MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxprds Structured version   Visualization version   GIF version

Theorem rrxprds 24581
Description: Expand the definition of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
rrxval.r 𝐻 = (ℝ^‘𝐼)
rrxbase.b 𝐵 = (Base‘𝐻)
Assertion
Ref Expression
rrxprds (𝐼𝑉𝐻 = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)))

Proof of Theorem rrxprds
StepHypRef Expression
1 rrxval.r . . 3 𝐻 = (ℝ^‘𝐼)
21rrxval 24579 . 2 (𝐼𝑉𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
3 refld 20852 . . . . 5 fld ∈ Field
4 eqid 2733 . . . . . 6 (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼)
5 eqid 2733 . . . . . 6 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼))
64, 5frlmpws 20985 . . . . 5 ((ℝfld ∈ Field ∧ 𝐼𝑉) → (ℝfld freeLMod 𝐼) = (((ringLMod‘ℝfld) ↑s 𝐼) ↾s (Base‘(ℝfld freeLMod 𝐼))))
73, 6mpan 686 . . . 4 (𝐼𝑉 → (ℝfld freeLMod 𝐼) = (((ringLMod‘ℝfld) ↑s 𝐼) ↾s (Base‘(ℝfld freeLMod 𝐼))))
8 fvex 6805 . . . . . . 7 ((subringAlg ‘ℝfld)‘ℝ) ∈ V
9 rlmval 20489 . . . . . . . . . 10 (ringLMod‘ℝfld) = ((subringAlg ‘ℝfld)‘(Base‘ℝfld))
10 rebase 20839 . . . . . . . . . . 11 ℝ = (Base‘ℝfld)
1110fveq2i 6795 . . . . . . . . . 10 ((subringAlg ‘ℝfld)‘ℝ) = ((subringAlg ‘ℝfld)‘(Base‘ℝfld))
129, 11eqtr4i 2764 . . . . . . . . 9 (ringLMod‘ℝfld) = ((subringAlg ‘ℝfld)‘ℝ)
1312oveq1i 7305 . . . . . . . 8 ((ringLMod‘ℝfld) ↑s 𝐼) = (((subringAlg ‘ℝfld)‘ℝ) ↑s 𝐼)
1410ressid 16982 . . . . . . . . . 10 (ℝfld ∈ Field → (ℝflds ℝ) = ℝfld)
153, 14ax-mp 5 . . . . . . . . 9 (ℝflds ℝ) = ℝfld
16 eqidd 2734 . . . . . . . . . . 11 (⊤ → ((subringAlg ‘ℝfld)‘ℝ) = ((subringAlg ‘ℝfld)‘ℝ))
1710eqimssi 3981 . . . . . . . . . . . 12 ℝ ⊆ (Base‘ℝfld)
1817a1i 11 . . . . . . . . . . 11 (⊤ → ℝ ⊆ (Base‘ℝfld))
1916, 18srasca 20475 . . . . . . . . . 10 (⊤ → (ℝflds ℝ) = (Scalar‘((subringAlg ‘ℝfld)‘ℝ)))
2019mptru 1544 . . . . . . . . 9 (ℝflds ℝ) = (Scalar‘((subringAlg ‘ℝfld)‘ℝ))
2115, 20eqtr3i 2763 . . . . . . . 8 fld = (Scalar‘((subringAlg ‘ℝfld)‘ℝ))
2213, 21pwsval 17225 . . . . . . 7 ((((subringAlg ‘ℝfld)‘ℝ) ∈ V ∧ 𝐼𝑉) → ((ringLMod‘ℝfld) ↑s 𝐼) = (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})))
238, 22mpan 686 . . . . . 6 (𝐼𝑉 → ((ringLMod‘ℝfld) ↑s 𝐼) = (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})))
2423eqcomd 2739 . . . . 5 (𝐼𝑉 → (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) = ((ringLMod‘ℝfld) ↑s 𝐼))
252fveq2d 6796 . . . . . 6 (𝐼𝑉 → (Base‘𝐻) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
26 rrxbase.b . . . . . 6 𝐵 = (Base‘𝐻)
27 eqid 2733 . . . . . . 7 (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼))
2827, 5tcphbas 24411 . . . . . 6 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
2925, 26, 283eqtr4g 2798 . . . . 5 (𝐼𝑉𝐵 = (Base‘(ℝfld freeLMod 𝐼)))
3024, 29oveq12d 7313 . . . 4 (𝐼𝑉 → ((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵) = (((ringLMod‘ℝfld) ↑s 𝐼) ↾s (Base‘(ℝfld freeLMod 𝐼))))
317, 30eqtr4d 2776 . . 3 (𝐼𝑉 → (ℝfld freeLMod 𝐼) = ((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))
3231fveq2d 6796 . 2 (𝐼𝑉 → (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)))
332, 32eqtrd 2773 1 (𝐼𝑉𝐻 = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wtru 1538  wcel 2101  Vcvv 3434  wss 3889  {csn 4564   × cxp 5589  cfv 6447  (class class class)co 7295  cr 10898  Basecbs 16940  s cress 16969  Scalarcsca 16993  Xscprds 17184  s cpws 17185  Fieldcfield 20020  subringAlg csra 20458  ringLModcrglmod 20459  fldcrefld 20837   freeLMod cfrlm 20981  toℂPreHilctcph 24359  ℝ^crrx 24575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-cnex 10955  ax-resscn 10956  ax-1cn 10957  ax-icn 10958  ax-addcl 10959  ax-addrcl 10960  ax-mulcl 10961  ax-mulrcl 10962  ax-mulcom 10963  ax-addass 10964  ax-mulass 10965  ax-distr 10966  ax-i2m1 10967  ax-1ne0 10968  ax-1rid 10969  ax-rnegex 10970  ax-rrecex 10971  ax-cnre 10972  ax-pre-lttri 10973  ax-pre-lttrn 10974  ax-pre-ltadd 10975  ax-pre-mulgt0 10976  ax-pre-sup 10977  ax-addf 10978  ax-mulf 10979
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3222  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4842  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-riota 7252  df-ov 7298  df-oprab 7299  df-mpo 7300  df-om 7733  df-1st 7851  df-2nd 7852  df-tpos 8062  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-rdg 8261  df-1o 8317  df-er 8518  df-map 8637  df-ixp 8706  df-en 8754  df-dom 8755  df-sdom 8756  df-fin 8757  df-sup 9229  df-pnf 11039  df-mnf 11040  df-xr 11041  df-ltxr 11042  df-le 11043  df-sub 11235  df-neg 11236  df-div 11661  df-nn 12002  df-2 12064  df-3 12065  df-4 12066  df-5 12067  df-6 12068  df-7 12069  df-8 12070  df-9 12071  df-n0 12262  df-z 12348  df-dec 12466  df-uz 12611  df-rp 12759  df-fz 13268  df-seq 13750  df-exp 13811  df-cj 14838  df-re 14839  df-im 14840  df-sqrt 14974  df-abs 14975  df-struct 16876  df-sets 16893  df-slot 16911  df-ndx 16923  df-base 16941  df-ress 16970  df-plusg 17003  df-mulr 17004  df-starv 17005  df-sca 17006  df-vsca 17007  df-ip 17008  df-tset 17009  df-ple 17010  df-ds 17012  df-unif 17013  df-hom 17014  df-cco 17015  df-0g 17180  df-prds 17186  df-pws 17188  df-mgm 18354  df-sgrp 18403  df-mnd 18414  df-grp 18608  df-minusg 18609  df-subg 18780  df-cmn 19416  df-mgp 19749  df-ur 19766  df-ring 19813  df-cring 19814  df-oppr 19890  df-dvdsr 19911  df-unit 19912  df-invr 19942  df-dvr 19953  df-drng 20021  df-field 20022  df-subrg 20050  df-sra 20462  df-rgmod 20463  df-cnfld 20626  df-refld 20838  df-dsmm 20967  df-frlm 20982  df-tng 23768  df-tcph 24361  df-rrx 24577
This theorem is referenced by:  rrxip  24582  rrxsca  24588
  Copyright terms: Public domain W3C validator