MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scafeq Structured version   Visualization version   GIF version

Theorem scafeq 19201
Description: If the scalar multiplication operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
scaffval.b 𝐵 = (Base‘𝑊)
scaffval.f 𝐹 = (Scalar‘𝑊)
scaffval.k 𝐾 = (Base‘𝐹)
scaffval.a = ( ·sf𝑊)
scaffval.s · = ( ·𝑠𝑊)
Assertion
Ref Expression
scafeq ( · Fn (𝐾 × 𝐵) → = · )

Proof of Theorem scafeq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnov 7002 . . 3 ( · Fn (𝐾 × 𝐵) ↔ · = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
21biimpi 208 . 2 ( · Fn (𝐾 × 𝐵) → · = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
3 scaffval.b . . 3 𝐵 = (Base‘𝑊)
4 scaffval.f . . 3 𝐹 = (Scalar‘𝑊)
5 scaffval.k . . 3 𝐾 = (Base‘𝐹)
6 scaffval.a . . 3 = ( ·sf𝑊)
7 scaffval.s . . 3 · = ( ·𝑠𝑊)
83, 4, 5, 6, 7scaffval 19199 . 2 = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦))
92, 8syl6reqr 2852 1 ( · Fn (𝐾 × 𝐵) → = · )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1653   × cxp 5310   Fn wfn 6096  cfv 6101  (class class class)co 6878  cmpt2 6880  Basecbs 16184  Scalarcsca 16270   ·𝑠 cvsca 16271   ·sf cscaf 19182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-fv 6109  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-1st 7401  df-2nd 7402  df-slot 16188  df-base 16190  df-scaf 19184
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator