Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrxtopn Structured version   Visualization version   GIF version

Theorem rrxtopn 41438
Description: The topology of the generalized real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypothesis
Ref Expression
rrxtopn.1 (𝜑𝐼𝑉)
Assertion
Ref Expression
rrxtopn (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))))))
Distinct variable groups:   𝑓,𝐼,𝑔,𝑥   𝑓,𝑉,𝑔,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑓,𝑔)

Proof of Theorem rrxtopn
StepHypRef Expression
1 rrxtopn.1 . . . . 5 (𝜑𝐼𝑉)
2 eqid 2778 . . . . . 6 (ℝ^‘𝐼) = (ℝ^‘𝐼)
32rrxval 23597 . . . . 5 (𝐼𝑉 → (ℝ^‘𝐼) = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
41, 3syl 17 . . . 4 (𝜑 → (ℝ^‘𝐼) = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
54fveq2d 6452 . . 3 (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (TopOpen‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
6 ovex 6956 . . . . 5 (ℝfld freeLMod 𝐼) ∈ V
7 eqid 2778 . . . . . 6 (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼))
8 eqid 2778 . . . . . 6 (dist‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (dist‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
9 eqid 2778 . . . . . 6 (TopOpen‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (TopOpen‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
107, 8, 9tcphtopn 23436 . . . . 5 ((ℝfld freeLMod 𝐼) ∈ V → (TopOpen‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (MetOpen‘(dist‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))))
116, 10ax-mp 5 . . . 4 (TopOpen‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (MetOpen‘(dist‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
1211a1i 11 . . 3 (𝜑 → (TopOpen‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (MetOpen‘(dist‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))))
134eqcomd 2784 . . . . 5 (𝜑 → (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (ℝ^‘𝐼))
1413fveq2d 6452 . . . 4 (𝜑 → (dist‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (dist‘(ℝ^‘𝐼)))
1514fveq2d 6452 . . 3 (𝜑 → (MetOpen‘(dist‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) = (MetOpen‘(dist‘(ℝ^‘𝐼))))
165, 12, 153eqtrd 2818 . 2 (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(dist‘(ℝ^‘𝐼))))
17 eqid 2778 . . . . . 6 (Base‘(ℝ^‘𝐼)) = (Base‘(ℝ^‘𝐼))
182, 17rrxds 23603 . . . . 5 (𝐼𝑉 → (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (dist‘(ℝ^‘𝐼)))
191, 18syl 17 . . . 4 (𝜑 → (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (dist‘(ℝ^‘𝐼)))
2019eqcomd 2784 . . 3 (𝜑 → (dist‘(ℝ^‘𝐼)) = (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
2120fveq2d 6452 . 2 (𝜑 → (MetOpen‘(dist‘(ℝ^‘𝐼))) = (MetOpen‘(𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))))))
2216, 21eqtrd 2814 1 (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2107  Vcvv 3398  cmpt 4967  cfv 6137  (class class class)co 6924  cmpt2 6926  cmin 10608  2c2 11434  cexp 13182  csqrt 14384  Basecbs 16259  distcds 16351  TopOpenctopn 16472   Σg cgsu 16491  MetOpencmopn 20136  fldcrefld 20351   freeLMod cfrlm 20493  toℂPreHilctcph 23378  ℝ^crrx 23593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352  ax-addf 10353  ax-mulf 10354
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-om 7346  df-1st 7447  df-2nd 7448  df-supp 7579  df-tpos 7636  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-map 8144  df-ixp 8197  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-fsupp 8566  df-sup 8638  df-inf 8639  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11035  df-nn 11379  df-2 11442  df-3 11443  df-4 11444  df-5 11445  df-6 11446  df-7 11447  df-8 11448  df-9 11449  df-n0 11647  df-z 11733  df-dec 11850  df-uz 11997  df-q 12100  df-rp 12142  df-xneg 12261  df-xadd 12262  df-xmul 12263  df-fz 12648  df-seq 13124  df-exp 13183  df-cj 14250  df-re 14251  df-im 14252  df-sqrt 14386  df-abs 14387  df-struct 16261  df-ndx 16262  df-slot 16263  df-base 16265  df-sets 16266  df-ress 16267  df-plusg 16355  df-mulr 16356  df-starv 16357  df-sca 16358  df-vsca 16359  df-ip 16360  df-tset 16361  df-ple 16362  df-ds 16364  df-unif 16365  df-hom 16366  df-cco 16367  df-rest 16473  df-topn 16474  df-0g 16492  df-topgen 16494  df-prds 16498  df-pws 16500  df-mgm 17632  df-sgrp 17674  df-mnd 17685  df-mhm 17725  df-grp 17816  df-minusg 17817  df-sbg 17818  df-subg 17979  df-ghm 18046  df-cmn 18585  df-mgp 18881  df-ur 18893  df-ring 18940  df-cring 18941  df-oppr 19014  df-dvdsr 19032  df-unit 19033  df-invr 19063  df-dvr 19074  df-rnghom 19108  df-drng 19145  df-field 19146  df-subrg 19174  df-staf 19241  df-srng 19242  df-lmod 19261  df-lss 19329  df-sra 19573  df-rgmod 19574  df-psmet 20138  df-xmet 20139  df-bl 20141  df-mopn 20142  df-cnfld 20147  df-refld 20352  df-dsmm 20479  df-frlm 20494  df-top 21110  df-topon 21127  df-bases 21162  df-nm 22799  df-tng 22801  df-tcph 23380  df-rrx 23595
This theorem is referenced by:  rrxtopnfi  41441
  Copyright terms: Public domain W3C validator