MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scaffn Structured version   Visualization version   GIF version

Theorem scaffn 20144
Description: The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
scaffval.b 𝐵 = (Base‘𝑊)
scaffval.f 𝐹 = (Scalar‘𝑊)
scaffval.k 𝐾 = (Base‘𝐹)
scaffval.a = ( ·sf𝑊)
Assertion
Ref Expression
scaffn Fn (𝐾 × 𝐵)

Proof of Theorem scaffn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scaffval.b . . 3 𝐵 = (Base‘𝑊)
2 scaffval.f . . 3 𝐹 = (Scalar‘𝑊)
3 scaffval.k . . 3 𝐾 = (Base‘𝐹)
4 scaffval.a . . 3 = ( ·sf𝑊)
5 eqid 2738 . . 3 ( ·𝑠𝑊) = ( ·𝑠𝑊)
61, 2, 3, 4, 5scaffval 20141 . 2 = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥( ·𝑠𝑊)𝑦))
7 ovex 7308 . 2 (𝑥( ·𝑠𝑊)𝑦) ∈ V
86, 7fnmpoi 7910 1 Fn (𝐾 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539   × cxp 5587   Fn wfn 6428  cfv 6433  (class class class)co 7275  Basecbs 16912  Scalarcsca 16965   ·𝑠 cvsca 16966   ·sf cscaf 20124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-scaf 20126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator