MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxprds Structured version   Visualization version   GIF version

Theorem rrxprds 23512
Description: Expand the definition of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
rrxval.r 𝐻 = (ℝ^‘𝐼)
rrxbase.b 𝐵 = (Base‘𝐻)
Assertion
Ref Expression
rrxprds (𝐼𝑉𝐻 = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)))

Proof of Theorem rrxprds
StepHypRef Expression
1 rrxval.r . . 3 𝐻 = (ℝ^‘𝐼)
21rrxval 23510 . 2 (𝐼𝑉𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
3 refld 20285 . . . . 5 fld ∈ Field
4 eqid 2798 . . . . . 6 (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼)
5 eqid 2798 . . . . . 6 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼))
64, 5frlmpws 20416 . . . . 5 ((ℝfld ∈ Field ∧ 𝐼𝑉) → (ℝfld freeLMod 𝐼) = (((ringLMod‘ℝfld) ↑s 𝐼) ↾s (Base‘(ℝfld freeLMod 𝐼))))
73, 6mpan 682 . . . 4 (𝐼𝑉 → (ℝfld freeLMod 𝐼) = (((ringLMod‘ℝfld) ↑s 𝐼) ↾s (Base‘(ℝfld freeLMod 𝐼))))
8 fvex 6423 . . . . . . 7 ((subringAlg ‘ℝfld)‘ℝ) ∈ V
9 rlmval 19511 . . . . . . . . . 10 (ringLMod‘ℝfld) = ((subringAlg ‘ℝfld)‘(Base‘ℝfld))
10 rebase 20272 . . . . . . . . . . 11 ℝ = (Base‘ℝfld)
1110fveq2i 6413 . . . . . . . . . 10 ((subringAlg ‘ℝfld)‘ℝ) = ((subringAlg ‘ℝfld)‘(Base‘ℝfld))
129, 11eqtr4i 2823 . . . . . . . . 9 (ringLMod‘ℝfld) = ((subringAlg ‘ℝfld)‘ℝ)
1312oveq1i 6887 . . . . . . . 8 ((ringLMod‘ℝfld) ↑s 𝐼) = (((subringAlg ‘ℝfld)‘ℝ) ↑s 𝐼)
1410ressid 16257 . . . . . . . . . 10 (ℝfld ∈ Field → (ℝflds ℝ) = ℝfld)
153, 14ax-mp 5 . . . . . . . . 9 (ℝflds ℝ) = ℝfld
16 eqidd 2799 . . . . . . . . . . 11 (⊤ → ((subringAlg ‘ℝfld)‘ℝ) = ((subringAlg ‘ℝfld)‘ℝ))
1710eqimssi 3854 . . . . . . . . . . . 12 ℝ ⊆ (Base‘ℝfld)
1817a1i 11 . . . . . . . . . . 11 (⊤ → ℝ ⊆ (Base‘ℝfld))
1916, 18srasca 19501 . . . . . . . . . 10 (⊤ → (ℝflds ℝ) = (Scalar‘((subringAlg ‘ℝfld)‘ℝ)))
2019mptru 1661 . . . . . . . . 9 (ℝflds ℝ) = (Scalar‘((subringAlg ‘ℝfld)‘ℝ))
2115, 20eqtr3i 2822 . . . . . . . 8 fld = (Scalar‘((subringAlg ‘ℝfld)‘ℝ))
2213, 21pwsval 16458 . . . . . . 7 ((((subringAlg ‘ℝfld)‘ℝ) ∈ V ∧ 𝐼𝑉) → ((ringLMod‘ℝfld) ↑s 𝐼) = (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})))
238, 22mpan 682 . . . . . 6 (𝐼𝑉 → ((ringLMod‘ℝfld) ↑s 𝐼) = (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})))
2423eqcomd 2804 . . . . 5 (𝐼𝑉 → (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) = ((ringLMod‘ℝfld) ↑s 𝐼))
252fveq2d 6414 . . . . . 6 (𝐼𝑉 → (Base‘𝐻) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
26 rrxbase.b . . . . . 6 𝐵 = (Base‘𝐻)
27 eqid 2798 . . . . . . 7 (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼))
2827, 5tcphbas 23342 . . . . . 6 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
2925, 26, 283eqtr4g 2857 . . . . 5 (𝐼𝑉𝐵 = (Base‘(ℝfld freeLMod 𝐼)))
3024, 29oveq12d 6895 . . . 4 (𝐼𝑉 → ((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵) = (((ringLMod‘ℝfld) ↑s 𝐼) ↾s (Base‘(ℝfld freeLMod 𝐼))))
317, 30eqtr4d 2835 . . 3 (𝐼𝑉 → (ℝfld freeLMod 𝐼) = ((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))
3231fveq2d 6414 . 2 (𝐼𝑉 → (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)))
332, 32eqtrd 2832 1 (𝐼𝑉𝐻 = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1653  wtru 1654  wcel 2157  Vcvv 3384  wss 3768  {csn 4367   × cxp 5309  cfv 6100  (class class class)co 6877  cr 10222  Basecbs 16181  s cress 16182  Scalarcsca 16267  Xscprds 16418  s cpws 16419  Fieldcfield 19063  subringAlg csra 19488  ringLModcrglmod 19489  fldcrefld 20270   freeLMod cfrlm 20412  toℂPreHilctcph 23291  ℝ^crrx 23506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2776  ax-rep 4963  ax-sep 4974  ax-nul 4982  ax-pow 5034  ax-pr 5096  ax-un 7182  ax-cnex 10279  ax-resscn 10280  ax-1cn 10281  ax-icn 10282  ax-addcl 10283  ax-addrcl 10284  ax-mulcl 10285  ax-mulrcl 10286  ax-mulcom 10287  ax-addass 10288  ax-mulass 10289  ax-distr 10290  ax-i2m1 10291  ax-1ne0 10292  ax-1rid 10293  ax-rnegex 10294  ax-rrecex 10295  ax-cnre 10296  ax-pre-lttri 10297  ax-pre-lttrn 10298  ax-pre-ltadd 10299  ax-pre-mulgt0 10300  ax-pre-sup 10301  ax-addf 10302  ax-mulf 10303
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2785  df-cleq 2791  df-clel 2794  df-nfc 2929  df-ne 2971  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3386  df-sbc 3633  df-csb 3728  df-dif 3771  df-un 3773  df-in 3775  df-ss 3782  df-pss 3784  df-nul 4115  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-tp 4372  df-op 4374  df-uni 4628  df-int 4667  df-iun 4711  df-br 4843  df-opab 4905  df-mpt 4922  df-tr 4945  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5897  df-ord 5943  df-on 5944  df-lim 5945  df-suc 5946  df-iota 6063  df-fun 6102  df-fn 6103  df-f 6104  df-f1 6105  df-fo 6106  df-f1o 6107  df-fv 6108  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-om 7299  df-1st 7400  df-2nd 7401  df-tpos 7589  df-wrecs 7644  df-recs 7706  df-rdg 7744  df-1o 7798  df-oadd 7802  df-er 7981  df-map 8096  df-ixp 8148  df-en 8195  df-dom 8196  df-sdom 8197  df-fin 8198  df-sup 8589  df-pnf 10364  df-mnf 10365  df-xr 10366  df-ltxr 10367  df-le 10368  df-sub 10557  df-neg 10558  df-div 10976  df-nn 11312  df-2 11373  df-3 11374  df-4 11375  df-5 11376  df-6 11377  df-7 11378  df-8 11379  df-9 11380  df-n0 11578  df-z 11664  df-dec 11781  df-uz 11928  df-rp 12072  df-fz 12578  df-seq 13053  df-exp 13112  df-cj 14177  df-re 14178  df-im 14179  df-sqrt 14313  df-abs 14314  df-struct 16183  df-ndx 16184  df-slot 16185  df-base 16187  df-sets 16188  df-ress 16189  df-plusg 16277  df-mulr 16278  df-starv 16279  df-sca 16280  df-vsca 16281  df-ip 16282  df-tset 16283  df-ple 16284  df-ds 16286  df-unif 16287  df-hom 16288  df-cco 16289  df-0g 16414  df-prds 16420  df-pws 16422  df-mgm 17554  df-sgrp 17596  df-mnd 17607  df-grp 17738  df-minusg 17739  df-subg 17901  df-cmn 18507  df-mgp 18803  df-ur 18815  df-ring 18862  df-cring 18863  df-oppr 18936  df-dvdsr 18954  df-unit 18955  df-invr 18985  df-dvr 18996  df-drng 19064  df-field 19065  df-subrg 19093  df-sra 19492  df-rgmod 19493  df-cnfld 20066  df-refld 20271  df-dsmm 20398  df-frlm 20413  df-tng 22714  df-tcph 23293  df-rrx 23508
This theorem is referenced by:  rrxip  23513
  Copyright terms: Public domain W3C validator