| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrxtopn | Structured version Visualization version GIF version | ||
| Description: The topology of the generalized real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| Ref | Expression |
|---|---|
| rrxtopn.1 | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| rrxtopn | ⊢ (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxtopn.1 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 2 | eqid 2734 | . . . . . 6 ⊢ (ℝ^‘𝐼) = (ℝ^‘𝐼) | |
| 3 | 2 | rrxval 25372 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → (ℝ^‘𝐼) = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| 4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝜑 → (ℝ^‘𝐼) = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| 5 | 4 | fveq2d 6891 | . . 3 ⊢ (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (TopOpen‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
| 6 | ovex 7447 | . . . . 5 ⊢ (ℝfld freeLMod 𝐼) ∈ V | |
| 7 | eqid 2734 | . . . . . 6 ⊢ (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼)) | |
| 8 | eqid 2734 | . . . . . 6 ⊢ (dist‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (dist‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) | |
| 9 | eqid 2734 | . . . . . 6 ⊢ (TopOpen‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (TopOpen‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) | |
| 10 | 7, 8, 9 | tcphtopn 25211 | . . . . 5 ⊢ ((ℝfld freeLMod 𝐼) ∈ V → (TopOpen‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (MetOpen‘(dist‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))) |
| 11 | 6, 10 | ax-mp 5 | . . . 4 ⊢ (TopOpen‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (MetOpen‘(dist‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
| 12 | 11 | a1i 11 | . . 3 ⊢ (𝜑 → (TopOpen‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (MetOpen‘(dist‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))) |
| 13 | 4 | eqcomd 2740 | . . . . 5 ⊢ (𝜑 → (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (ℝ^‘𝐼)) |
| 14 | 13 | fveq2d 6891 | . . . 4 ⊢ (𝜑 → (dist‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (dist‘(ℝ^‘𝐼))) |
| 15 | 14 | fveq2d 6891 | . . 3 ⊢ (𝜑 → (MetOpen‘(dist‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) = (MetOpen‘(dist‘(ℝ^‘𝐼)))) |
| 16 | 5, 12, 15 | 3eqtrd 2773 | . 2 ⊢ (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(dist‘(ℝ^‘𝐼)))) |
| 17 | eqid 2734 | . . . . . 6 ⊢ (Base‘(ℝ^‘𝐼)) = (Base‘(ℝ^‘𝐼)) | |
| 18 | 2, 17 | rrxds 25378 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))))) = (dist‘(ℝ^‘𝐼))) |
| 19 | 1, 18 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))))) = (dist‘(ℝ^‘𝐼))) |
| 20 | 19 | eqcomd 2740 | . . 3 ⊢ (𝜑 → (dist‘(ℝ^‘𝐼)) = (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)))))) |
| 21 | 20 | fveq2d 6891 | . 2 ⊢ (𝜑 → (MetOpen‘(dist‘(ℝ^‘𝐼))) = (MetOpen‘(𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))))))) |
| 22 | 16, 21 | eqtrd 2769 | 1 ⊢ (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3464 ↦ cmpt 5207 ‘cfv 6542 (class class class)co 7414 ∈ cmpo 7416 − cmin 11475 2c2 12304 ↑cexp 14085 √csqrt 15255 Basecbs 17230 distcds 17283 TopOpenctopn 17438 Σg cgsu 17457 MetOpencmopn 21317 ℝfldcrefld 21585 freeLMod cfrlm 21729 toℂPreHilctcph 25152 ℝ^crrx 25368 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 ax-addf 11217 ax-mulf 11218 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-om 7871 df-1st 7997 df-2nd 7998 df-supp 8169 df-tpos 8234 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-er 8728 df-map 8851 df-ixp 8921 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-fsupp 9385 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-div 11904 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-7 12317 df-8 12318 df-9 12319 df-n0 12511 df-z 12598 df-dec 12718 df-uz 12862 df-q 12974 df-rp 13018 df-xneg 13137 df-xadd 13138 df-xmul 13139 df-fz 13531 df-seq 14026 df-exp 14086 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17254 df-plusg 17287 df-mulr 17288 df-starv 17289 df-sca 17290 df-vsca 17291 df-ip 17292 df-tset 17293 df-ple 17294 df-ds 17296 df-unif 17297 df-hom 17298 df-cco 17299 df-rest 17439 df-topn 17440 df-0g 17458 df-topgen 17460 df-prds 17464 df-pws 17466 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-grp 18924 df-minusg 18925 df-sbg 18926 df-subg 19111 df-ghm 19201 df-cmn 19769 df-abl 19770 df-mgp 20107 df-rng 20119 df-ur 20148 df-ring 20201 df-cring 20202 df-oppr 20303 df-dvdsr 20326 df-unit 20327 df-invr 20357 df-dvr 20370 df-rhm 20441 df-subrng 20515 df-subrg 20539 df-drng 20700 df-field 20701 df-staf 20809 df-srng 20810 df-lmod 20829 df-lss 20899 df-sra 21141 df-rgmod 21142 df-psmet 21319 df-xmet 21320 df-bl 21322 df-mopn 21323 df-cnfld 21328 df-refld 21586 df-dsmm 21715 df-frlm 21730 df-top 22863 df-topon 22880 df-bases 22915 df-nm 24554 df-tng 24556 df-tcph 25154 df-rrx 25370 |
| This theorem is referenced by: rrxtopnfi 46243 |
| Copyright terms: Public domain | W3C validator |