| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > carden2 | Structured version Visualization version GIF version | ||
| Description: Two numerable sets are equinumerous iff their cardinal numbers are equal. Unlike carden 10437, the Axiom of Choice is not required. (Contributed by Mario Carneiro, 22-Sep-2013.) |
| Ref | Expression |
|---|---|
| carden2 | ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) = (card‘𝐵) ↔ 𝐴 ≈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | carddom2 9865 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴 ≼ 𝐵)) | |
| 2 | carddom2 9865 | . . . 4 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ dom card) → ((card‘𝐵) ⊆ (card‘𝐴) ↔ 𝐵 ≼ 𝐴)) | |
| 3 | 2 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐵) ⊆ (card‘𝐴) ↔ 𝐵 ≼ 𝐴)) |
| 4 | 1, 3 | anbi12d 632 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (((card‘𝐴) ⊆ (card‘𝐵) ∧ (card‘𝐵) ⊆ (card‘𝐴)) ↔ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴))) |
| 5 | eqss 3945 | . . 3 ⊢ ((card‘𝐴) = (card‘𝐵) ↔ ((card‘𝐴) ⊆ (card‘𝐵) ∧ (card‘𝐵) ⊆ (card‘𝐴))) | |
| 6 | 5 | bicomi 224 | . 2 ⊢ (((card‘𝐴) ⊆ (card‘𝐵) ∧ (card‘𝐵) ⊆ (card‘𝐴)) ↔ (card‘𝐴) = (card‘𝐵)) |
| 7 | sbthb 9006 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) ↔ 𝐴 ≈ 𝐵) | |
| 8 | 4, 6, 7 | 3bitr3g 313 | 1 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) = (card‘𝐵) ↔ 𝐴 ≈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 class class class wbr 5086 dom cdm 5611 ‘cfv 6476 ≈ cen 8861 ≼ cdom 8862 cardccrd 9823 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ord 6304 df-on 6305 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-card 9827 |
| This theorem is referenced by: cardsdom2 9876 pm54.43lem 9888 sdom2en01 10188 fin23lem22 10213 fin1a2lem9 10294 pwfseqlem4 10548 hashen 14249 |
| Copyright terms: Public domain | W3C validator |