |
29 | rebase 21542 | . . 3 β’ β = (Baseββfld) | |
30 | rrxplusgvscavalb.a | . . 3 β’ (π β π΄ β β) | |
31 | eqid 2725 | . . . . 5 β’ ( Β·π β(βfld freeLMod πΌ)) = ( Β·π β(βfld freeLMod πΌ)) | |
32 | 20, 31 | tcphvsca 25182 | . . . 4 β’ ( Β·π β(βfld freeLMod πΌ)) = ( Β·π β(toβPreHilβ(βfld freeLMod πΌ))) |
33 | 32 | eqcomi 2734 | . . 3 β’ ( Β·π β(toβPreHilβ(βfld freeLMod πΌ))) = ( Β·π β(βfld freeLMod πΌ)) |
34 | remulr 21547 | . . 3 β’ Β· = (.rββfld) | |
35 | rrxplusgvscavalb.y | . . . 4 β’ (π β π β π΅) | |
36 | 35, 22 | eleqtrd 2827 | . . 3 β’ (π β π β (Baseβ(βfld freeLMod πΌ))) |
37 | replusg 21546 | . . 3 β’ + = (+gββfld) | |
38 | eqid 2725 | . . . . 5 β’ (+gβ(βfld freeLMod πΌ)) = (+gβ(βfld freeLMod πΌ)) | |
39 | 20, 38 | tchplusg 25178 | . . . 4 β’ (+gβ(βfld freeLMod πΌ)) = (+gβ(toβPreHilβ(βfld freeLMod πΌ))) |
40 | 39 | eqcomi 2734 | . . 3 β’ (+gβ(toβPreHilβ(βfld freeLMod πΌ))) = (+gβ(βfld freeLMod πΌ)) |
41 | rrxplusgvscavalb.c | . . 3 β’ (π β πΆ β β) | |
42 | 15, 16, 2, 23, 25, 28, 29, 30, 33, 34, 36, 37, 40, 41 | frlmvplusgscavalb 21709 | . 2 β’ (π β (π = ((π΄( Β·π β(toβPreHilβ(βfld freeLMod πΌ)))π)(+gβ(toβPreHilβ(βfld freeLMod πΌ)))(πΆ( Β·π β(toβPreHilβ(βfld freeLMod πΌ)))π)) β βπ β πΌ (πβπ) = ((π΄ Β· (πβπ)) + (πΆ Β· (πβπ))))) |
43 | 14, 42 | bitrd 278 | 1 β’ (π β (π = ((π΄ β π) β (πΆ β π)) β βπ β πΌ (πβπ) = ((π΄ Β· (πβπ)) + (πΆ Β· (πβπ))))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1533 β wcel 2098 βwral 3051 βcfv 6547 (class class class)co 7417 βcr 11137 + caddc 11141 Β· cmul 11143 Basecbs 17179 +gcplusg 17232 Β·π cvsca 17236 Ringcrg 20177 *-Ringcsr 20728 βfldcrefld 21540 freeLMod cfrlm 21684 toβPreHilctcph 25125 β^crrx 25341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 ax-addf 11217 ax-mulf 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-of 7683 df-om 7870 df-1st 7992 df-2nd 7993 df-supp 8164 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-map 8845 df-ixp 8915 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-fsupp 9386 df-sup 9465 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-rp 13007 df-fz 13517 df-seq 13999 df-exp 14059 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-struct 17115 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-mulr 17246 df-starv 17247 df-sca 17248 df-vsca 17249 df-ip 17250 df-tset 17251 df-ple 17252 df-ds 17254 df-unif 17255 df-hom 17256 df-cco 17257 df-0g 17422 df-prds 17428 df-pws 17430 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-mhm 18739 df-grp 18897 df-minusg 18898 df-sbg 18899 df-subg 19082 df-ghm 19172 df-cmn 19741 df-abl 19742 df-mgp 20079 df-rng 20097 df-ur 20126 df-ring 20179 df-cring 20180 df-oppr 20277 df-dvdsr 20300 df-unit 20301 df-invr 20331 df-dvr 20344 df-rhm 20415 df-subrng 20487 df-subrg 20512 df-drng 20630 df-field 20631 df-staf 20729 df-srng 20730 df-lmod 20749 df-lss 20820 df-sra 21062 df-rgmod 21063 df-cnfld 21284 df-refld 21541 df-dsmm 21670 df-frlm 21685 df-tng 24523 df-tcph 25127 df-rrx 25343 |
This theorem is referenced by: rrxlinesc 47920 rrxlinec 47921 |
Copyright terms: Public domain | W3C validator |