Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrxtopn Structured version   Visualization version   GIF version

Theorem rrxtopn 46251
Description: The topology of the generalized real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypothesis
Ref Expression
rrxtopn.1 (𝜑𝐼𝑉)
Assertion
Ref Expression
rrxtopn (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))))))
Distinct variable groups:   𝑓,𝐼,𝑔,𝑥   𝑓,𝑉,𝑔,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑓,𝑔)

Proof of Theorem rrxtopn
StepHypRef Expression
1 rrxtopn.1 . . . . 5 (𝜑𝐼𝑉)
2 eqid 2736 . . . . . 6 (ℝ^‘𝐼) = (ℝ^‘𝐼)
32rrxval 25443 . . . . 5 (𝐼𝑉 → (ℝ^‘𝐼) = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
41, 3syl 17 . . . 4 (𝜑 → (ℝ^‘𝐼) = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
54fveq2d 6915 . . 3 (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (TopOpen‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
6 ovex 7468 . . . . 5 (ℝfld freeLMod 𝐼) ∈ V
7 eqid 2736 . . . . . 6 (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼))
8 eqid 2736 . . . . . 6 (dist‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (dist‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
9 eqid 2736 . . . . . 6 (TopOpen‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (TopOpen‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
107, 8, 9tcphtopn 25282 . . . . 5 ((ℝfld freeLMod 𝐼) ∈ V → (TopOpen‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (MetOpen‘(dist‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))))
116, 10ax-mp 5 . . . 4 (TopOpen‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (MetOpen‘(dist‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
1211a1i 11 . . 3 (𝜑 → (TopOpen‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (MetOpen‘(dist‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))))
134eqcomd 2742 . . . . 5 (𝜑 → (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (ℝ^‘𝐼))
1413fveq2d 6915 . . . 4 (𝜑 → (dist‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (dist‘(ℝ^‘𝐼)))
1514fveq2d 6915 . . 3 (𝜑 → (MetOpen‘(dist‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) = (MetOpen‘(dist‘(ℝ^‘𝐼))))
165, 12, 153eqtrd 2780 . 2 (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(dist‘(ℝ^‘𝐼))))
17 eqid 2736 . . . . . 6 (Base‘(ℝ^‘𝐼)) = (Base‘(ℝ^‘𝐼))
182, 17rrxds 25449 . . . . 5 (𝐼𝑉 → (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (dist‘(ℝ^‘𝐼)))
191, 18syl 17 . . . 4 (𝜑 → (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (dist‘(ℝ^‘𝐼)))
2019eqcomd 2742 . . 3 (𝜑 → (dist‘(ℝ^‘𝐼)) = (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
2120fveq2d 6915 . 2 (𝜑 → (MetOpen‘(dist‘(ℝ^‘𝐼))) = (MetOpen‘(𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))))))
2216, 21eqtrd 2776 1 (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2107  Vcvv 3479  cmpt 5232  cfv 6566  (class class class)co 7435  cmpo 7437  cmin 11496  2c2 12325  cexp 14105  csqrt 15275  Basecbs 17251  distcds 17313  TopOpenctopn 17474   Σg cgsu 17493  MetOpencmopn 21378  fldcrefld 21646   freeLMod cfrlm 21790  toℂPreHilctcph 25223  ℝ^crrx 25439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5286  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758  ax-cnex 11215  ax-resscn 11216  ax-1cn 11217  ax-icn 11218  ax-addcl 11219  ax-addrcl 11220  ax-mulcl 11221  ax-mulrcl 11222  ax-mulcom 11223  ax-addass 11224  ax-mulass 11225  ax-distr 11226  ax-i2m1 11227  ax-1ne0 11228  ax-1rid 11229  ax-rnegex 11230  ax-rrecex 11231  ax-cnre 11232  ax-pre-lttri 11233  ax-pre-lttrn 11234  ax-pre-ltadd 11235  ax-pre-mulgt0 11236  ax-pre-sup 11237  ax-addf 11238  ax-mulf 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-pss 3984  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4914  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5584  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5642  df-we 5644  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-pred 6326  df-ord 6392  df-on 6393  df-lim 6394  df-suc 6395  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-riota 7392  df-ov 7438  df-oprab 7439  df-mpo 7440  df-of 7701  df-om 7892  df-1st 8019  df-2nd 8020  df-supp 8191  df-tpos 8256  df-frecs 8311  df-wrecs 8342  df-recs 8416  df-rdg 8455  df-1o 8511  df-er 8750  df-map 8873  df-ixp 8943  df-en 8991  df-dom 8992  df-sdom 8993  df-fin 8994  df-fsupp 9406  df-sup 9486  df-inf 9487  df-pnf 11301  df-mnf 11302  df-xr 11303  df-ltxr 11304  df-le 11305  df-sub 11498  df-neg 11499  df-div 11925  df-nn 12271  df-2 12333  df-3 12334  df-4 12335  df-5 12336  df-6 12337  df-7 12338  df-8 12339  df-9 12340  df-n0 12531  df-z 12618  df-dec 12738  df-uz 12883  df-q 12995  df-rp 13039  df-xneg 13158  df-xadd 13159  df-xmul 13160  df-fz 13551  df-seq 14046  df-exp 14106  df-cj 15141  df-re 15142  df-im 15143  df-sqrt 15277  df-abs 15278  df-struct 17187  df-sets 17204  df-slot 17222  df-ndx 17234  df-base 17252  df-ress 17281  df-plusg 17317  df-mulr 17318  df-starv 17319  df-sca 17320  df-vsca 17321  df-ip 17322  df-tset 17323  df-ple 17324  df-ds 17326  df-unif 17327  df-hom 17328  df-cco 17329  df-rest 17475  df-topn 17476  df-0g 17494  df-topgen 17496  df-prds 17500  df-pws 17502  df-mgm 18672  df-sgrp 18751  df-mnd 18767  df-mhm 18815  df-grp 18973  df-minusg 18974  df-sbg 18975  df-subg 19160  df-ghm 19250  df-cmn 19821  df-abl 19822  df-mgp 20159  df-rng 20177  df-ur 20206  df-ring 20259  df-cring 20260  df-oppr 20357  df-dvdsr 20380  df-unit 20381  df-invr 20411  df-dvr 20424  df-rhm 20495  df-subrng 20569  df-subrg 20593  df-drng 20754  df-field 20755  df-staf 20863  df-srng 20864  df-lmod 20883  df-lss 20954  df-sra 21196  df-rgmod 21197  df-psmet 21380  df-xmet 21381  df-bl 21383  df-mopn 21384  df-cnfld 21389  df-refld 21647  df-dsmm 21776  df-frlm 21791  df-top 22922  df-topon 22939  df-bases 22975  df-nm 24617  df-tng 24619  df-tcph 25225  df-rrx 25441
This theorem is referenced by:  rrxtopnfi  46254
  Copyright terms: Public domain W3C validator