MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scaffn Structured version   Visualization version   GIF version

Theorem scaffn 20639
Description: The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
scaffval.b 𝐡 = (Baseβ€˜π‘Š)
scaffval.f 𝐹 = (Scalarβ€˜π‘Š)
scaffval.k 𝐾 = (Baseβ€˜πΉ)
scaffval.a βˆ™ = ( Β·sf β€˜π‘Š)
Assertion
Ref Expression
scaffn βˆ™ Fn (𝐾 Γ— 𝐡)

Proof of Theorem scaffn
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scaffval.b . . 3 𝐡 = (Baseβ€˜π‘Š)
2 scaffval.f . . 3 𝐹 = (Scalarβ€˜π‘Š)
3 scaffval.k . . 3 𝐾 = (Baseβ€˜πΉ)
4 scaffval.a . . 3 βˆ™ = ( Β·sf β€˜π‘Š)
5 eqid 2730 . . 3 ( ·𝑠 β€˜π‘Š) = ( ·𝑠 β€˜π‘Š)
61, 2, 3, 4, 5scaffval 20636 . 2 βˆ™ = (π‘₯ ∈ 𝐾, 𝑦 ∈ 𝐡 ↦ (π‘₯( ·𝑠 β€˜π‘Š)𝑦))
7 ovex 7446 . 2 (π‘₯( ·𝑠 β€˜π‘Š)𝑦) ∈ V
86, 7fnmpoi 8060 1 βˆ™ Fn (𝐾 Γ— 𝐡)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539   Γ— cxp 5675   Fn wfn 6539  β€˜cfv 6544  (class class class)co 7413  Basecbs 17150  Scalarcsca 17206   ·𝑠 cvsca 17207   Β·sf cscaf 20617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7979  df-2nd 7980  df-scaf 20619
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator