| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > carden2 | Structured version Visualization version GIF version | ||
| Description: Two numerable sets are equinumerous iff their cardinal numbers are equal. Unlike carden 10464, the Axiom of Choice is not required. (Contributed by Mario Carneiro, 22-Sep-2013.) |
| Ref | Expression |
|---|---|
| carden2 | ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) = (card‘𝐵) ↔ 𝐴 ≈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | carddom2 9892 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴 ≼ 𝐵)) | |
| 2 | carddom2 9892 | . . . 4 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ dom card) → ((card‘𝐵) ⊆ (card‘𝐴) ↔ 𝐵 ≼ 𝐴)) | |
| 3 | 2 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐵) ⊆ (card‘𝐴) ↔ 𝐵 ≼ 𝐴)) |
| 4 | 1, 3 | anbi12d 632 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (((card‘𝐴) ⊆ (card‘𝐵) ∧ (card‘𝐵) ⊆ (card‘𝐴)) ↔ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴))) |
| 5 | eqss 3953 | . . 3 ⊢ ((card‘𝐴) = (card‘𝐵) ↔ ((card‘𝐴) ⊆ (card‘𝐵) ∧ (card‘𝐵) ⊆ (card‘𝐴))) | |
| 6 | 5 | bicomi 224 | . 2 ⊢ (((card‘𝐴) ⊆ (card‘𝐵) ∧ (card‘𝐵) ⊆ (card‘𝐴)) ↔ (card‘𝐴) = (card‘𝐵)) |
| 7 | sbthb 9022 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) ↔ 𝐴 ≈ 𝐵) | |
| 8 | 4, 6, 7 | 3bitr3g 313 | 1 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) = (card‘𝐵) ↔ 𝐴 ≈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 class class class wbr 5095 dom cdm 5623 ‘cfv 6486 ≈ cen 8876 ≼ cdom 8877 cardccrd 9850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-card 9854 |
| This theorem is referenced by: cardsdom2 9903 pm54.43lem 9915 sdom2en01 10215 fin23lem22 10240 fin1a2lem9 10321 pwfseqlem4 10575 hashen 14273 |
| Copyright terms: Public domain | W3C validator |