Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > scafeq | Structured version Visualization version GIF version |
Description: If the scalar multiplication operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
scaffval.b | ⊢ 𝐵 = (Base‘𝑊) |
scaffval.f | ⊢ 𝐹 = (Scalar‘𝑊) |
scaffval.k | ⊢ 𝐾 = (Base‘𝐹) |
scaffval.a | ⊢ ∙ = ( ·sf ‘𝑊) |
scaffval.s | ⊢ · = ( ·𝑠 ‘𝑊) |
Ref | Expression |
---|---|
scafeq | ⊢ ( · Fn (𝐾 × 𝐵) → ∙ = · ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scaffval.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
2 | scaffval.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | scaffval.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
4 | scaffval.a | . . 3 ⊢ ∙ = ( ·sf ‘𝑊) | |
5 | scaffval.s | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
6 | 1, 2, 3, 4, 5 | scaffval 20056 | . 2 ⊢ ∙ = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥 · 𝑦)) |
7 | fnov 7383 | . . 3 ⊢ ( · Fn (𝐾 × 𝐵) ↔ · = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥 · 𝑦))) | |
8 | 7 | biimpi 215 | . 2 ⊢ ( · Fn (𝐾 × 𝐵) → · = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥 · 𝑦))) |
9 | 6, 8 | eqtr4id 2798 | 1 ⊢ ( · Fn (𝐾 × 𝐵) → ∙ = · ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 × cxp 5578 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 Basecbs 16840 Scalarcsca 16891 ·𝑠 cvsca 16892 ·sf cscaf 20039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-scaf 20041 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |