![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rrxplusgvscavalb | Structured version Visualization version GIF version |
Description: The result of the addition combined with scalar multiplication in a generalized Euclidean space is defined by its coordinate-wise operations. (Contributed by AV, 21-Jan-2023.) |
Ref | Expression |
---|---|
rrxval.r | ⊢ 𝐻 = (ℝ^‘𝐼) |
rrxbase.b | ⊢ 𝐵 = (Base‘𝐻) |
rrxplusgvscavalb.r | ⊢ ∙ = ( ·𝑠 ‘𝐻) |
rrxplusgvscavalb.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
rrxplusgvscavalb.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
rrxplusgvscavalb.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
rrxplusgvscavalb.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
rrxplusgvscavalb.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
rrxplusgvscavalb.p | ⊢ ✚ = (+g‘𝐻) |
rrxplusgvscavalb.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
Ref | Expression |
---|---|
rrxplusgvscavalb | ⊢ (𝜑 → (𝑍 = ((𝐴 ∙ 𝑋) ✚ (𝐶 ∙ 𝑌)) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝐴 · (𝑋‘𝑖)) + (𝐶 · (𝑌‘𝑖))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxplusgvscavalb.p | . . . . 5 ⊢ ✚ = (+g‘𝐻) | |
2 | rrxplusgvscavalb.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
3 | rrxval.r | . . . . . . . 8 ⊢ 𝐻 = (ℝ^‘𝐼) | |
4 | 3 | rrxval 24751 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
5 | 2, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
6 | 5 | fveq2d 6846 | . . . . 5 ⊢ (𝜑 → (+g‘𝐻) = (+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
7 | 1, 6 | eqtrid 2788 | . . . 4 ⊢ (𝜑 → ✚ = (+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
8 | rrxplusgvscavalb.r | . . . . . 6 ⊢ ∙ = ( ·𝑠 ‘𝐻) | |
9 | 5 | fveq2d 6846 | . . . . . 6 ⊢ (𝜑 → ( ·𝑠 ‘𝐻) = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
10 | 8, 9 | eqtrid 2788 | . . . . 5 ⊢ (𝜑 → ∙ = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
11 | 10 | oveqd 7374 | . . . 4 ⊢ (𝜑 → (𝐴 ∙ 𝑋) = (𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)) |
12 | 10 | oveqd 7374 | . . . 4 ⊢ (𝜑 → (𝐶 ∙ 𝑌) = (𝐶( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑌)) |
13 | 7, 11, 12 | oveq123d 7378 | . . 3 ⊢ (𝜑 → ((𝐴 ∙ 𝑋) ✚ (𝐶 ∙ 𝑌)) = ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)(+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))(𝐶( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑌))) |
14 | 13 | eqeq2d 2747 | . 2 ⊢ (𝜑 → (𝑍 = ((𝐴 ∙ 𝑋) ✚ (𝐶 ∙ 𝑌)) ↔ 𝑍 = ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)(+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))(𝐶( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑌)))) |
15 | eqid 2736 | . . 3 ⊢ (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼) | |
16 | eqid 2736 | . . 3 ⊢ (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼)) | |
17 | rrxplusgvscavalb.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
18 | 5 | fveq2d 6846 | . . . . 5 ⊢ (𝜑 → (Base‘𝐻) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
19 | rrxbase.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐻) | |
20 | eqid 2736 | . . . . . 6 ⊢ (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼)) | |
21 | 20, 16 | tcphbas 24583 | . . . . 5 ⊢ (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) |
22 | 18, 19, 21 | 3eqtr4g 2801 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(ℝfld freeLMod 𝐼))) |
23 | 17, 22 | eleqtrd 2840 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘(ℝfld freeLMod 𝐼))) |
24 | rrxplusgvscavalb.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
25 | 24, 22 | eleqtrd 2840 | . . 3 ⊢ (𝜑 → 𝑍 ∈ (Base‘(ℝfld freeLMod 𝐼))) |
26 | resrng 21025 | . . . 4 ⊢ ℝfld ∈ *-Ring | |
27 | srngring 20311 | . . . 4 ⊢ (ℝfld ∈ *-Ring → ℝfld ∈ Ring) | |
28 | 26, 27 | mp1i 13 | . . 3 ⊢ (𝜑 → ℝfld ∈ Ring) |
29 | rebase 21010 | . . 3 ⊢ ℝ = (Base‘ℝfld) | |
30 | rrxplusgvscavalb.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
31 | eqid 2736 | . . . . 5 ⊢ ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) = ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) | |
32 | 20, 31 | tcphvsca 24588 | . . . 4 ⊢ ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) |
33 | 32 | eqcomi 2745 | . . 3 ⊢ ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) |
34 | remulr 21015 | . . 3 ⊢ · = (.r‘ℝfld) | |
35 | rrxplusgvscavalb.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
36 | 35, 22 | eleqtrd 2840 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘(ℝfld freeLMod 𝐼))) |
37 | replusg 21014 | . . 3 ⊢ + = (+g‘ℝfld) | |
38 | eqid 2736 | . . . . 5 ⊢ (+g‘(ℝfld freeLMod 𝐼)) = (+g‘(ℝfld freeLMod 𝐼)) | |
39 | 20, 38 | tchplusg 24584 | . . . 4 ⊢ (+g‘(ℝfld freeLMod 𝐼)) = (+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) |
40 | 39 | eqcomi 2745 | . . 3 ⊢ (+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (+g‘(ℝfld freeLMod 𝐼)) |
41 | rrxplusgvscavalb.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
42 | 15, 16, 2, 23, 25, 28, 29, 30, 33, 34, 36, 37, 40, 41 | frlmvplusgscavalb 21177 | . 2 ⊢ (𝜑 → (𝑍 = ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)(+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))(𝐶( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑌)) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝐴 · (𝑋‘𝑖)) + (𝐶 · (𝑌‘𝑖))))) |
43 | 14, 42 | bitrd 278 | 1 ⊢ (𝜑 → (𝑍 = ((𝐴 ∙ 𝑋) ✚ (𝐶 ∙ 𝑌)) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝐴 · (𝑋‘𝑖)) + (𝐶 · (𝑌‘𝑖))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 ∀wral 3064 ‘cfv 6496 (class class class)co 7357 ℝcr 11050 + caddc 11054 · cmul 11056 Basecbs 17083 +gcplusg 17133 ·𝑠 cvsca 17137 Ringcrg 19964 *-Ringcsr 20303 ℝfldcrefld 21008 freeLMod cfrlm 21152 toℂPreHilctcph 24531 ℝ^crrx 24747 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 ax-addf 11130 ax-mulf 11131 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-tpos 8157 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-sup 9378 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-rp 12916 df-fz 13425 df-seq 13907 df-exp 13968 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-starv 17148 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-hom 17157 df-cco 17158 df-0g 17323 df-prds 17329 df-pws 17331 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-mhm 18601 df-grp 18751 df-minusg 18752 df-sbg 18753 df-subg 18925 df-ghm 19006 df-cmn 19564 df-mgp 19897 df-ur 19914 df-ring 19966 df-cring 19967 df-oppr 20049 df-dvdsr 20070 df-unit 20071 df-invr 20101 df-dvr 20112 df-rnghom 20146 df-drng 20187 df-field 20188 df-subrg 20220 df-staf 20304 df-srng 20305 df-lmod 20324 df-lss 20393 df-sra 20633 df-rgmod 20634 df-cnfld 20797 df-refld 21009 df-dsmm 21138 df-frlm 21153 df-tng 23940 df-tcph 24533 df-rrx 24749 |
This theorem is referenced by: rrxlinesc 46811 rrxlinec 46812 |
Copyright terms: Public domain | W3C validator |