MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxplusgvscavalb Structured version   Visualization version   GIF version

Theorem rrxplusgvscavalb 25443
Description: The result of the addition combined with scalar multiplication in a generalized Euclidean space is defined by its coordinate-wise operations. (Contributed by AV, 21-Jan-2023.)
Hypotheses
Ref Expression
rrxval.r 𝐻 = (ℝ^‘𝐼)
rrxbase.b 𝐵 = (Base‘𝐻)
rrxplusgvscavalb.r = ( ·𝑠𝐻)
rrxplusgvscavalb.i (𝜑𝐼𝑉)
rrxplusgvscavalb.a (𝜑𝐴 ∈ ℝ)
rrxplusgvscavalb.x (𝜑𝑋𝐵)
rrxplusgvscavalb.y (𝜑𝑌𝐵)
rrxplusgvscavalb.z (𝜑𝑍𝐵)
rrxplusgvscavalb.p = (+g𝐻)
rrxplusgvscavalb.c (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
rrxplusgvscavalb (𝜑 → (𝑍 = ((𝐴 𝑋) (𝐶 𝑌)) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝐴 · (𝑋𝑖)) + (𝐶 · (𝑌𝑖)))))
Distinct variable groups:   𝑖,𝐼   𝐴,𝑖   𝐶,𝑖   𝑖,𝑋   𝑖,𝑌   𝑖,𝑍   𝜑,𝑖
Allowed substitution hints:   𝐵(𝑖)   (𝑖)   (𝑖)   𝐻(𝑖)   𝑉(𝑖)

Proof of Theorem rrxplusgvscavalb
StepHypRef Expression
1 rrxplusgvscavalb.p . . . . 5 = (+g𝐻)
2 rrxplusgvscavalb.i . . . . . . 7 (𝜑𝐼𝑉)
3 rrxval.r . . . . . . . 8 𝐻 = (ℝ^‘𝐼)
43rrxval 25435 . . . . . . 7 (𝐼𝑉𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
52, 4syl 17 . . . . . 6 (𝜑𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
65fveq2d 6911 . . . . 5 (𝜑 → (+g𝐻) = (+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
71, 6eqtrid 2787 . . . 4 (𝜑 = (+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
8 rrxplusgvscavalb.r . . . . . 6 = ( ·𝑠𝐻)
95fveq2d 6911 . . . . . 6 (𝜑 → ( ·𝑠𝐻) = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
108, 9eqtrid 2787 . . . . 5 (𝜑 = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
1110oveqd 7448 . . . 4 (𝜑 → (𝐴 𝑋) = (𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋))
1210oveqd 7448 . . . 4 (𝜑 → (𝐶 𝑌) = (𝐶( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑌))
137, 11, 12oveq123d 7452 . . 3 (𝜑 → ((𝐴 𝑋) (𝐶 𝑌)) = ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)(+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))(𝐶( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑌)))
1413eqeq2d 2746 . 2 (𝜑 → (𝑍 = ((𝐴 𝑋) (𝐶 𝑌)) ↔ 𝑍 = ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)(+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))(𝐶( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑌))))
15 eqid 2735 . . 3 (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼)
16 eqid 2735 . . 3 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼))
17 rrxplusgvscavalb.x . . . 4 (𝜑𝑋𝐵)
185fveq2d 6911 . . . . 5 (𝜑 → (Base‘𝐻) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
19 rrxbase.b . . . . 5 𝐵 = (Base‘𝐻)
20 eqid 2735 . . . . . 6 (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼))
2120, 16tcphbas 25267 . . . . 5 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
2218, 19, 213eqtr4g 2800 . . . 4 (𝜑𝐵 = (Base‘(ℝfld freeLMod 𝐼)))
2317, 22eleqtrd 2841 . . 3 (𝜑𝑋 ∈ (Base‘(ℝfld freeLMod 𝐼)))
24 rrxplusgvscavalb.z . . . 4 (𝜑𝑍𝐵)
2524, 22eleqtrd 2841 . . 3 (𝜑𝑍 ∈ (Base‘(ℝfld freeLMod 𝐼)))
26 resrng 21657 . . . 4 fld ∈ *-Ring
27 srngring 20864 . . . 4 (ℝfld ∈ *-Ring → ℝfld ∈ Ring)
2826, 27mp1i 13 . . 3 (𝜑 → ℝfld ∈ Ring)
29 rebase 21642 . . 3 ℝ = (Base‘ℝfld)
30 rrxplusgvscavalb.a . . 3 (𝜑𝐴 ∈ ℝ)
31 eqid 2735 . . . . 5 ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) = ( ·𝑠 ‘(ℝfld freeLMod 𝐼))
3220, 31tcphvsca 25272 . . . 4 ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
3332eqcomi 2744 . . 3 ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = ( ·𝑠 ‘(ℝfld freeLMod 𝐼))
34 remulr 21647 . . 3 · = (.r‘ℝfld)
35 rrxplusgvscavalb.y . . . 4 (𝜑𝑌𝐵)
3635, 22eleqtrd 2841 . . 3 (𝜑𝑌 ∈ (Base‘(ℝfld freeLMod 𝐼)))
37 replusg 21646 . . 3 + = (+g‘ℝfld)
38 eqid 2735 . . . . 5 (+g‘(ℝfld freeLMod 𝐼)) = (+g‘(ℝfld freeLMod 𝐼))
3920, 38tchplusg 25268 . . . 4 (+g‘(ℝfld freeLMod 𝐼)) = (+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
4039eqcomi 2744 . . 3 (+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (+g‘(ℝfld freeLMod 𝐼))
41 rrxplusgvscavalb.c . . 3 (𝜑𝐶 ∈ ℝ)
4215, 16, 2, 23, 25, 28, 29, 30, 33, 34, 36, 37, 40, 41frlmvplusgscavalb 21809 . 2 (𝜑 → (𝑍 = ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)(+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))(𝐶( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑌)) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝐴 · (𝑋𝑖)) + (𝐶 · (𝑌𝑖)))))
4314, 42bitrd 279 1 (𝜑 → (𝑍 = ((𝐴 𝑋) (𝐶 𝑌)) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝐴 · (𝑋𝑖)) + (𝐶 · (𝑌𝑖)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2106  wral 3059  cfv 6563  (class class class)co 7431  cr 11152   + caddc 11156   · cmul 11158  Basecbs 17245  +gcplusg 17298   ·𝑠 cvsca 17302  Ringcrg 20251  *-Ringcsr 20856  fldcrefld 21640   freeLMod cfrlm 21784  toℂPreHilctcph 25215  ℝ^crrx 25431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-rp 13033  df-fz 13545  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-0g 17488  df-prds 17494  df-pws 17496  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-ghm 19244  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-rhm 20489  df-subrng 20563  df-subrg 20587  df-drng 20748  df-field 20749  df-staf 20857  df-srng 20858  df-lmod 20877  df-lss 20948  df-sra 21190  df-rgmod 21191  df-cnfld 21383  df-refld 21641  df-dsmm 21770  df-frlm 21785  df-tng 24613  df-tcph 25217  df-rrx 25433
This theorem is referenced by:  rrxlinesc  48585  rrxlinec  48586
  Copyright terms: Public domain W3C validator