MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  carden2 Structured version   Visualization version   GIF version

Theorem carden2 9982
Description: Two numerable sets are equinumerous iff their cardinal numbers are equal. Unlike carden 10546, the Axiom of Choice is not required. (Contributed by Mario Carneiro, 22-Sep-2013.)
Assertion
Ref Expression
carden2 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ ((cardβ€˜π΄) = (cardβ€˜π΅) ↔ 𝐴 β‰ˆ 𝐡))

Proof of Theorem carden2
StepHypRef Expression
1 carddom2 9972 . . 3 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ ((cardβ€˜π΄) βŠ† (cardβ€˜π΅) ↔ 𝐴 β‰Ό 𝐡))
2 carddom2 9972 . . . 4 ((𝐡 ∈ dom card ∧ 𝐴 ∈ dom card) β†’ ((cardβ€˜π΅) βŠ† (cardβ€˜π΄) ↔ 𝐡 β‰Ό 𝐴))
32ancoms 460 . . 3 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ ((cardβ€˜π΅) βŠ† (cardβ€˜π΄) ↔ 𝐡 β‰Ό 𝐴))
41, 3anbi12d 632 . 2 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ (((cardβ€˜π΄) βŠ† (cardβ€˜π΅) ∧ (cardβ€˜π΅) βŠ† (cardβ€˜π΄)) ↔ (𝐴 β‰Ό 𝐡 ∧ 𝐡 β‰Ό 𝐴)))
5 eqss 3998 . . 3 ((cardβ€˜π΄) = (cardβ€˜π΅) ↔ ((cardβ€˜π΄) βŠ† (cardβ€˜π΅) ∧ (cardβ€˜π΅) βŠ† (cardβ€˜π΄)))
65bicomi 223 . 2 (((cardβ€˜π΄) βŠ† (cardβ€˜π΅) ∧ (cardβ€˜π΅) βŠ† (cardβ€˜π΄)) ↔ (cardβ€˜π΄) = (cardβ€˜π΅))
7 sbthb 9094 . 2 ((𝐴 β‰Ό 𝐡 ∧ 𝐡 β‰Ό 𝐴) ↔ 𝐴 β‰ˆ 𝐡)
84, 6, 73bitr3g 313 1 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ ((cardβ€˜π΄) = (cardβ€˜π΅) ↔ 𝐴 β‰ˆ 𝐡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107   βŠ† wss 3949   class class class wbr 5149  dom cdm 5677  β€˜cfv 6544   β‰ˆ cen 8936   β‰Ό cdom 8937  cardccrd 9930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-card 9934
This theorem is referenced by:  cardsdom2  9983  pm54.43lem  9995  sdom2en01  10297  fin23lem22  10322  fin1a2lem9  10403  pwfseqlem4  10657  hashen  14307
  Copyright terms: Public domain W3C validator