Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > scaffn | Structured version Visualization version GIF version |
Description: The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
scaffval.b | ⊢ 𝐵 = (Base‘𝑊) |
scaffval.f | ⊢ 𝐹 = (Scalar‘𝑊) |
scaffval.k | ⊢ 𝐾 = (Base‘𝐹) |
scaffval.a | ⊢ ∙ = ( ·sf ‘𝑊) |
Ref | Expression |
---|---|
scaffn | ⊢ ∙ Fn (𝐾 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scaffval.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
2 | scaffval.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | scaffval.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
4 | scaffval.a | . . 3 ⊢ ∙ = ( ·sf ‘𝑊) | |
5 | eqid 2739 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
6 | 1, 2, 3, 4, 5 | scaffval 20031 | . 2 ⊢ ∙ = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)) |
7 | ovex 7285 | . 2 ⊢ (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ V | |
8 | 6, 7 | fnmpoi 7880 | 1 ⊢ ∙ Fn (𝐾 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 × cxp 5577 Fn wfn 6410 ‘cfv 6415 (class class class)co 7252 Basecbs 16815 Scalarcsca 16866 ·𝑠 cvsca 16867 ·sf cscaf 20014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-id 5479 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-fv 6423 df-ov 7255 df-oprab 7256 df-mpo 7257 df-1st 7801 df-2nd 7802 df-scaf 20016 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |