![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rrxplusgvscavalb | Structured version Visualization version GIF version |
Description: The result of the addition combined with scalar multiplication in a generalized Euclidean space is defined by its coordinate-wise operations. (Contributed by AV, 21-Jan-2023.) |
Ref | Expression |
---|---|
rrxval.r | β’ π» = (β^βπΌ) |
rrxbase.b | β’ π΅ = (Baseβπ») |
rrxplusgvscavalb.r | β’ β = ( Β·π βπ») |
rrxplusgvscavalb.i | β’ (π β πΌ β π) |
rrxplusgvscavalb.a | β’ (π β π΄ β β) |
rrxplusgvscavalb.x | β’ (π β π β π΅) |
rrxplusgvscavalb.y | β’ (π β π β π΅) |
rrxplusgvscavalb.z | β’ (π β π β π΅) |
rrxplusgvscavalb.p | β’ β = (+gβπ») |
rrxplusgvscavalb.c | β’ (π β πΆ β β) |
Ref | Expression |
---|---|
rrxplusgvscavalb | β’ (π β (π = ((π΄ β π) β (πΆ β π)) β βπ β πΌ (πβπ) = ((π΄ Β· (πβπ)) + (πΆ Β· (πβπ))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxplusgvscavalb.p | . . . . 5 β’ β = (+gβπ») | |
2 | rrxplusgvscavalb.i | . . . . . . 7 β’ (π β πΌ β π) | |
3 | rrxval.r | . . . . . . . 8 β’ π» = (β^βπΌ) | |
4 | 3 | rrxval 25302 | . . . . . . 7 β’ (πΌ β π β π» = (toβPreHilβ(βfld freeLMod πΌ))) |
5 | 2, 4 | syl 17 | . . . . . 6 β’ (π β π» = (toβPreHilβ(βfld freeLMod πΌ))) |
6 | 5 | fveq2d 6895 | . . . . 5 β’ (π β (+gβπ») = (+gβ(toβPreHilβ(βfld freeLMod πΌ)))) |
7 | 1, 6 | eqtrid 2779 | . . . 4 β’ (π β β = (+gβ(toβPreHilβ(βfld freeLMod πΌ)))) |
8 | rrxplusgvscavalb.r | . . . . . 6 β’ β = ( Β·π βπ») | |
9 | 5 | fveq2d 6895 | . . . . . 6 β’ (π β ( Β·π βπ») = ( Β·π β(toβPreHilβ(βfld freeLMod πΌ)))) |
10 | 8, 9 | eqtrid 2779 | . . . . 5 β’ (π β β = ( Β·π β(toβPreHilβ(βfld freeLMod πΌ)))) |
11 | 10 | oveqd 7431 | . . . 4 β’ (π β (π΄ β π) = (π΄( Β·π β(toβPreHilβ(βfld freeLMod πΌ)))π)) |
12 | 10 | oveqd 7431 | . . . 4 β’ (π β (πΆ β π) = (πΆ( Β·π β(toβPreHilβ(βfld freeLMod πΌ)))π)) |
13 | 7, 11, 12 | oveq123d 7435 | . . 3 β’ (π β ((π΄ β π) β (πΆ β π)) = ((π΄( Β·π β(toβPreHilβ(βfld freeLMod πΌ)))π)(+gβ(toβPreHilβ(βfld freeLMod πΌ)))(πΆ( Β·π β(toβPreHilβ(βfld freeLMod πΌ)))π))) |
14 | 13 | eqeq2d 2738 | . 2 β’ (π β (π = ((π΄ β π) β (πΆ β π)) β π = ((π΄( Β·π β(toβPreHilβ(βfld freeLMod πΌ)))π)(+gβ(toβPreHilβ(βfld freeLMod πΌ)))(πΆ( Β·π β(toβPreHilβ(βfld freeLMod πΌ)))π)))) |
15 | eqid 2727 | . . 3 β’ (βfld freeLMod πΌ) = (βfld freeLMod πΌ) | |
16 | eqid 2727 | . . 3 β’ (Baseβ(βfld freeLMod πΌ)) = (Baseβ(βfld freeLMod πΌ)) | |
17 | rrxplusgvscavalb.x | . . . 4 β’ (π β π β π΅) | |
18 | 5 | fveq2d 6895 | . . . . 5 β’ (π β (Baseβπ») = (Baseβ(toβPreHilβ(βfld freeLMod πΌ)))) |
19 | rrxbase.b | . . . . 5 β’ π΅ = (Baseβπ») | |
20 | eqid 2727 | . . . . . 6 β’ (toβPreHilβ(βfld freeLMod πΌ)) = (toβPreHilβ(βfld freeLMod πΌ)) | |
21 | 20, 16 | tcphbas 25134 | . . . . 5 β’ (Baseβ(βfld freeLMod πΌ)) = (Baseβ(toβPreHilβ(βfld freeLMod πΌ))) |
22 | 18, 19, 21 | 3eqtr4g 2792 | . . . 4 β’ (π β π΅ = (Baseβ(βfld freeLMod πΌ))) |
23 | 17, 22 | eleqtrd 2830 | . . 3 β’ (π β π β (Baseβ(βfld freeLMod πΌ))) |
24 | rrxplusgvscavalb.z | . . . 4 β’ (π β π β π΅) | |
25 | 24, 22 | eleqtrd 2830 | . . 3 β’ (π β π β (Baseβ(βfld freeLMod πΌ))) |
26 | resrng 21540 | . . . 4 β’ βfld β *-Ring | |
27 | srngring 20721 | . . . 4 β’ (βfld β *-Ring β βfld β Ring) | |
28 | 26, 27 | mp1i 13 | . . 3 β’ (π β βfld β Ring) |
29 | rebase 21525 | . . 3 β’ β = (Baseββfld) | |
30 | rrxplusgvscavalb.a | . . 3 β’ (π β π΄ β β) | |
31 | eqid 2727 | . . . . 5 β’ ( Β·π β(βfld freeLMod πΌ)) = ( Β·π β(βfld freeLMod πΌ)) | |
32 | 20, 31 | tcphvsca 25139 | . . . 4 β’ ( Β·π β(βfld freeLMod πΌ)) = ( Β·π β(toβPreHilβ(βfld freeLMod πΌ))) |
33 | 32 | eqcomi 2736 | . . 3 β’ ( Β·π β(toβPreHilβ(βfld freeLMod πΌ))) = ( Β·π β(βfld freeLMod πΌ)) |
34 | remulr 21530 | . . 3 β’ Β· = (.rββfld) | |
35 | rrxplusgvscavalb.y | . . . 4 β’ (π β π β π΅) | |
36 | 35, 22 | eleqtrd 2830 | . . 3 β’ (π β π β (Baseβ(βfld freeLMod πΌ))) |
37 | replusg 21529 | . . 3 β’ + = (+gββfld) | |
38 | eqid 2727 | . . . . 5 β’ (+gβ(βfld freeLMod πΌ)) = (+gβ(βfld freeLMod πΌ)) | |
39 | 20, 38 | tchplusg 25135 | . . . 4 β’ (+gβ(βfld freeLMod πΌ)) = (+gβ(toβPreHilβ(βfld freeLMod πΌ))) |
40 | 39 | eqcomi 2736 | . . 3 β’ (+gβ(toβPreHilβ(βfld freeLMod πΌ))) = (+gβ(βfld freeLMod πΌ)) |
41 | rrxplusgvscavalb.c | . . 3 β’ (π β πΆ β β) | |
42 | 15, 16, 2, 23, 25, 28, 29, 30, 33, 34, 36, 37, 40, 41 | frlmvplusgscavalb 21692 | . 2 β’ (π β (π = ((π΄( Β·π β(toβPreHilβ(βfld freeLMod πΌ)))π)(+gβ(toβPreHilβ(βfld freeLMod πΌ)))(πΆ( Β·π β(toβPreHilβ(βfld freeLMod πΌ)))π)) β βπ β πΌ (πβπ) = ((π΄ Β· (πβπ)) + (πΆ Β· (πβπ))))) |
43 | 14, 42 | bitrd 279 | 1 β’ (π β (π = ((π΄ β π) β (πΆ β π)) β βπ β πΌ (πβπ) = ((π΄ Β· (πβπ)) + (πΆ Β· (πβπ))))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1534 β wcel 2099 βwral 3056 βcfv 6542 (class class class)co 7414 βcr 11129 + caddc 11133 Β· cmul 11135 Basecbs 17171 +gcplusg 17224 Β·π cvsca 17228 Ringcrg 20164 *-Ringcsr 20713 βfldcrefld 21523 freeLMod cfrlm 21667 toβPreHilctcph 25082 β^crrx 25298 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 ax-addf 11209 ax-mulf 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8838 df-ixp 8908 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-fsupp 9378 df-sup 9457 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-7 12302 df-8 12303 df-9 12304 df-n0 12495 df-z 12581 df-dec 12700 df-uz 12845 df-rp 12999 df-fz 13509 df-seq 13991 df-exp 14051 df-cj 15070 df-re 15071 df-im 15072 df-sqrt 15206 df-abs 15207 df-struct 17107 df-sets 17124 df-slot 17142 df-ndx 17154 df-base 17172 df-ress 17201 df-plusg 17237 df-mulr 17238 df-starv 17239 df-sca 17240 df-vsca 17241 df-ip 17242 df-tset 17243 df-ple 17244 df-ds 17246 df-unif 17247 df-hom 17248 df-cco 17249 df-0g 17414 df-prds 17420 df-pws 17422 df-mgm 18591 df-sgrp 18670 df-mnd 18686 df-mhm 18731 df-grp 18884 df-minusg 18885 df-sbg 18886 df-subg 19069 df-ghm 19159 df-cmn 19728 df-abl 19729 df-mgp 20066 df-rng 20084 df-ur 20113 df-ring 20166 df-cring 20167 df-oppr 20262 df-dvdsr 20285 df-unit 20286 df-invr 20316 df-dvr 20329 df-rhm 20400 df-subrng 20472 df-subrg 20497 df-drng 20615 df-field 20616 df-staf 20714 df-srng 20715 df-lmod 20734 df-lss 20805 df-sra 21047 df-rgmod 21048 df-cnfld 21267 df-refld 21524 df-dsmm 21653 df-frlm 21668 df-tng 24480 df-tcph 25084 df-rrx 25300 |
This theorem is referenced by: rrxlinesc 47731 rrxlinec 47732 |
Copyright terms: Public domain | W3C validator |