MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatmulcl Structured version   Visualization version   GIF version

Theorem scmatmulcl 21045
Description: The product of two scalar matrices is a scalar matrix. (Contributed by AV, 21-Aug-2019.) (Revised by AV, 19-Dec-2019.)
Hypotheses
Ref Expression
scmatid.a 𝐴 = (𝑁 Mat 𝑅)
scmatid.b 𝐵 = (Base‘𝐴)
scmatid.e 𝐸 = (Base‘𝑅)
scmatid.0 0 = (0g𝑅)
scmatid.s 𝑆 = (𝑁 ScMat 𝑅)
Assertion
Ref Expression
scmatmulcl (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋(.r𝐴)𝑌) ∈ 𝑆)

Proof of Theorem scmatmulcl
Dummy variables 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatid.e . . . 4 𝐸 = (Base‘𝑅)
2 scmatid.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 scmatid.b . . . 4 𝐵 = (Base‘𝐴)
4 eqid 2825 . . . 4 (1r𝐴) = (1r𝐴)
5 eqid 2825 . . . 4 ( ·𝑠𝐴) = ( ·𝑠𝐴)
6 scmatid.s . . . 4 𝑆 = (𝑁 ScMat 𝑅)
71, 2, 3, 4, 5, 6scmatel 21032 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋𝑆 ↔ (𝑋𝐵 ∧ ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)))))
81, 2, 3, 4, 5, 6scmatel 21032 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑌𝑆 ↔ (𝑌𝐵 ∧ ∃𝑑𝐸 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)))))
9 oveq12 7160 . . . . . . . . . . . . 13 ((𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) ∧ 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴))) → (𝑋(.r𝐴)𝑌) = ((𝑐( ·𝑠𝐴)(1r𝐴))(.r𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))))
109adantll 710 . . . . . . . . . . . 12 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) ∧ 𝑐𝐸) ∧ 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴))) ∧ 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴))) → (𝑋(.r𝐴)𝑌) = ((𝑐( ·𝑠𝐴)(1r𝐴))(.r𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))))
11 simp-4l 779 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) ∧ 𝑐𝐸) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
12 simplr 765 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) → 𝑑𝐸)
1312anim1ci 615 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) ∧ 𝑐𝐸) → (𝑐𝐸𝑑𝐸))
14 scmatid.0 . . . . . . . . . . . . . . . . 17 0 = (0g𝑅)
15 eqid 2825 . . . . . . . . . . . . . . . . 17 (.r𝑅) = (.r𝑅)
16 eqid 2825 . . . . . . . . . . . . . . . . 17 (.r𝐴) = (.r𝐴)
172, 1, 14, 4, 5, 15, 16scmatscmiddistr 21035 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑐𝐸𝑑𝐸)) → ((𝑐( ·𝑠𝐴)(1r𝐴))(.r𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))) = ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)))
1811, 13, 17syl2anc 584 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) ∧ 𝑐𝐸) → ((𝑐( ·𝑠𝐴)(1r𝐴))(.r𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))) = ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)))
19 simpl 483 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
20 simplr 765 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) → 𝑅 ∈ Ring)
21 simprr 769 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) → 𝑐𝐸)
22 simpl 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑑𝐸𝑐𝐸) → 𝑑𝐸)
2322adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) → 𝑑𝐸)
241, 15ringcl 19233 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ Ring ∧ 𝑐𝐸𝑑𝐸) → (𝑐(.r𝑅)𝑑) ∈ 𝐸)
2520, 21, 23, 24syl3anc 1365 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) → (𝑐(.r𝑅)𝑑) ∈ 𝐸)
262matring 20970 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
273, 4ringidcl 19240 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ∈ Ring → (1r𝐴) ∈ 𝐵)
2826, 27syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) ∈ 𝐵)
2928adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) → (1r𝐴) ∈ 𝐵)
301, 2, 3, 5matvscl 20958 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑐(.r𝑅)𝑑) ∈ 𝐸 ∧ (1r𝐴) ∈ 𝐵)) → ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝐵)
3119, 25, 29, 30syl12anc 834 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) → ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝐵)
32 oveq1 7158 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑒 = (𝑐(.r𝑅)𝑑) → (𝑒( ·𝑠𝐴)(1r𝐴)) = ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)))
3332eqeq2d 2836 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑒 = (𝑐(.r𝑅)𝑑) → (((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)) ↔ ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) = ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴))))
3433adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) ∧ 𝑒 = (𝑐(.r𝑅)𝑑)) → (((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)) ↔ ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) = ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴))))
35 eqidd 2826 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) → ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) = ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)))
3625, 34, 35rspcedvd 3629 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) → ∃𝑒𝐸 ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)))
371, 2, 3, 4, 5, 6scmatel 21032 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆 ↔ (((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝐵 ∧ ∃𝑒𝐸 ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)))))
3837adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) → (((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆 ↔ (((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝐵 ∧ ∃𝑒𝐸 ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)))))
3931, 36, 38mpbir2and 709 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) → ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆)
4039exp32 421 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑑𝐸 → (𝑐𝐸 → ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆)))
4140adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) → (𝑑𝐸 → (𝑐𝐸 → ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆)))
4241imp 407 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) → (𝑐𝐸 → ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆))
4342adantr 481 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) → (𝑐𝐸 → ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆))
4443imp 407 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) ∧ 𝑐𝐸) → ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆)
4518, 44eqeltrd 2917 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) ∧ 𝑐𝐸) → ((𝑐( ·𝑠𝐴)(1r𝐴))(.r𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))) ∈ 𝑆)
4645adantr 481 . . . . . . . . . . . . 13 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) ∧ 𝑐𝐸) ∧ 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴))) → ((𝑐( ·𝑠𝐴)(1r𝐴))(.r𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))) ∈ 𝑆)
4746adantr 481 . . . . . . . . . . . 12 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) ∧ 𝑐𝐸) ∧ 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴))) ∧ 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴))) → ((𝑐( ·𝑠𝐴)(1r𝐴))(.r𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))) ∈ 𝑆)
4810, 47eqeltrd 2917 . . . . . . . . . . 11 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) ∧ 𝑐𝐸) ∧ 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴))) ∧ 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴))) → (𝑋(.r𝐴)𝑌) ∈ 𝑆)
4948exp31 420 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) ∧ 𝑐𝐸) → (𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)) → (𝑋(.r𝐴)𝑌) ∈ 𝑆)))
5049rexlimdva 3288 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) → (∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)) → (𝑋(.r𝐴)𝑌) ∈ 𝑆)))
5150expimpd 454 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) → ((𝑋𝐵 ∧ ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴))) → (𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)) → (𝑋(.r𝐴)𝑌) ∈ 𝑆)))
5251com23 86 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) → (𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)) → ((𝑋𝐵 ∧ ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴))) → (𝑋(.r𝐴)𝑌) ∈ 𝑆)))
5352rexlimdva 3288 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) → (∃𝑑𝐸 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)) → ((𝑋𝐵 ∧ ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴))) → (𝑋(.r𝐴)𝑌) ∈ 𝑆)))
5453expimpd 454 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑌𝐵 ∧ ∃𝑑𝐸 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴))) → ((𝑋𝐵 ∧ ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴))) → (𝑋(.r𝐴)𝑌) ∈ 𝑆)))
558, 54sylbid 241 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑌𝑆 → ((𝑋𝐵 ∧ ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴))) → (𝑋(.r𝐴)𝑌) ∈ 𝑆)))
5655com23 86 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑋𝐵 ∧ ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴))) → (𝑌𝑆 → (𝑋(.r𝐴)𝑌) ∈ 𝑆)))
577, 56sylbid 241 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋𝑆 → (𝑌𝑆 → (𝑋(.r𝐴)𝑌) ∈ 𝑆)))
5857imp32 419 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋(.r𝐴)𝑌) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wrex 3143  cfv 6351  (class class class)co 7151  Fincfn 8501  Basecbs 16475  .rcmulr 16558   ·𝑠 cvsca 16561  0gc0g 16705  1rcur 19173  Ringcrg 19219   Mat cmat 20934   ScMat cscmat 21016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-ot 4572  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-map 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-sup 8898  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12886  df-fzo 13027  df-seq 13363  df-hash 13684  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-mhm 17946  df-submnd 17947  df-grp 18038  df-minusg 18039  df-sbg 18040  df-mulg 18157  df-subg 18208  df-ghm 18288  df-cntz 18379  df-cmn 18830  df-abl 18831  df-mgp 19162  df-ur 19174  df-ring 19221  df-subrg 19455  df-lmod 19558  df-lss 19626  df-sra 19866  df-rgmod 19867  df-dsmm 20794  df-frlm 20809  df-mamu 20913  df-mat 20935  df-dmat 21017  df-scmat 21018
This theorem is referenced by:  scmatsrng  21047  scmatsrng1  21050
  Copyright terms: Public domain W3C validator