![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > scafeq | Structured version Visualization version GIF version |
Description: If the scalar multiplication operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
scaffval.b | β’ π΅ = (Baseβπ) |
scaffval.f | β’ πΉ = (Scalarβπ) |
scaffval.k | β’ πΎ = (BaseβπΉ) |
scaffval.a | β’ β = ( Β·sf βπ) |
scaffval.s | β’ Β· = ( Β·π βπ) |
Ref | Expression |
---|---|
scafeq | β’ ( Β· Fn (πΎ Γ π΅) β β = Β· ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scaffval.b | . . 3 β’ π΅ = (Baseβπ) | |
2 | scaffval.f | . . 3 β’ πΉ = (Scalarβπ) | |
3 | scaffval.k | . . 3 β’ πΎ = (BaseβπΉ) | |
4 | scaffval.a | . . 3 β’ β = ( Β·sf βπ) | |
5 | scaffval.s | . . 3 β’ Β· = ( Β·π βπ) | |
6 | 1, 2, 3, 4, 5 | scaffval 20634 | . 2 β’ β = (π₯ β πΎ, π¦ β π΅ β¦ (π₯ Β· π¦)) |
7 | fnov 7542 | . . 3 β’ ( Β· Fn (πΎ Γ π΅) β Β· = (π₯ β πΎ, π¦ β π΅ β¦ (π₯ Β· π¦))) | |
8 | 7 | biimpi 215 | . 2 β’ ( Β· Fn (πΎ Γ π΅) β Β· = (π₯ β πΎ, π¦ β π΅ β¦ (π₯ Β· π¦))) |
9 | 6, 8 | eqtr4id 2789 | 1 β’ ( Β· Fn (πΎ Γ π΅) β β = Β· ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1539 Γ cxp 5673 Fn wfn 6537 βcfv 6542 (class class class)co 7411 β cmpo 7413 Basecbs 17148 Scalarcsca 17204 Β·π cvsca 17205 Β·sf cscaf 20615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-scaf 20617 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |