![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rrxprds | Structured version Visualization version GIF version |
Description: Expand the definition of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
Ref | Expression |
---|---|
rrxval.r | β’ π» = (β^βπΌ) |
rrxbase.b | β’ π΅ = (Baseβπ») |
Ref | Expression |
---|---|
rrxprds | β’ (πΌ β π β π» = (toβPreHilβ((βfldXs(πΌ Γ {((subringAlg ββfld)ββ)})) βΎs π΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxval.r | . . 3 β’ π» = (β^βπΌ) | |
2 | 1 | rrxval 24904 | . 2 β’ (πΌ β π β π» = (toβPreHilβ(βfld freeLMod πΌ))) |
3 | refld 21172 | . . . . 5 β’ βfld β Field | |
4 | eqid 2733 | . . . . . 6 β’ (βfld freeLMod πΌ) = (βfld freeLMod πΌ) | |
5 | eqid 2733 | . . . . . 6 β’ (Baseβ(βfld freeLMod πΌ)) = (Baseβ(βfld freeLMod πΌ)) | |
6 | 4, 5 | frlmpws 21305 | . . . . 5 β’ ((βfld β Field β§ πΌ β π) β (βfld freeLMod πΌ) = (((ringLModββfld) βs πΌ) βΎs (Baseβ(βfld freeLMod πΌ)))) |
7 | 3, 6 | mpan 689 | . . . 4 β’ (πΌ β π β (βfld freeLMod πΌ) = (((ringLModββfld) βs πΌ) βΎs (Baseβ(βfld freeLMod πΌ)))) |
8 | fvex 6905 | . . . . . . 7 β’ ((subringAlg ββfld)ββ) β V | |
9 | rlmval 20813 | . . . . . . . . . 10 β’ (ringLModββfld) = ((subringAlg ββfld)β(Baseββfld)) | |
10 | rebase 21159 | . . . . . . . . . . 11 β’ β = (Baseββfld) | |
11 | 10 | fveq2i 6895 | . . . . . . . . . 10 β’ ((subringAlg ββfld)ββ) = ((subringAlg ββfld)β(Baseββfld)) |
12 | 9, 11 | eqtr4i 2764 | . . . . . . . . 9 β’ (ringLModββfld) = ((subringAlg ββfld)ββ) |
13 | 12 | oveq1i 7419 | . . . . . . . 8 β’ ((ringLModββfld) βs πΌ) = (((subringAlg ββfld)ββ) βs πΌ) |
14 | 10 | ressid 17189 | . . . . . . . . . 10 β’ (βfld β Field β (βfld βΎs β) = βfld) |
15 | 3, 14 | ax-mp 5 | . . . . . . . . 9 β’ (βfld βΎs β) = βfld |
16 | eqidd 2734 | . . . . . . . . . . 11 β’ (β€ β ((subringAlg ββfld)ββ) = ((subringAlg ββfld)ββ)) | |
17 | 10 | eqimssi 4043 | . . . . . . . . . . . 12 β’ β β (Baseββfld) |
18 | 17 | a1i 11 | . . . . . . . . . . 11 β’ (β€ β β β (Baseββfld)) |
19 | 16, 18 | srasca 20798 | . . . . . . . . . 10 β’ (β€ β (βfld βΎs β) = (Scalarβ((subringAlg ββfld)ββ))) |
20 | 19 | mptru 1549 | . . . . . . . . 9 β’ (βfld βΎs β) = (Scalarβ((subringAlg ββfld)ββ)) |
21 | 15, 20 | eqtr3i 2763 | . . . . . . . 8 β’ βfld = (Scalarβ((subringAlg ββfld)ββ)) |
22 | 13, 21 | pwsval 17432 | . . . . . . 7 β’ ((((subringAlg ββfld)ββ) β V β§ πΌ β π) β ((ringLModββfld) βs πΌ) = (βfldXs(πΌ Γ {((subringAlg ββfld)ββ)}))) |
23 | 8, 22 | mpan 689 | . . . . . 6 β’ (πΌ β π β ((ringLModββfld) βs πΌ) = (βfldXs(πΌ Γ {((subringAlg ββfld)ββ)}))) |
24 | 23 | eqcomd 2739 | . . . . 5 β’ (πΌ β π β (βfldXs(πΌ Γ {((subringAlg ββfld)ββ)})) = ((ringLModββfld) βs πΌ)) |
25 | 2 | fveq2d 6896 | . . . . . 6 β’ (πΌ β π β (Baseβπ») = (Baseβ(toβPreHilβ(βfld freeLMod πΌ)))) |
26 | rrxbase.b | . . . . . 6 β’ π΅ = (Baseβπ») | |
27 | eqid 2733 | . . . . . . 7 β’ (toβPreHilβ(βfld freeLMod πΌ)) = (toβPreHilβ(βfld freeLMod πΌ)) | |
28 | 27, 5 | tcphbas 24736 | . . . . . 6 β’ (Baseβ(βfld freeLMod πΌ)) = (Baseβ(toβPreHilβ(βfld freeLMod πΌ))) |
29 | 25, 26, 28 | 3eqtr4g 2798 | . . . . 5 β’ (πΌ β π β π΅ = (Baseβ(βfld freeLMod πΌ))) |
30 | 24, 29 | oveq12d 7427 | . . . 4 β’ (πΌ β π β ((βfldXs(πΌ Γ {((subringAlg ββfld)ββ)})) βΎs π΅) = (((ringLModββfld) βs πΌ) βΎs (Baseβ(βfld freeLMod πΌ)))) |
31 | 7, 30 | eqtr4d 2776 | . . 3 β’ (πΌ β π β (βfld freeLMod πΌ) = ((βfldXs(πΌ Γ {((subringAlg ββfld)ββ)})) βΎs π΅)) |
32 | 31 | fveq2d 6896 | . 2 β’ (πΌ β π β (toβPreHilβ(βfld freeLMod πΌ)) = (toβPreHilβ((βfldXs(πΌ Γ {((subringAlg ββfld)ββ)})) βΎs π΅))) |
33 | 2, 32 | eqtrd 2773 | 1 β’ (πΌ β π β π» = (toβPreHilβ((βfldXs(πΌ Γ {((subringAlg ββfld)ββ)})) βΎs π΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β€wtru 1543 β wcel 2107 Vcvv 3475 β wss 3949 {csn 4629 Γ cxp 5675 βcfv 6544 (class class class)co 7409 βcr 11109 Basecbs 17144 βΎs cress 17173 Scalarcsca 17200 Xscprds 17391 βs cpws 17392 Fieldcfield 20358 subringAlg csra 20781 ringLModcrglmod 20782 βfldcrefld 21157 freeLMod cfrlm 21301 toβPreHilctcph 24684 β^crrx 24900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 ax-addf 11189 ax-mulf 11190 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-tpos 8211 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-ixp 8892 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-sup 9437 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-rp 12975 df-fz 13485 df-seq 13967 df-exp 14028 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-starv 17212 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-hom 17221 df-cco 17222 df-0g 17387 df-prds 17393 df-pws 17395 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-grp 18822 df-minusg 18823 df-subg 19003 df-cmn 19650 df-mgp 19988 df-ur 20005 df-ring 20058 df-cring 20059 df-oppr 20150 df-dvdsr 20171 df-unit 20172 df-invr 20202 df-dvr 20215 df-subrg 20317 df-drng 20359 df-field 20360 df-sra 20785 df-rgmod 20786 df-cnfld 20945 df-refld 21158 df-dsmm 21287 df-frlm 21302 df-tng 24093 df-tcph 24686 df-rrx 24902 |
This theorem is referenced by: rrxip 24907 rrxsca 24913 |
Copyright terms: Public domain | W3C validator |