Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  carden2 Structured version   Visualization version   GIF version

Theorem carden2 9394
 Description: Two numerable sets are equinumerous iff their cardinal numbers are equal. Unlike carden 9951, the Axiom of Choice is not required. (Contributed by Mario Carneiro, 22-Sep-2013.)
Assertion
Ref Expression
carden2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) = (card‘𝐵) ↔ 𝐴𝐵))

Proof of Theorem carden2
StepHypRef Expression
1 carddom2 9384 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴𝐵))
2 carddom2 9384 . . . 4 ((𝐵 ∈ dom card ∧ 𝐴 ∈ dom card) → ((card‘𝐵) ⊆ (card‘𝐴) ↔ 𝐵𝐴))
32ancoms 461 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐵) ⊆ (card‘𝐴) ↔ 𝐵𝐴))
41, 3anbi12d 632 . 2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (((card‘𝐴) ⊆ (card‘𝐵) ∧ (card‘𝐵) ⊆ (card‘𝐴)) ↔ (𝐴𝐵𝐵𝐴)))
5 eqss 3961 . . 3 ((card‘𝐴) = (card‘𝐵) ↔ ((card‘𝐴) ⊆ (card‘𝐵) ∧ (card‘𝐵) ⊆ (card‘𝐴)))
65bicomi 226 . 2 (((card‘𝐴) ⊆ (card‘𝐵) ∧ (card‘𝐵) ⊆ (card‘𝐴)) ↔ (card‘𝐴) = (card‘𝐵))
7 sbthb 8616 . 2 ((𝐴𝐵𝐵𝐴) ↔ 𝐴𝐵)
84, 6, 73bitr3g 315 1 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) = (card‘𝐵) ↔ 𝐴𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   = wceq 1537   ∈ wcel 2114   ⊆ wss 3913   class class class wbr 5042  dom cdm 5531  ‘cfv 6331   ≈ cen 8484   ≼ cdom 8485  cardccrd 9342 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-rab 3134  df-v 3475  df-sbc 3753  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-int 4853  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-ord 6170  df-on 6171  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490  df-card 9346 This theorem is referenced by:  cardsdom2  9395  pm54.43lem  9406  sdom2en01  9702  fin23lem22  9727  fin1a2lem9  9808  pwfseqlem4  10062  hashen  13692
 Copyright terms: Public domain W3C validator