MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scaffn Structured version   Visualization version   GIF version

Theorem scaffn 20845
Description: The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
scaffval.b 𝐵 = (Base‘𝑊)
scaffval.f 𝐹 = (Scalar‘𝑊)
scaffval.k 𝐾 = (Base‘𝐹)
scaffval.a = ( ·sf𝑊)
Assertion
Ref Expression
scaffn Fn (𝐾 × 𝐵)

Proof of Theorem scaffn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scaffval.b . . 3 𝐵 = (Base‘𝑊)
2 scaffval.f . . 3 𝐹 = (Scalar‘𝑊)
3 scaffval.k . . 3 𝐾 = (Base‘𝐹)
4 scaffval.a . . 3 = ( ·sf𝑊)
5 eqid 2736 . . 3 ( ·𝑠𝑊) = ( ·𝑠𝑊)
61, 2, 3, 4, 5scaffval 20842 . 2 = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥( ·𝑠𝑊)𝑦))
7 ovex 7443 . 2 (𝑥( ·𝑠𝑊)𝑦) ∈ V
86, 7fnmpoi 8074 1 Fn (𝐾 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540   × cxp 5657   Fn wfn 6531  cfv 6536  (class class class)co 7410  Basecbs 17233  Scalarcsca 17279   ·𝑠 cvsca 17280   ·sf cscaf 20823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-scaf 20825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator