| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rrxplusgvscavalb | Structured version Visualization version GIF version | ||
| Description: The result of the addition combined with scalar multiplication in a generalized Euclidean space is defined by its coordinate-wise operations. (Contributed by AV, 21-Jan-2023.) |
| Ref | Expression |
|---|---|
| rrxval.r | ⊢ 𝐻 = (ℝ^‘𝐼) |
| rrxbase.b | ⊢ 𝐵 = (Base‘𝐻) |
| rrxplusgvscavalb.r | ⊢ ∙ = ( ·𝑠 ‘𝐻) |
| rrxplusgvscavalb.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| rrxplusgvscavalb.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| rrxplusgvscavalb.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| rrxplusgvscavalb.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| rrxplusgvscavalb.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| rrxplusgvscavalb.p | ⊢ ✚ = (+g‘𝐻) |
| rrxplusgvscavalb.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| Ref | Expression |
|---|---|
| rrxplusgvscavalb | ⊢ (𝜑 → (𝑍 = ((𝐴 ∙ 𝑋) ✚ (𝐶 ∙ 𝑌)) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝐴 · (𝑋‘𝑖)) + (𝐶 · (𝑌‘𝑖))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxplusgvscavalb.p | . . . . 5 ⊢ ✚ = (+g‘𝐻) | |
| 2 | rrxplusgvscavalb.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 3 | rrxval.r | . . . . . . . 8 ⊢ 𝐻 = (ℝ^‘𝐼) | |
| 4 | 3 | rrxval 25294 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| 5 | 2, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| 6 | 5 | fveq2d 6865 | . . . . 5 ⊢ (𝜑 → (+g‘𝐻) = (+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
| 7 | 1, 6 | eqtrid 2777 | . . . 4 ⊢ (𝜑 → ✚ = (+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
| 8 | rrxplusgvscavalb.r | . . . . . 6 ⊢ ∙ = ( ·𝑠 ‘𝐻) | |
| 9 | 5 | fveq2d 6865 | . . . . . 6 ⊢ (𝜑 → ( ·𝑠 ‘𝐻) = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
| 10 | 8, 9 | eqtrid 2777 | . . . . 5 ⊢ (𝜑 → ∙ = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
| 11 | 10 | oveqd 7407 | . . . 4 ⊢ (𝜑 → (𝐴 ∙ 𝑋) = (𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)) |
| 12 | 10 | oveqd 7407 | . . . 4 ⊢ (𝜑 → (𝐶 ∙ 𝑌) = (𝐶( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑌)) |
| 13 | 7, 11, 12 | oveq123d 7411 | . . 3 ⊢ (𝜑 → ((𝐴 ∙ 𝑋) ✚ (𝐶 ∙ 𝑌)) = ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)(+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))(𝐶( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑌))) |
| 14 | 13 | eqeq2d 2741 | . 2 ⊢ (𝜑 → (𝑍 = ((𝐴 ∙ 𝑋) ✚ (𝐶 ∙ 𝑌)) ↔ 𝑍 = ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)(+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))(𝐶( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑌)))) |
| 15 | eqid 2730 | . . 3 ⊢ (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼) | |
| 16 | eqid 2730 | . . 3 ⊢ (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼)) | |
| 17 | rrxplusgvscavalb.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 18 | 5 | fveq2d 6865 | . . . . 5 ⊢ (𝜑 → (Base‘𝐻) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
| 19 | rrxbase.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐻) | |
| 20 | eqid 2730 | . . . . . 6 ⊢ (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼)) | |
| 21 | 20, 16 | tcphbas 25126 | . . . . 5 ⊢ (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| 22 | 18, 19, 21 | 3eqtr4g 2790 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(ℝfld freeLMod 𝐼))) |
| 23 | 17, 22 | eleqtrd 2831 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘(ℝfld freeLMod 𝐼))) |
| 24 | rrxplusgvscavalb.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 25 | 24, 22 | eleqtrd 2831 | . . 3 ⊢ (𝜑 → 𝑍 ∈ (Base‘(ℝfld freeLMod 𝐼))) |
| 26 | resrng 21537 | . . . 4 ⊢ ℝfld ∈ *-Ring | |
| 27 | srngring 20762 | . . . 4 ⊢ (ℝfld ∈ *-Ring → ℝfld ∈ Ring) | |
| 28 | 26, 27 | mp1i 13 | . . 3 ⊢ (𝜑 → ℝfld ∈ Ring) |
| 29 | rebase 21522 | . . 3 ⊢ ℝ = (Base‘ℝfld) | |
| 30 | rrxplusgvscavalb.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 31 | eqid 2730 | . . . . 5 ⊢ ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) = ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) | |
| 32 | 20, 31 | tcphvsca 25131 | . . . 4 ⊢ ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| 33 | 32 | eqcomi 2739 | . . 3 ⊢ ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) |
| 34 | remulr 21527 | . . 3 ⊢ · = (.r‘ℝfld) | |
| 35 | rrxplusgvscavalb.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 36 | 35, 22 | eleqtrd 2831 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘(ℝfld freeLMod 𝐼))) |
| 37 | replusg 21526 | . . 3 ⊢ + = (+g‘ℝfld) | |
| 38 | eqid 2730 | . . . . 5 ⊢ (+g‘(ℝfld freeLMod 𝐼)) = (+g‘(ℝfld freeLMod 𝐼)) | |
| 39 | 20, 38 | tchplusg 25127 | . . . 4 ⊢ (+g‘(ℝfld freeLMod 𝐼)) = (+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| 40 | 39 | eqcomi 2739 | . . 3 ⊢ (+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (+g‘(ℝfld freeLMod 𝐼)) |
| 41 | rrxplusgvscavalb.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 42 | 15, 16, 2, 23, 25, 28, 29, 30, 33, 34, 36, 37, 40, 41 | frlmvplusgscavalb 21687 | . 2 ⊢ (𝜑 → (𝑍 = ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)(+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))(𝐶( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑌)) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝐴 · (𝑋‘𝑖)) + (𝐶 · (𝑌‘𝑖))))) |
| 43 | 14, 42 | bitrd 279 | 1 ⊢ (𝜑 → (𝑍 = ((𝐴 ∙ 𝑋) ✚ (𝐶 ∙ 𝑌)) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝐴 · (𝑋‘𝑖)) + (𝐶 · (𝑌‘𝑖))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 + caddc 11078 · cmul 11080 Basecbs 17186 +gcplusg 17227 ·𝑠 cvsca 17231 Ringcrg 20149 *-Ringcsr 20754 ℝfldcrefld 21520 freeLMod cfrlm 21662 toℂPreHilctcph 25074 ℝ^crrx 25290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 ax-mulf 11155 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-rp 12959 df-fz 13476 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-0g 17411 df-prds 17417 df-pws 17419 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-ghm 19152 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-rhm 20388 df-subrng 20462 df-subrg 20486 df-drng 20647 df-field 20648 df-staf 20755 df-srng 20756 df-lmod 20775 df-lss 20845 df-sra 21087 df-rgmod 21088 df-cnfld 21272 df-refld 21521 df-dsmm 21648 df-frlm 21663 df-tng 24479 df-tcph 25076 df-rrx 25292 |
| This theorem is referenced by: rrxlinesc 48728 rrxlinec 48729 |
| Copyright terms: Public domain | W3C validator |