![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbthb | Structured version Visualization version GIF version |
Description: Schroeder-Bernstein Theorem and its converse. (Contributed by NM, 8-Jun-1998.) |
Ref | Expression |
---|---|
sbthb | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) ↔ 𝐴 ≈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbth 9118 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵) | |
2 | endom 9000 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
3 | ensym 9024 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
4 | endom 9000 | . . . 4 ⊢ (𝐵 ≈ 𝐴 → 𝐵 ≼ 𝐴) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≼ 𝐴) |
6 | 2, 5 | jca 510 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴)) |
7 | 1, 6 | impbii 208 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) ↔ 𝐴 ≈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 class class class wbr 5149 ≈ cen 8961 ≼ cdom 8962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-er 8725 df-en 8965 df-dom 8966 |
This theorem is referenced by: sbthcl 9120 dom0OLD 9128 carden2 10012 axgroth2 10850 |
Copyright terms: Public domain | W3C validator |