MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatmulcl Structured version   Visualization version   GIF version

Theorem scmatmulcl 21123
Description: The product of two scalar matrices is a scalar matrix. (Contributed by AV, 21-Aug-2019.) (Revised by AV, 19-Dec-2019.)
Hypotheses
Ref Expression
scmatid.a 𝐴 = (𝑁 Mat 𝑅)
scmatid.b 𝐵 = (Base‘𝐴)
scmatid.e 𝐸 = (Base‘𝑅)
scmatid.0 0 = (0g𝑅)
scmatid.s 𝑆 = (𝑁 ScMat 𝑅)
Assertion
Ref Expression
scmatmulcl (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋(.r𝐴)𝑌) ∈ 𝑆)

Proof of Theorem scmatmulcl
Dummy variables 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatid.e . . . 4 𝐸 = (Base‘𝑅)
2 scmatid.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 scmatid.b . . . 4 𝐵 = (Base‘𝐴)
4 eqid 2798 . . . 4 (1r𝐴) = (1r𝐴)
5 eqid 2798 . . . 4 ( ·𝑠𝐴) = ( ·𝑠𝐴)
6 scmatid.s . . . 4 𝑆 = (𝑁 ScMat 𝑅)
71, 2, 3, 4, 5, 6scmatel 21110 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋𝑆 ↔ (𝑋𝐵 ∧ ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)))))
81, 2, 3, 4, 5, 6scmatel 21110 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑌𝑆 ↔ (𝑌𝐵 ∧ ∃𝑑𝐸 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)))))
9 oveq12 7144 . . . . . . . . . . . . 13 ((𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) ∧ 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴))) → (𝑋(.r𝐴)𝑌) = ((𝑐( ·𝑠𝐴)(1r𝐴))(.r𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))))
109adantll 713 . . . . . . . . . . . 12 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) ∧ 𝑐𝐸) ∧ 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴))) ∧ 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴))) → (𝑋(.r𝐴)𝑌) = ((𝑐( ·𝑠𝐴)(1r𝐴))(.r𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))))
11 simp-4l 782 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) ∧ 𝑐𝐸) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
12 simplr 768 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) → 𝑑𝐸)
1312anim1ci 618 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) ∧ 𝑐𝐸) → (𝑐𝐸𝑑𝐸))
14 scmatid.0 . . . . . . . . . . . . . . . . 17 0 = (0g𝑅)
15 eqid 2798 . . . . . . . . . . . . . . . . 17 (.r𝑅) = (.r𝑅)
16 eqid 2798 . . . . . . . . . . . . . . . . 17 (.r𝐴) = (.r𝐴)
172, 1, 14, 4, 5, 15, 16scmatscmiddistr 21113 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑐𝐸𝑑𝐸)) → ((𝑐( ·𝑠𝐴)(1r𝐴))(.r𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))) = ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)))
1811, 13, 17syl2anc 587 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) ∧ 𝑐𝐸) → ((𝑐( ·𝑠𝐴)(1r𝐴))(.r𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))) = ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)))
19 simpl 486 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
20 simplr 768 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) → 𝑅 ∈ Ring)
21 simprr 772 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) → 𝑐𝐸)
22 simpl 486 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑑𝐸𝑐𝐸) → 𝑑𝐸)
2322adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) → 𝑑𝐸)
241, 15ringcl 19307 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ Ring ∧ 𝑐𝐸𝑑𝐸) → (𝑐(.r𝑅)𝑑) ∈ 𝐸)
2520, 21, 23, 24syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) → (𝑐(.r𝑅)𝑑) ∈ 𝐸)
262matring 21048 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
273, 4ringidcl 19314 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ∈ Ring → (1r𝐴) ∈ 𝐵)
2826, 27syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) ∈ 𝐵)
2928adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) → (1r𝐴) ∈ 𝐵)
301, 2, 3, 5matvscl 21036 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑐(.r𝑅)𝑑) ∈ 𝐸 ∧ (1r𝐴) ∈ 𝐵)) → ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝐵)
3119, 25, 29, 30syl12anc 835 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) → ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝐵)
32 oveq1 7142 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑒 = (𝑐(.r𝑅)𝑑) → (𝑒( ·𝑠𝐴)(1r𝐴)) = ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)))
3332eqeq2d 2809 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑒 = (𝑐(.r𝑅)𝑑) → (((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)) ↔ ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) = ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴))))
3433adantl 485 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) ∧ 𝑒 = (𝑐(.r𝑅)𝑑)) → (((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)) ↔ ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) = ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴))))
35 eqidd 2799 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) → ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) = ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)))
3625, 34, 35rspcedvd 3574 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) → ∃𝑒𝐸 ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)))
371, 2, 3, 4, 5, 6scmatel 21110 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆 ↔ (((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝐵 ∧ ∃𝑒𝐸 ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)))))
3837adantr 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) → (((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆 ↔ (((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝐵 ∧ ∃𝑒𝐸 ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)))))
3931, 36, 38mpbir2and 712 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) → ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆)
4039exp32 424 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑑𝐸 → (𝑐𝐸 → ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆)))
4140adantr 484 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) → (𝑑𝐸 → (𝑐𝐸 → ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆)))
4241imp 410 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) → (𝑐𝐸 → ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆))
4342adantr 484 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) → (𝑐𝐸 → ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆))
4443imp 410 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) ∧ 𝑐𝐸) → ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆)
4518, 44eqeltrd 2890 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) ∧ 𝑐𝐸) → ((𝑐( ·𝑠𝐴)(1r𝐴))(.r𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))) ∈ 𝑆)
4645adantr 484 . . . . . . . . . . . . 13 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) ∧ 𝑐𝐸) ∧ 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴))) → ((𝑐( ·𝑠𝐴)(1r𝐴))(.r𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))) ∈ 𝑆)
4746adantr 484 . . . . . . . . . . . 12 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) ∧ 𝑐𝐸) ∧ 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴))) ∧ 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴))) → ((𝑐( ·𝑠𝐴)(1r𝐴))(.r𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))) ∈ 𝑆)
4810, 47eqeltrd 2890 . . . . . . . . . . 11 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) ∧ 𝑐𝐸) ∧ 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴))) ∧ 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴))) → (𝑋(.r𝐴)𝑌) ∈ 𝑆)
4948exp31 423 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) ∧ 𝑐𝐸) → (𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)) → (𝑋(.r𝐴)𝑌) ∈ 𝑆)))
5049rexlimdva 3243 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) → (∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)) → (𝑋(.r𝐴)𝑌) ∈ 𝑆)))
5150expimpd 457 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) → ((𝑋𝐵 ∧ ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴))) → (𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)) → (𝑋(.r𝐴)𝑌) ∈ 𝑆)))
5251com23 86 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) → (𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)) → ((𝑋𝐵 ∧ ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴))) → (𝑋(.r𝐴)𝑌) ∈ 𝑆)))
5352rexlimdva 3243 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) → (∃𝑑𝐸 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)) → ((𝑋𝐵 ∧ ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴))) → (𝑋(.r𝐴)𝑌) ∈ 𝑆)))
5453expimpd 457 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑌𝐵 ∧ ∃𝑑𝐸 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴))) → ((𝑋𝐵 ∧ ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴))) → (𝑋(.r𝐴)𝑌) ∈ 𝑆)))
558, 54sylbid 243 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑌𝑆 → ((𝑋𝐵 ∧ ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴))) → (𝑋(.r𝐴)𝑌) ∈ 𝑆)))
5655com23 86 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑋𝐵 ∧ ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴))) → (𝑌𝑆 → (𝑋(.r𝐴)𝑌) ∈ 𝑆)))
577, 56sylbid 243 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋𝑆 → (𝑌𝑆 → (𝑋(.r𝐴)𝑌) ∈ 𝑆)))
5857imp32 422 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋(.r𝐴)𝑌) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wrex 3107  cfv 6324  (class class class)co 7135  Fincfn 8492  Basecbs 16475  .rcmulr 16558   ·𝑠 cvsca 16561  0gc0g 16705  1rcur 19244  Ringcrg 19290   Mat cmat 21012   ScMat cscmat 21094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-subrg 19526  df-lmod 19629  df-lss 19697  df-sra 19937  df-rgmod 19938  df-dsmm 20421  df-frlm 20436  df-mamu 20991  df-mat 21013  df-dmat 21095  df-scmat 21096
This theorem is referenced by:  scmatsrng  21125  scmatsrng1  21128
  Copyright terms: Public domain W3C validator