Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rrxprds | Structured version Visualization version GIF version |
Description: Expand the definition of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
Ref | Expression |
---|---|
rrxval.r | ⊢ 𝐻 = (ℝ^‘𝐼) |
rrxbase.b | ⊢ 𝐵 = (Base‘𝐻) |
Ref | Expression |
---|---|
rrxprds | ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxval.r | . . 3 ⊢ 𝐻 = (ℝ^‘𝐼) | |
2 | 1 | rrxval 24549 | . 2 ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
3 | refld 20822 | . . . . 5 ⊢ ℝfld ∈ Field | |
4 | eqid 2740 | . . . . . 6 ⊢ (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼) | |
5 | eqid 2740 | . . . . . 6 ⊢ (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼)) | |
6 | 4, 5 | frlmpws 20955 | . . . . 5 ⊢ ((ℝfld ∈ Field ∧ 𝐼 ∈ 𝑉) → (ℝfld freeLMod 𝐼) = (((ringLMod‘ℝfld) ↑s 𝐼) ↾s (Base‘(ℝfld freeLMod 𝐼)))) |
7 | 3, 6 | mpan 687 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (ℝfld freeLMod 𝐼) = (((ringLMod‘ℝfld) ↑s 𝐼) ↾s (Base‘(ℝfld freeLMod 𝐼)))) |
8 | fvex 6784 | . . . . . . 7 ⊢ ((subringAlg ‘ℝfld)‘ℝ) ∈ V | |
9 | rlmval 20459 | . . . . . . . . . 10 ⊢ (ringLMod‘ℝfld) = ((subringAlg ‘ℝfld)‘(Base‘ℝfld)) | |
10 | rebase 20809 | . . . . . . . . . . 11 ⊢ ℝ = (Base‘ℝfld) | |
11 | 10 | fveq2i 6774 | . . . . . . . . . 10 ⊢ ((subringAlg ‘ℝfld)‘ℝ) = ((subringAlg ‘ℝfld)‘(Base‘ℝfld)) |
12 | 9, 11 | eqtr4i 2771 | . . . . . . . . 9 ⊢ (ringLMod‘ℝfld) = ((subringAlg ‘ℝfld)‘ℝ) |
13 | 12 | oveq1i 7281 | . . . . . . . 8 ⊢ ((ringLMod‘ℝfld) ↑s 𝐼) = (((subringAlg ‘ℝfld)‘ℝ) ↑s 𝐼) |
14 | 10 | ressid 16952 | . . . . . . . . . 10 ⊢ (ℝfld ∈ Field → (ℝfld ↾s ℝ) = ℝfld) |
15 | 3, 14 | ax-mp 5 | . . . . . . . . 9 ⊢ (ℝfld ↾s ℝ) = ℝfld |
16 | eqidd 2741 | . . . . . . . . . . 11 ⊢ (⊤ → ((subringAlg ‘ℝfld)‘ℝ) = ((subringAlg ‘ℝfld)‘ℝ)) | |
17 | 10 | eqimssi 3984 | . . . . . . . . . . . 12 ⊢ ℝ ⊆ (Base‘ℝfld) |
18 | 17 | a1i 11 | . . . . . . . . . . 11 ⊢ (⊤ → ℝ ⊆ (Base‘ℝfld)) |
19 | 16, 18 | srasca 20445 | . . . . . . . . . 10 ⊢ (⊤ → (ℝfld ↾s ℝ) = (Scalar‘((subringAlg ‘ℝfld)‘ℝ))) |
20 | 19 | mptru 1549 | . . . . . . . . 9 ⊢ (ℝfld ↾s ℝ) = (Scalar‘((subringAlg ‘ℝfld)‘ℝ)) |
21 | 15, 20 | eqtr3i 2770 | . . . . . . . 8 ⊢ ℝfld = (Scalar‘((subringAlg ‘ℝfld)‘ℝ)) |
22 | 13, 21 | pwsval 17195 | . . . . . . 7 ⊢ ((((subringAlg ‘ℝfld)‘ℝ) ∈ V ∧ 𝐼 ∈ 𝑉) → ((ringLMod‘ℝfld) ↑s 𝐼) = (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) |
23 | 8, 22 | mpan 687 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → ((ringLMod‘ℝfld) ↑s 𝐼) = (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) |
24 | 23 | eqcomd 2746 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) = ((ringLMod‘ℝfld) ↑s 𝐼)) |
25 | 2 | fveq2d 6775 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → (Base‘𝐻) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
26 | rrxbase.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐻) | |
27 | eqid 2740 | . . . . . . 7 ⊢ (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼)) | |
28 | 27, 5 | tcphbas 24381 | . . . . . 6 ⊢ (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) |
29 | 25, 26, 28 | 3eqtr4g 2805 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → 𝐵 = (Base‘(ℝfld freeLMod 𝐼))) |
30 | 24, 29 | oveq12d 7289 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → ((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵) = (((ringLMod‘ℝfld) ↑s 𝐼) ↾s (Base‘(ℝfld freeLMod 𝐼)))) |
31 | 7, 30 | eqtr4d 2783 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (ℝfld freeLMod 𝐼) = ((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)) |
32 | 31 | fveq2d 6775 | . 2 ⊢ (𝐼 ∈ 𝑉 → (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))) |
33 | 2, 32 | eqtrd 2780 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ⊤wtru 1543 ∈ wcel 2110 Vcvv 3431 ⊆ wss 3892 {csn 4567 × cxp 5588 ‘cfv 6432 (class class class)co 7271 ℝcr 10871 Basecbs 16910 ↾s cress 16939 Scalarcsca 16963 Xscprds 17154 ↑s cpws 17155 Fieldcfield 19990 subringAlg csra 20428 ringLModcrglmod 20429 ℝfldcrefld 20807 freeLMod cfrlm 20951 toℂPreHilctcph 24329 ℝ^crrx 24545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 ax-addf 10951 ax-mulf 10952 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-tpos 8033 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-er 8481 df-map 8600 df-ixp 8669 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-sup 9179 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12437 df-uz 12582 df-rp 12730 df-fz 13239 df-seq 13720 df-exp 13781 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-struct 16846 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-mulr 16974 df-starv 16975 df-sca 16976 df-vsca 16977 df-ip 16978 df-tset 16979 df-ple 16980 df-ds 16982 df-unif 16983 df-hom 16984 df-cco 16985 df-0g 17150 df-prds 17156 df-pws 17158 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-grp 18578 df-minusg 18579 df-subg 18750 df-cmn 19386 df-mgp 19719 df-ur 19736 df-ring 19783 df-cring 19784 df-oppr 19860 df-dvdsr 19881 df-unit 19882 df-invr 19912 df-dvr 19923 df-drng 19991 df-field 19992 df-subrg 20020 df-sra 20432 df-rgmod 20433 df-cnfld 20596 df-refld 20808 df-dsmm 20937 df-frlm 20952 df-tng 23738 df-tcph 24331 df-rrx 24547 |
This theorem is referenced by: rrxip 24552 rrxsca 24558 |
Copyright terms: Public domain | W3C validator |