MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1scmat Structured version   Visualization version   GIF version

Theorem mat1scmat 21436
Description: A 1-dimensional matrix over a ring is always a scalar matrix (and therefore, by scmatdmat 21412, also a diagonal matrix). (Contributed by AV, 21-Dec-2019.)
Hypotheses
Ref Expression
mat1scmat.a 𝐴 = (𝑁 Mat 𝑅)
mat1scmat.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
mat1scmat ((𝑁𝑉 ∧ (♯‘𝑁) = 1 ∧ 𝑅 ∈ Ring) → (𝑀𝐵𝑀 ∈ (𝑁 ScMat 𝑅)))

Proof of Theorem mat1scmat
Dummy variables 𝑒 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hash1snb 13986 . . 3 (𝑁𝑉 → ((♯‘𝑁) = 1 ↔ ∃𝑒 𝑁 = {𝑒}))
2 simpr 488 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (Base‘({𝑒} Mat 𝑅))) → 𝑀 ∈ (Base‘({𝑒} Mat 𝑅)))
3 eqid 2737 . . . . . . . . . . 11 ({𝑒} Mat 𝑅) = ({𝑒} Mat 𝑅)
4 eqid 2737 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
5 eqid 2737 . . . . . . . . . . 11 𝑒, 𝑒⟩ = ⟨𝑒, 𝑒
63, 4, 5mat1dimelbas 21368 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑒 ∈ V) → (𝑀 ∈ (Base‘({𝑒} Mat 𝑅)) ↔ ∃𝑐 ∈ (Base‘𝑅)𝑀 = {⟨⟨𝑒, 𝑒⟩, 𝑐⟩}))
76elvd 3415 . . . . . . . . 9 (𝑅 ∈ Ring → (𝑀 ∈ (Base‘({𝑒} Mat 𝑅)) ↔ ∃𝑐 ∈ (Base‘𝑅)𝑀 = {⟨⟨𝑒, 𝑒⟩, 𝑐⟩}))
8 simpr 488 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑀 = {⟨⟨𝑒, 𝑒⟩, 𝑐⟩}) → 𝑀 = {⟨⟨𝑒, 𝑒⟩, 𝑐⟩})
9 vex 3412 . . . . . . . . . . . . . . . . 17 𝑒 ∈ V
109a1i 11 . . . . . . . . . . . . . . . 16 (𝑐 ∈ (Base‘𝑅) → 𝑒 ∈ V)
113, 4, 5mat1dimid 21371 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝑒 ∈ V) → (1r‘({𝑒} Mat 𝑅)) = {⟨⟨𝑒, 𝑒⟩, (1r𝑅)⟩})
1210, 11sylan2 596 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑐 ∈ (Base‘𝑅)) → (1r‘({𝑒} Mat 𝑅)) = {⟨⟨𝑒, 𝑒⟩, (1r𝑅)⟩})
1312oveq2d 7229 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑐 ∈ (Base‘𝑅)) → (𝑐( ·𝑠 ‘({𝑒} Mat 𝑅))(1r‘({𝑒} Mat 𝑅))) = (𝑐( ·𝑠 ‘({𝑒} Mat 𝑅)){⟨⟨𝑒, 𝑒⟩, (1r𝑅)⟩}))
14 simpl 486 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝑐 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
1514, 9jctir 524 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑐 ∈ (Base‘𝑅)) → (𝑅 ∈ Ring ∧ 𝑒 ∈ V))
16 simpr 488 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑐 ∈ (Base‘𝑅)) → 𝑐 ∈ (Base‘𝑅))
17 eqid 2737 . . . . . . . . . . . . . . . . 17 (1r𝑅) = (1r𝑅)
184, 17ringidcl 19586 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
1918adantr 484 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑐 ∈ (Base‘𝑅)) → (1r𝑅) ∈ (Base‘𝑅))
203, 4, 5mat1dimscm 21372 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝑒 ∈ V) ∧ (𝑐 ∈ (Base‘𝑅) ∧ (1r𝑅) ∈ (Base‘𝑅))) → (𝑐( ·𝑠 ‘({𝑒} Mat 𝑅)){⟨⟨𝑒, 𝑒⟩, (1r𝑅)⟩}) = {⟨⟨𝑒, 𝑒⟩, (𝑐(.r𝑅)(1r𝑅))⟩})
2115, 16, 19, 20syl12anc 837 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑐 ∈ (Base‘𝑅)) → (𝑐( ·𝑠 ‘({𝑒} Mat 𝑅)){⟨⟨𝑒, 𝑒⟩, (1r𝑅)⟩}) = {⟨⟨𝑒, 𝑒⟩, (𝑐(.r𝑅)(1r𝑅))⟩})
22 eqid 2737 . . . . . . . . . . . . . . . . 17 (.r𝑅) = (.r𝑅)
234, 22, 17ringridm 19590 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝑐 ∈ (Base‘𝑅)) → (𝑐(.r𝑅)(1r𝑅)) = 𝑐)
2423opeq2d 4791 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑐 ∈ (Base‘𝑅)) → ⟨⟨𝑒, 𝑒⟩, (𝑐(.r𝑅)(1r𝑅))⟩ = ⟨⟨𝑒, 𝑒⟩, 𝑐⟩)
2524sneqd 4553 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑐 ∈ (Base‘𝑅)) → {⟨⟨𝑒, 𝑒⟩, (𝑐(.r𝑅)(1r𝑅))⟩} = {⟨⟨𝑒, 𝑒⟩, 𝑐⟩})
2613, 21, 253eqtrrd 2782 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑐 ∈ (Base‘𝑅)) → {⟨⟨𝑒, 𝑒⟩, 𝑐⟩} = (𝑐( ·𝑠 ‘({𝑒} Mat 𝑅))(1r‘({𝑒} Mat 𝑅))))
2726adantr 484 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑀 = {⟨⟨𝑒, 𝑒⟩, 𝑐⟩}) → {⟨⟨𝑒, 𝑒⟩, 𝑐⟩} = (𝑐( ·𝑠 ‘({𝑒} Mat 𝑅))(1r‘({𝑒} Mat 𝑅))))
288, 27eqtrd 2777 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑀 = {⟨⟨𝑒, 𝑒⟩, 𝑐⟩}) → 𝑀 = (𝑐( ·𝑠 ‘({𝑒} Mat 𝑅))(1r‘({𝑒} Mat 𝑅))))
2928ex 416 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑐 ∈ (Base‘𝑅)) → (𝑀 = {⟨⟨𝑒, 𝑒⟩, 𝑐⟩} → 𝑀 = (𝑐( ·𝑠 ‘({𝑒} Mat 𝑅))(1r‘({𝑒} Mat 𝑅)))))
3029reximdva 3193 . . . . . . . . 9 (𝑅 ∈ Ring → (∃𝑐 ∈ (Base‘𝑅)𝑀 = {⟨⟨𝑒, 𝑒⟩, 𝑐⟩} → ∃𝑐 ∈ (Base‘𝑅)𝑀 = (𝑐( ·𝑠 ‘({𝑒} Mat 𝑅))(1r‘({𝑒} Mat 𝑅)))))
317, 30sylbid 243 . . . . . . . 8 (𝑅 ∈ Ring → (𝑀 ∈ (Base‘({𝑒} Mat 𝑅)) → ∃𝑐 ∈ (Base‘𝑅)𝑀 = (𝑐( ·𝑠 ‘({𝑒} Mat 𝑅))(1r‘({𝑒} Mat 𝑅)))))
3231imp 410 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (Base‘({𝑒} Mat 𝑅))) → ∃𝑐 ∈ (Base‘𝑅)𝑀 = (𝑐( ·𝑠 ‘({𝑒} Mat 𝑅))(1r‘({𝑒} Mat 𝑅))))
33 snfi 8721 . . . . . . . 8 {𝑒} ∈ Fin
34 simpl 486 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (Base‘({𝑒} Mat 𝑅))) → 𝑅 ∈ Ring)
35 eqid 2737 . . . . . . . . 9 (Base‘({𝑒} Mat 𝑅)) = (Base‘({𝑒} Mat 𝑅))
36 eqid 2737 . . . . . . . . 9 (1r‘({𝑒} Mat 𝑅)) = (1r‘({𝑒} Mat 𝑅))
37 eqid 2737 . . . . . . . . 9 ( ·𝑠 ‘({𝑒} Mat 𝑅)) = ( ·𝑠 ‘({𝑒} Mat 𝑅))
38 eqid 2737 . . . . . . . . 9 ({𝑒} ScMat 𝑅) = ({𝑒} ScMat 𝑅)
394, 3, 35, 36, 37, 38scmatel 21402 . . . . . . . 8 (({𝑒} ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀 ∈ ({𝑒} ScMat 𝑅) ↔ (𝑀 ∈ (Base‘({𝑒} Mat 𝑅)) ∧ ∃𝑐 ∈ (Base‘𝑅)𝑀 = (𝑐( ·𝑠 ‘({𝑒} Mat 𝑅))(1r‘({𝑒} Mat 𝑅))))))
4033, 34, 39sylancr 590 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (Base‘({𝑒} Mat 𝑅))) → (𝑀 ∈ ({𝑒} ScMat 𝑅) ↔ (𝑀 ∈ (Base‘({𝑒} Mat 𝑅)) ∧ ∃𝑐 ∈ (Base‘𝑅)𝑀 = (𝑐( ·𝑠 ‘({𝑒} Mat 𝑅))(1r‘({𝑒} Mat 𝑅))))))
412, 32, 40mpbir2and 713 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (Base‘({𝑒} Mat 𝑅))) → 𝑀 ∈ ({𝑒} ScMat 𝑅))
4241ex 416 . . . . 5 (𝑅 ∈ Ring → (𝑀 ∈ (Base‘({𝑒} Mat 𝑅)) → 𝑀 ∈ ({𝑒} ScMat 𝑅)))
43 mat1scmat.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
44 mat1scmat.a . . . . . . . . . 10 𝐴 = (𝑁 Mat 𝑅)
4544fveq2i 6720 . . . . . . . . 9 (Base‘𝐴) = (Base‘(𝑁 Mat 𝑅))
4643, 45eqtri 2765 . . . . . . . 8 𝐵 = (Base‘(𝑁 Mat 𝑅))
47 fvoveq1 7236 . . . . . . . 8 (𝑁 = {𝑒} → (Base‘(𝑁 Mat 𝑅)) = (Base‘({𝑒} Mat 𝑅)))
4846, 47syl5eq 2790 . . . . . . 7 (𝑁 = {𝑒} → 𝐵 = (Base‘({𝑒} Mat 𝑅)))
4948eleq2d 2823 . . . . . 6 (𝑁 = {𝑒} → (𝑀𝐵𝑀 ∈ (Base‘({𝑒} Mat 𝑅))))
50 oveq1 7220 . . . . . . 7 (𝑁 = {𝑒} → (𝑁 ScMat 𝑅) = ({𝑒} ScMat 𝑅))
5150eleq2d 2823 . . . . . 6 (𝑁 = {𝑒} → (𝑀 ∈ (𝑁 ScMat 𝑅) ↔ 𝑀 ∈ ({𝑒} ScMat 𝑅)))
5249, 51imbi12d 348 . . . . 5 (𝑁 = {𝑒} → ((𝑀𝐵𝑀 ∈ (𝑁 ScMat 𝑅)) ↔ (𝑀 ∈ (Base‘({𝑒} Mat 𝑅)) → 𝑀 ∈ ({𝑒} ScMat 𝑅))))
5342, 52syl5ibr 249 . . . 4 (𝑁 = {𝑒} → (𝑅 ∈ Ring → (𝑀𝐵𝑀 ∈ (𝑁 ScMat 𝑅))))
5453exlimiv 1938 . . 3 (∃𝑒 𝑁 = {𝑒} → (𝑅 ∈ Ring → (𝑀𝐵𝑀 ∈ (𝑁 ScMat 𝑅))))
551, 54syl6bi 256 . 2 (𝑁𝑉 → ((♯‘𝑁) = 1 → (𝑅 ∈ Ring → (𝑀𝐵𝑀 ∈ (𝑁 ScMat 𝑅)))))
56553imp 1113 1 ((𝑁𝑉 ∧ (♯‘𝑁) = 1 ∧ 𝑅 ∈ Ring) → (𝑀𝐵𝑀 ∈ (𝑁 ScMat 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wex 1787  wcel 2110  wrex 3062  Vcvv 3408  {csn 4541  cop 4547  cfv 6380  (class class class)co 7213  Fincfn 8626  1c1 10730  chash 13896  Basecbs 16760  .rcmulr 16803   ·𝑠 cvsca 16806  1rcur 19516  Ringcrg 19562   Mat cmat 21304   ScMat cscmat 21386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-ot 4550  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-oadd 8206  df-er 8391  df-map 8510  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-sup 9058  df-oi 9126  df-dju 9517  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-fz 13096  df-fzo 13239  df-seq 13575  df-hash 13897  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-hom 16826  df-cco 16827  df-0g 16946  df-gsum 16947  df-prds 16952  df-pws 16954  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-mhm 18218  df-submnd 18219  df-grp 18368  df-minusg 18369  df-sbg 18370  df-mulg 18489  df-subg 18540  df-ghm 18620  df-cntz 18711  df-cmn 19172  df-abl 19173  df-mgp 19505  df-ur 19517  df-ring 19564  df-subrg 19798  df-lmod 19901  df-lss 19969  df-sra 20209  df-rgmod 20210  df-dsmm 20694  df-frlm 20709  df-mamu 21283  df-mat 21305  df-scmat 21388
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator