![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > scaffn | Structured version Visualization version GIF version |
Description: The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
scaffval.b | β’ π΅ = (Baseβπ) |
scaffval.f | β’ πΉ = (Scalarβπ) |
scaffval.k | β’ πΎ = (BaseβπΉ) |
scaffval.a | β’ β = ( Β·sf βπ) |
Ref | Expression |
---|---|
scaffn | β’ β Fn (πΎ Γ π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scaffval.b | . . 3 β’ π΅ = (Baseβπ) | |
2 | scaffval.f | . . 3 β’ πΉ = (Scalarβπ) | |
3 | scaffval.k | . . 3 β’ πΎ = (BaseβπΉ) | |
4 | scaffval.a | . . 3 β’ β = ( Β·sf βπ) | |
5 | eqid 2730 | . . 3 β’ ( Β·π βπ) = ( Β·π βπ) | |
6 | 1, 2, 3, 4, 5 | scaffval 20636 | . 2 β’ β = (π₯ β πΎ, π¦ β π΅ β¦ (π₯( Β·π βπ)π¦)) |
7 | ovex 7446 | . 2 β’ (π₯( Β·π βπ)π¦) β V | |
8 | 6, 7 | fnmpoi 8060 | 1 β’ β Fn (πΎ Γ π΅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Γ cxp 5675 Fn wfn 6539 βcfv 6544 (class class class)co 7413 Basecbs 17150 Scalarcsca 17206 Β·π cvsca 17207 Β·sf cscaf 20617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7979 df-2nd 7980 df-scaf 20619 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |