MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxprds Structured version   Visualization version   GIF version

Theorem rrxprds 24551
Description: Expand the definition of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
rrxval.r 𝐻 = (ℝ^‘𝐼)
rrxbase.b 𝐵 = (Base‘𝐻)
Assertion
Ref Expression
rrxprds (𝐼𝑉𝐻 = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)))

Proof of Theorem rrxprds
StepHypRef Expression
1 rrxval.r . . 3 𝐻 = (ℝ^‘𝐼)
21rrxval 24549 . 2 (𝐼𝑉𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
3 refld 20822 . . . . 5 fld ∈ Field
4 eqid 2740 . . . . . 6 (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼)
5 eqid 2740 . . . . . 6 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼))
64, 5frlmpws 20955 . . . . 5 ((ℝfld ∈ Field ∧ 𝐼𝑉) → (ℝfld freeLMod 𝐼) = (((ringLMod‘ℝfld) ↑s 𝐼) ↾s (Base‘(ℝfld freeLMod 𝐼))))
73, 6mpan 687 . . . 4 (𝐼𝑉 → (ℝfld freeLMod 𝐼) = (((ringLMod‘ℝfld) ↑s 𝐼) ↾s (Base‘(ℝfld freeLMod 𝐼))))
8 fvex 6784 . . . . . . 7 ((subringAlg ‘ℝfld)‘ℝ) ∈ V
9 rlmval 20459 . . . . . . . . . 10 (ringLMod‘ℝfld) = ((subringAlg ‘ℝfld)‘(Base‘ℝfld))
10 rebase 20809 . . . . . . . . . . 11 ℝ = (Base‘ℝfld)
1110fveq2i 6774 . . . . . . . . . 10 ((subringAlg ‘ℝfld)‘ℝ) = ((subringAlg ‘ℝfld)‘(Base‘ℝfld))
129, 11eqtr4i 2771 . . . . . . . . 9 (ringLMod‘ℝfld) = ((subringAlg ‘ℝfld)‘ℝ)
1312oveq1i 7281 . . . . . . . 8 ((ringLMod‘ℝfld) ↑s 𝐼) = (((subringAlg ‘ℝfld)‘ℝ) ↑s 𝐼)
1410ressid 16952 . . . . . . . . . 10 (ℝfld ∈ Field → (ℝflds ℝ) = ℝfld)
153, 14ax-mp 5 . . . . . . . . 9 (ℝflds ℝ) = ℝfld
16 eqidd 2741 . . . . . . . . . . 11 (⊤ → ((subringAlg ‘ℝfld)‘ℝ) = ((subringAlg ‘ℝfld)‘ℝ))
1710eqimssi 3984 . . . . . . . . . . . 12 ℝ ⊆ (Base‘ℝfld)
1817a1i 11 . . . . . . . . . . 11 (⊤ → ℝ ⊆ (Base‘ℝfld))
1916, 18srasca 20445 . . . . . . . . . 10 (⊤ → (ℝflds ℝ) = (Scalar‘((subringAlg ‘ℝfld)‘ℝ)))
2019mptru 1549 . . . . . . . . 9 (ℝflds ℝ) = (Scalar‘((subringAlg ‘ℝfld)‘ℝ))
2115, 20eqtr3i 2770 . . . . . . . 8 fld = (Scalar‘((subringAlg ‘ℝfld)‘ℝ))
2213, 21pwsval 17195 . . . . . . 7 ((((subringAlg ‘ℝfld)‘ℝ) ∈ V ∧ 𝐼𝑉) → ((ringLMod‘ℝfld) ↑s 𝐼) = (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})))
238, 22mpan 687 . . . . . 6 (𝐼𝑉 → ((ringLMod‘ℝfld) ↑s 𝐼) = (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})))
2423eqcomd 2746 . . . . 5 (𝐼𝑉 → (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) = ((ringLMod‘ℝfld) ↑s 𝐼))
252fveq2d 6775 . . . . . 6 (𝐼𝑉 → (Base‘𝐻) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
26 rrxbase.b . . . . . 6 𝐵 = (Base‘𝐻)
27 eqid 2740 . . . . . . 7 (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼))
2827, 5tcphbas 24381 . . . . . 6 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
2925, 26, 283eqtr4g 2805 . . . . 5 (𝐼𝑉𝐵 = (Base‘(ℝfld freeLMod 𝐼)))
3024, 29oveq12d 7289 . . . 4 (𝐼𝑉 → ((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵) = (((ringLMod‘ℝfld) ↑s 𝐼) ↾s (Base‘(ℝfld freeLMod 𝐼))))
317, 30eqtr4d 2783 . . 3 (𝐼𝑉 → (ℝfld freeLMod 𝐼) = ((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))
3231fveq2d 6775 . 2 (𝐼𝑉 → (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)))
332, 32eqtrd 2780 1 (𝐼𝑉𝐻 = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wtru 1543  wcel 2110  Vcvv 3431  wss 3892  {csn 4567   × cxp 5588  cfv 6432  (class class class)co 7271  cr 10871  Basecbs 16910  s cress 16939  Scalarcsca 16963  Xscprds 17154  s cpws 17155  Fieldcfield 19990  subringAlg csra 20428  ringLModcrglmod 20429  fldcrefld 20807   freeLMod cfrlm 20951  toℂPreHilctcph 24329  ℝ^crrx 24545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950  ax-addf 10951  ax-mulf 10952
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-tpos 8033  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-map 8600  df-ixp 8669  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-sup 9179  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12437  df-uz 12582  df-rp 12730  df-fz 13239  df-seq 13720  df-exp 13781  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-starv 16975  df-sca 16976  df-vsca 16977  df-ip 16978  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-hom 16984  df-cco 16985  df-0g 17150  df-prds 17156  df-pws 17158  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-grp 18578  df-minusg 18579  df-subg 18750  df-cmn 19386  df-mgp 19719  df-ur 19736  df-ring 19783  df-cring 19784  df-oppr 19860  df-dvdsr 19881  df-unit 19882  df-invr 19912  df-dvr 19923  df-drng 19991  df-field 19992  df-subrg 20020  df-sra 20432  df-rgmod 20433  df-cnfld 20596  df-refld 20808  df-dsmm 20937  df-frlm 20952  df-tng 23738  df-tcph 24331  df-rrx 24547
This theorem is referenced by:  rrxip  24552  rrxsca  24558
  Copyright terms: Public domain W3C validator