MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxplusgvscavalb Structured version   Visualization version   GIF version

Theorem rrxplusgvscavalb 24559
Description: The result of the addition combined with scalar multiplication in a generalized Euclidean space is defined by its coordinate-wise operations. (Contributed by AV, 21-Jan-2023.)
Hypotheses
Ref Expression
rrxval.r 𝐻 = (ℝ^‘𝐼)
rrxbase.b 𝐵 = (Base‘𝐻)
rrxplusgvscavalb.r = ( ·𝑠𝐻)
rrxplusgvscavalb.i (𝜑𝐼𝑉)
rrxplusgvscavalb.a (𝜑𝐴 ∈ ℝ)
rrxplusgvscavalb.x (𝜑𝑋𝐵)
rrxplusgvscavalb.y (𝜑𝑌𝐵)
rrxplusgvscavalb.z (𝜑𝑍𝐵)
rrxplusgvscavalb.p = (+g𝐻)
rrxplusgvscavalb.c (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
rrxplusgvscavalb (𝜑 → (𝑍 = ((𝐴 𝑋) (𝐶 𝑌)) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝐴 · (𝑋𝑖)) + (𝐶 · (𝑌𝑖)))))
Distinct variable groups:   𝑖,𝐼   𝐴,𝑖   𝐶,𝑖   𝑖,𝑋   𝑖,𝑌   𝑖,𝑍   𝜑,𝑖
Allowed substitution hints:   𝐵(𝑖)   (𝑖)   (𝑖)   𝐻(𝑖)   𝑉(𝑖)

Proof of Theorem rrxplusgvscavalb
StepHypRef Expression
1 rrxplusgvscavalb.p . . . . 5 = (+g𝐻)
2 rrxplusgvscavalb.i . . . . . . 7 (𝜑𝐼𝑉)
3 rrxval.r . . . . . . . 8 𝐻 = (ℝ^‘𝐼)
43rrxval 24551 . . . . . . 7 (𝐼𝑉𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
52, 4syl 17 . . . . . 6 (𝜑𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
65fveq2d 6778 . . . . 5 (𝜑 → (+g𝐻) = (+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
71, 6eqtrid 2790 . . . 4 (𝜑 = (+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
8 rrxplusgvscavalb.r . . . . . 6 = ( ·𝑠𝐻)
95fveq2d 6778 . . . . . 6 (𝜑 → ( ·𝑠𝐻) = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
108, 9eqtrid 2790 . . . . 5 (𝜑 = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
1110oveqd 7292 . . . 4 (𝜑 → (𝐴 𝑋) = (𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋))
1210oveqd 7292 . . . 4 (𝜑 → (𝐶 𝑌) = (𝐶( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑌))
137, 11, 12oveq123d 7296 . . 3 (𝜑 → ((𝐴 𝑋) (𝐶 𝑌)) = ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)(+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))(𝐶( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑌)))
1413eqeq2d 2749 . 2 (𝜑 → (𝑍 = ((𝐴 𝑋) (𝐶 𝑌)) ↔ 𝑍 = ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)(+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))(𝐶( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑌))))
15 eqid 2738 . . 3 (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼)
16 eqid 2738 . . 3 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼))
17 rrxplusgvscavalb.x . . . 4 (𝜑𝑋𝐵)
185fveq2d 6778 . . . . 5 (𝜑 → (Base‘𝐻) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
19 rrxbase.b . . . . 5 𝐵 = (Base‘𝐻)
20 eqid 2738 . . . . . 6 (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼))
2120, 16tcphbas 24383 . . . . 5 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
2218, 19, 213eqtr4g 2803 . . . 4 (𝜑𝐵 = (Base‘(ℝfld freeLMod 𝐼)))
2317, 22eleqtrd 2841 . . 3 (𝜑𝑋 ∈ (Base‘(ℝfld freeLMod 𝐼)))
24 rrxplusgvscavalb.z . . . 4 (𝜑𝑍𝐵)
2524, 22eleqtrd 2841 . . 3 (𝜑𝑍 ∈ (Base‘(ℝfld freeLMod 𝐼)))
26 recrng 20826 . . . 4 fld ∈ *-Ring
27 srngring 20112 . . . 4 (ℝfld ∈ *-Ring → ℝfld ∈ Ring)
2826, 27mp1i 13 . . 3 (𝜑 → ℝfld ∈ Ring)
29 rebase 20811 . . 3 ℝ = (Base‘ℝfld)
30 rrxplusgvscavalb.a . . 3 (𝜑𝐴 ∈ ℝ)
31 eqid 2738 . . . . 5 ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) = ( ·𝑠 ‘(ℝfld freeLMod 𝐼))
3220, 31tcphvsca 24388 . . . 4 ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
3332eqcomi 2747 . . 3 ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = ( ·𝑠 ‘(ℝfld freeLMod 𝐼))
34 remulr 20816 . . 3 · = (.r‘ℝfld)
35 rrxplusgvscavalb.y . . . 4 (𝜑𝑌𝐵)
3635, 22eleqtrd 2841 . . 3 (𝜑𝑌 ∈ (Base‘(ℝfld freeLMod 𝐼)))
37 replusg 20815 . . 3 + = (+g‘ℝfld)
38 eqid 2738 . . . . 5 (+g‘(ℝfld freeLMod 𝐼)) = (+g‘(ℝfld freeLMod 𝐼))
3920, 38tchplusg 24384 . . . 4 (+g‘(ℝfld freeLMod 𝐼)) = (+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
4039eqcomi 2747 . . 3 (+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (+g‘(ℝfld freeLMod 𝐼))
41 rrxplusgvscavalb.c . . 3 (𝜑𝐶 ∈ ℝ)
4215, 16, 2, 23, 25, 28, 29, 30, 33, 34, 36, 37, 40, 41frlmvplusgscavalb 20978 . 2 (𝜑 → (𝑍 = ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)(+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))(𝐶( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑌)) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝐴 · (𝑋𝑖)) + (𝐶 · (𝑌𝑖)))))
4314, 42bitrd 278 1 (𝜑 → (𝑍 = ((𝐴 𝑋) (𝐶 𝑌)) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝐴 · (𝑋𝑖)) + (𝐶 · (𝑌𝑖)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  wral 3064  cfv 6433  (class class class)co 7275  cr 10870   + caddc 10874   · cmul 10876  Basecbs 16912  +gcplusg 16962   ·𝑠 cvsca 16966  Ringcrg 19783  *-Ringcsr 20104  fldcrefld 20809   freeLMod cfrlm 20953  toℂPreHilctcph 24331  ℝ^crrx 24547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-fz 13240  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-0g 17152  df-prds 17158  df-pws 17160  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-ghm 18832  df-cmn 19388  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-rnghom 19959  df-drng 19993  df-field 19994  df-subrg 20022  df-staf 20105  df-srng 20106  df-lmod 20125  df-lss 20194  df-sra 20434  df-rgmod 20435  df-cnfld 20598  df-refld 20810  df-dsmm 20939  df-frlm 20954  df-tng 23740  df-tcph 24333  df-rrx 24549
This theorem is referenced by:  rrxlinesc  46081  rrxlinec  46082
  Copyright terms: Public domain W3C validator