| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > scafeq | Structured version Visualization version GIF version | ||
| Description: If the scalar multiplication operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| scaffval.b | ⊢ 𝐵 = (Base‘𝑊) |
| scaffval.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| scaffval.k | ⊢ 𝐾 = (Base‘𝐹) |
| scaffval.a | ⊢ ∙ = ( ·sf ‘𝑊) |
| scaffval.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| Ref | Expression |
|---|---|
| scafeq | ⊢ ( · Fn (𝐾 × 𝐵) → ∙ = · ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scaffval.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
| 2 | scaffval.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | scaffval.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
| 4 | scaffval.a | . . 3 ⊢ ∙ = ( ·sf ‘𝑊) | |
| 5 | scaffval.s | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | scaffval 20813 | . 2 ⊢ ∙ = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥 · 𝑦)) |
| 7 | fnov 7477 | . . 3 ⊢ ( · Fn (𝐾 × 𝐵) ↔ · = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥 · 𝑦))) | |
| 8 | 7 | biimpi 216 | . 2 ⊢ ( · Fn (𝐾 × 𝐵) → · = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥 · 𝑦))) |
| 9 | 6, 8 | eqtr4id 2785 | 1 ⊢ ( · Fn (𝐾 × 𝐵) → ∙ = · ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 × cxp 5612 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 Basecbs 17120 Scalarcsca 17164 ·𝑠 cvsca 17165 ·sf cscaf 20794 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-scaf 20796 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |