| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rrxprds | Structured version Visualization version GIF version | ||
| Description: Expand the definition of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
| Ref | Expression |
|---|---|
| rrxval.r | ⊢ 𝐻 = (ℝ^‘𝐼) |
| rrxbase.b | ⊢ 𝐵 = (Base‘𝐻) |
| Ref | Expression |
|---|---|
| rrxprds | ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxval.r | . . 3 ⊢ 𝐻 = (ℝ^‘𝐼) | |
| 2 | 1 | rrxval 25357 | . 2 ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| 3 | refld 21591 | . . . . 5 ⊢ ℝfld ∈ Field | |
| 4 | eqid 2734 | . . . . . 6 ⊢ (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼) | |
| 5 | eqid 2734 | . . . . . 6 ⊢ (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼)) | |
| 6 | 4, 5 | frlmpws 21724 | . . . . 5 ⊢ ((ℝfld ∈ Field ∧ 𝐼 ∈ 𝑉) → (ℝfld freeLMod 𝐼) = (((ringLMod‘ℝfld) ↑s 𝐼) ↾s (Base‘(ℝfld freeLMod 𝐼)))) |
| 7 | 3, 6 | mpan 690 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (ℝfld freeLMod 𝐼) = (((ringLMod‘ℝfld) ↑s 𝐼) ↾s (Base‘(ℝfld freeLMod 𝐼)))) |
| 8 | fvex 6899 | . . . . . . 7 ⊢ ((subringAlg ‘ℝfld)‘ℝ) ∈ V | |
| 9 | rlmval 21160 | . . . . . . . . . 10 ⊢ (ringLMod‘ℝfld) = ((subringAlg ‘ℝfld)‘(Base‘ℝfld)) | |
| 10 | rebase 21578 | . . . . . . . . . . 11 ⊢ ℝ = (Base‘ℝfld) | |
| 11 | 10 | fveq2i 6889 | . . . . . . . . . 10 ⊢ ((subringAlg ‘ℝfld)‘ℝ) = ((subringAlg ‘ℝfld)‘(Base‘ℝfld)) |
| 12 | 9, 11 | eqtr4i 2760 | . . . . . . . . 9 ⊢ (ringLMod‘ℝfld) = ((subringAlg ‘ℝfld)‘ℝ) |
| 13 | 12 | oveq1i 7423 | . . . . . . . 8 ⊢ ((ringLMod‘ℝfld) ↑s 𝐼) = (((subringAlg ‘ℝfld)‘ℝ) ↑s 𝐼) |
| 14 | 10 | ressid 17267 | . . . . . . . . . 10 ⊢ (ℝfld ∈ Field → (ℝfld ↾s ℝ) = ℝfld) |
| 15 | 3, 14 | ax-mp 5 | . . . . . . . . 9 ⊢ (ℝfld ↾s ℝ) = ℝfld |
| 16 | eqidd 2735 | . . . . . . . . . . 11 ⊢ (⊤ → ((subringAlg ‘ℝfld)‘ℝ) = ((subringAlg ‘ℝfld)‘ℝ)) | |
| 17 | 10 | eqimssi 4024 | . . . . . . . . . . . 12 ⊢ ℝ ⊆ (Base‘ℝfld) |
| 18 | 17 | a1i 11 | . . . . . . . . . . 11 ⊢ (⊤ → ℝ ⊆ (Base‘ℝfld)) |
| 19 | 16, 18 | srasca 21147 | . . . . . . . . . 10 ⊢ (⊤ → (ℝfld ↾s ℝ) = (Scalar‘((subringAlg ‘ℝfld)‘ℝ))) |
| 20 | 19 | mptru 1546 | . . . . . . . . 9 ⊢ (ℝfld ↾s ℝ) = (Scalar‘((subringAlg ‘ℝfld)‘ℝ)) |
| 21 | 15, 20 | eqtr3i 2759 | . . . . . . . 8 ⊢ ℝfld = (Scalar‘((subringAlg ‘ℝfld)‘ℝ)) |
| 22 | 13, 21 | pwsval 17502 | . . . . . . 7 ⊢ ((((subringAlg ‘ℝfld)‘ℝ) ∈ V ∧ 𝐼 ∈ 𝑉) → ((ringLMod‘ℝfld) ↑s 𝐼) = (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) |
| 23 | 8, 22 | mpan 690 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → ((ringLMod‘ℝfld) ↑s 𝐼) = (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) |
| 24 | 23 | eqcomd 2740 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) = ((ringLMod‘ℝfld) ↑s 𝐼)) |
| 25 | 2 | fveq2d 6890 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → (Base‘𝐻) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))) |
| 26 | rrxbase.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐻) | |
| 27 | eqid 2734 | . . . . . . 7 ⊢ (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼)) | |
| 28 | 27, 5 | tcphbas 25189 | . . . . . 6 ⊢ (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| 29 | 25, 26, 28 | 3eqtr4g 2794 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → 𝐵 = (Base‘(ℝfld freeLMod 𝐼))) |
| 30 | 24, 29 | oveq12d 7431 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → ((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵) = (((ringLMod‘ℝfld) ↑s 𝐼) ↾s (Base‘(ℝfld freeLMod 𝐼)))) |
| 31 | 7, 30 | eqtr4d 2772 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (ℝfld freeLMod 𝐼) = ((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)) |
| 32 | 31 | fveq2d 6890 | . 2 ⊢ (𝐼 ∈ 𝑉 → (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))) |
| 33 | 2, 32 | eqtrd 2769 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ⊤wtru 1540 ∈ wcel 2107 Vcvv 3463 ⊆ wss 3931 {csn 4606 × cxp 5663 ‘cfv 6541 (class class class)co 7413 ℝcr 11136 Basecbs 17229 ↾s cress 17252 Scalarcsca 17276 Xscprds 17461 ↑s cpws 17462 Fieldcfield 20698 subringAlg csra 21138 ringLModcrglmod 21139 ℝfldcrefld 21576 freeLMod cfrlm 21720 toℂPreHilctcph 25137 ℝ^crrx 25353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 ax-addf 11216 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-ixp 8920 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-sup 9464 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-rp 13017 df-fz 13530 df-seq 14025 df-exp 14085 df-cj 15120 df-re 15121 df-im 15122 df-sqrt 15256 df-abs 15257 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-mulr 17287 df-starv 17288 df-sca 17289 df-vsca 17290 df-ip 17291 df-tset 17292 df-ple 17293 df-ds 17295 df-unif 17296 df-hom 17297 df-cco 17298 df-0g 17457 df-prds 17463 df-pws 17465 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-grp 18923 df-minusg 18924 df-subg 19110 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-cring 20201 df-oppr 20302 df-dvdsr 20325 df-unit 20326 df-invr 20356 df-dvr 20369 df-subrng 20514 df-subrg 20538 df-drng 20699 df-field 20700 df-sra 21140 df-rgmod 21141 df-cnfld 21327 df-refld 21577 df-dsmm 21706 df-frlm 21721 df-tng 24541 df-tcph 25139 df-rrx 25355 |
| This theorem is referenced by: rrxip 25360 rrxsca 25366 |
| Copyright terms: Public domain | W3C validator |