MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxprds Structured version   Visualization version   GIF version

Theorem rrxprds 25289
Description: Expand the definition of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
rrxval.r 𝐻 = (ℝ^‘𝐼)
rrxbase.b 𝐵 = (Base‘𝐻)
Assertion
Ref Expression
rrxprds (𝐼𝑉𝐻 = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)))

Proof of Theorem rrxprds
StepHypRef Expression
1 rrxval.r . . 3 𝐻 = (ℝ^‘𝐼)
21rrxval 25287 . 2 (𝐼𝑉𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
3 refld 21528 . . . . 5 fld ∈ Field
4 eqid 2729 . . . . . 6 (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼)
5 eqid 2729 . . . . . 6 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼))
64, 5frlmpws 21659 . . . . 5 ((ℝfld ∈ Field ∧ 𝐼𝑉) → (ℝfld freeLMod 𝐼) = (((ringLMod‘ℝfld) ↑s 𝐼) ↾s (Base‘(ℝfld freeLMod 𝐼))))
73, 6mpan 690 . . . 4 (𝐼𝑉 → (ℝfld freeLMod 𝐼) = (((ringLMod‘ℝfld) ↑s 𝐼) ↾s (Base‘(ℝfld freeLMod 𝐼))))
8 fvex 6871 . . . . . . 7 ((subringAlg ‘ℝfld)‘ℝ) ∈ V
9 rlmval 21098 . . . . . . . . . 10 (ringLMod‘ℝfld) = ((subringAlg ‘ℝfld)‘(Base‘ℝfld))
10 rebase 21515 . . . . . . . . . . 11 ℝ = (Base‘ℝfld)
1110fveq2i 6861 . . . . . . . . . 10 ((subringAlg ‘ℝfld)‘ℝ) = ((subringAlg ‘ℝfld)‘(Base‘ℝfld))
129, 11eqtr4i 2755 . . . . . . . . 9 (ringLMod‘ℝfld) = ((subringAlg ‘ℝfld)‘ℝ)
1312oveq1i 7397 . . . . . . . 8 ((ringLMod‘ℝfld) ↑s 𝐼) = (((subringAlg ‘ℝfld)‘ℝ) ↑s 𝐼)
1410ressid 17214 . . . . . . . . . 10 (ℝfld ∈ Field → (ℝflds ℝ) = ℝfld)
153, 14ax-mp 5 . . . . . . . . 9 (ℝflds ℝ) = ℝfld
16 eqidd 2730 . . . . . . . . . . 11 (⊤ → ((subringAlg ‘ℝfld)‘ℝ) = ((subringAlg ‘ℝfld)‘ℝ))
1710eqimssi 4007 . . . . . . . . . . . 12 ℝ ⊆ (Base‘ℝfld)
1817a1i 11 . . . . . . . . . . 11 (⊤ → ℝ ⊆ (Base‘ℝfld))
1916, 18srasca 21087 . . . . . . . . . 10 (⊤ → (ℝflds ℝ) = (Scalar‘((subringAlg ‘ℝfld)‘ℝ)))
2019mptru 1547 . . . . . . . . 9 (ℝflds ℝ) = (Scalar‘((subringAlg ‘ℝfld)‘ℝ))
2115, 20eqtr3i 2754 . . . . . . . 8 fld = (Scalar‘((subringAlg ‘ℝfld)‘ℝ))
2213, 21pwsval 17449 . . . . . . 7 ((((subringAlg ‘ℝfld)‘ℝ) ∈ V ∧ 𝐼𝑉) → ((ringLMod‘ℝfld) ↑s 𝐼) = (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})))
238, 22mpan 690 . . . . . 6 (𝐼𝑉 → ((ringLMod‘ℝfld) ↑s 𝐼) = (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})))
2423eqcomd 2735 . . . . 5 (𝐼𝑉 → (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) = ((ringLMod‘ℝfld) ↑s 𝐼))
252fveq2d 6862 . . . . . 6 (𝐼𝑉 → (Base‘𝐻) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
26 rrxbase.b . . . . . 6 𝐵 = (Base‘𝐻)
27 eqid 2729 . . . . . . 7 (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼))
2827, 5tcphbas 25119 . . . . . 6 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
2925, 26, 283eqtr4g 2789 . . . . 5 (𝐼𝑉𝐵 = (Base‘(ℝfld freeLMod 𝐼)))
3024, 29oveq12d 7405 . . . 4 (𝐼𝑉 → ((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵) = (((ringLMod‘ℝfld) ↑s 𝐼) ↾s (Base‘(ℝfld freeLMod 𝐼))))
317, 30eqtr4d 2767 . . 3 (𝐼𝑉 → (ℝfld freeLMod 𝐼) = ((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))
3231fveq2d 6862 . 2 (𝐼𝑉 → (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)))
332, 32eqtrd 2764 1 (𝐼𝑉𝐻 = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wtru 1541  wcel 2109  Vcvv 3447  wss 3914  {csn 4589   × cxp 5636  cfv 6511  (class class class)co 7387  cr 11067  Basecbs 17179  s cress 17200  Scalarcsca 17223  Xscprds 17408  s cpws 17409  Fieldcfield 20639  subringAlg csra 21078  ringLModcrglmod 21079  fldcrefld 21513   freeLMod cfrlm 21655  toℂPreHilctcph 25067  ℝ^crrx 25283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-fz 13469  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-prds 17410  df-pws 17412  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-subg 19055  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-subrng 20455  df-subrg 20479  df-drng 20640  df-field 20641  df-sra 21080  df-rgmod 21081  df-cnfld 21265  df-refld 21514  df-dsmm 21641  df-frlm 21656  df-tng 24472  df-tcph 25069  df-rrx 25285
This theorem is referenced by:  rrxip  25290  rrxsca  25296
  Copyright terms: Public domain W3C validator