Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mat0scmat | Structured version Visualization version GIF version |
Description: The empty matrix over a ring is a scalar matrix (and therefore, by scmatdmat 21208, also a diagonal matrix). (Contributed by AV, 21-Dec-2019.) |
Ref | Expression |
---|---|
mat0scmat | ⊢ (𝑅 ∈ Ring → ∅ ∈ (∅ ScMat 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5178 | . . . 4 ⊢ ∅ ∈ V | |
2 | 1 | snid 4559 | . . 3 ⊢ ∅ ∈ {∅} |
3 | mat0dimbas0 21159 | . . 3 ⊢ (𝑅 ∈ Ring → (Base‘(∅ Mat 𝑅)) = {∅}) | |
4 | 2, 3 | eleqtrrid 2860 | . 2 ⊢ (𝑅 ∈ Ring → ∅ ∈ (Base‘(∅ Mat 𝑅))) |
5 | eqid 2759 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
6 | eqid 2759 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
7 | 5, 6 | ringidcl 19382 | . . . 4 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
8 | oveq1 7158 | . . . . . 6 ⊢ (𝑐 = (1r‘𝑅) → (𝑐( ·𝑠 ‘(∅ Mat 𝑅))∅) = ((1r‘𝑅)( ·𝑠 ‘(∅ Mat 𝑅))∅)) | |
9 | 8 | eqeq2d 2770 | . . . . 5 ⊢ (𝑐 = (1r‘𝑅) → (∅ = (𝑐( ·𝑠 ‘(∅ Mat 𝑅))∅) ↔ ∅ = ((1r‘𝑅)( ·𝑠 ‘(∅ Mat 𝑅))∅))) |
10 | 9 | adantl 486 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑐 = (1r‘𝑅)) → (∅ = (𝑐( ·𝑠 ‘(∅ Mat 𝑅))∅) ↔ ∅ = ((1r‘𝑅)( ·𝑠 ‘(∅ Mat 𝑅))∅))) |
11 | eqid 2759 | . . . . . . 7 ⊢ (∅ Mat 𝑅) = (∅ Mat 𝑅) | |
12 | 11 | mat0dimscm 21162 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ∈ (Base‘𝑅)) → ((1r‘𝑅)( ·𝑠 ‘(∅ Mat 𝑅))∅) = ∅) |
13 | 7, 12 | mpdan 687 | . . . . 5 ⊢ (𝑅 ∈ Ring → ((1r‘𝑅)( ·𝑠 ‘(∅ Mat 𝑅))∅) = ∅) |
14 | 13 | eqcomd 2765 | . . . 4 ⊢ (𝑅 ∈ Ring → ∅ = ((1r‘𝑅)( ·𝑠 ‘(∅ Mat 𝑅))∅)) |
15 | 7, 10, 14 | rspcedvd 3545 | . . 3 ⊢ (𝑅 ∈ Ring → ∃𝑐 ∈ (Base‘𝑅)∅ = (𝑐( ·𝑠 ‘(∅ Mat 𝑅))∅)) |
16 | 11 | mat0dimid 21161 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (1r‘(∅ Mat 𝑅)) = ∅) |
17 | 16 | oveq2d 7167 | . . . . 5 ⊢ (𝑅 ∈ Ring → (𝑐( ·𝑠 ‘(∅ Mat 𝑅))(1r‘(∅ Mat 𝑅))) = (𝑐( ·𝑠 ‘(∅ Mat 𝑅))∅)) |
18 | 17 | eqeq2d 2770 | . . . 4 ⊢ (𝑅 ∈ Ring → (∅ = (𝑐( ·𝑠 ‘(∅ Mat 𝑅))(1r‘(∅ Mat 𝑅))) ↔ ∅ = (𝑐( ·𝑠 ‘(∅ Mat 𝑅))∅))) |
19 | 18 | rexbidv 3222 | . . 3 ⊢ (𝑅 ∈ Ring → (∃𝑐 ∈ (Base‘𝑅)∅ = (𝑐( ·𝑠 ‘(∅ Mat 𝑅))(1r‘(∅ Mat 𝑅))) ↔ ∃𝑐 ∈ (Base‘𝑅)∅ = (𝑐( ·𝑠 ‘(∅ Mat 𝑅))∅))) |
20 | 15, 19 | mpbird 260 | . 2 ⊢ (𝑅 ∈ Ring → ∃𝑐 ∈ (Base‘𝑅)∅ = (𝑐( ·𝑠 ‘(∅ Mat 𝑅))(1r‘(∅ Mat 𝑅)))) |
21 | 0fin 8768 | . . 3 ⊢ ∅ ∈ Fin | |
22 | eqid 2759 | . . . 4 ⊢ (Base‘(∅ Mat 𝑅)) = (Base‘(∅ Mat 𝑅)) | |
23 | eqid 2759 | . . . 4 ⊢ (1r‘(∅ Mat 𝑅)) = (1r‘(∅ Mat 𝑅)) | |
24 | eqid 2759 | . . . 4 ⊢ ( ·𝑠 ‘(∅ Mat 𝑅)) = ( ·𝑠 ‘(∅ Mat 𝑅)) | |
25 | eqid 2759 | . . . 4 ⊢ (∅ ScMat 𝑅) = (∅ ScMat 𝑅) | |
26 | 5, 11, 22, 23, 24, 25 | scmatel 21198 | . . 3 ⊢ ((∅ ∈ Fin ∧ 𝑅 ∈ Ring) → (∅ ∈ (∅ ScMat 𝑅) ↔ (∅ ∈ (Base‘(∅ Mat 𝑅)) ∧ ∃𝑐 ∈ (Base‘𝑅)∅ = (𝑐( ·𝑠 ‘(∅ Mat 𝑅))(1r‘(∅ Mat 𝑅)))))) |
27 | 21, 26 | mpan 690 | . 2 ⊢ (𝑅 ∈ Ring → (∅ ∈ (∅ ScMat 𝑅) ↔ (∅ ∈ (Base‘(∅ Mat 𝑅)) ∧ ∃𝑐 ∈ (Base‘𝑅)∅ = (𝑐( ·𝑠 ‘(∅ Mat 𝑅))(1r‘(∅ Mat 𝑅)))))) |
28 | 4, 20, 27 | mpbir2and 713 | 1 ⊢ (𝑅 ∈ Ring → ∅ ∈ (∅ ScMat 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ∃wrex 3072 ∅c0 4226 {csn 4523 ‘cfv 6336 (class class class)co 7151 Fincfn 8528 Basecbs 16534 ·𝑠 cvsca 16620 1rcur 19312 Ringcrg 19358 Mat cmat 21100 ScMat cscmat 21182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-ot 4532 df-uni 4800 df-int 4840 df-iun 4886 df-iin 4887 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-se 5485 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-isom 6345 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-of 7406 df-om 7581 df-1st 7694 df-2nd 7695 df-supp 7837 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-oadd 8117 df-er 8300 df-map 8419 df-ixp 8481 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-fsupp 8860 df-sup 8932 df-oi 9000 df-card 9394 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-nn 11668 df-2 11730 df-3 11731 df-4 11732 df-5 11733 df-6 11734 df-7 11735 df-8 11736 df-9 11737 df-n0 11928 df-z 12014 df-dec 12131 df-uz 12276 df-fz 12933 df-fzo 13076 df-seq 13412 df-hash 13734 df-struct 16536 df-ndx 16537 df-slot 16538 df-base 16540 df-sets 16541 df-ress 16542 df-plusg 16629 df-mulr 16630 df-sca 16632 df-vsca 16633 df-ip 16634 df-tset 16635 df-ple 16636 df-ds 16638 df-hom 16640 df-cco 16641 df-0g 16766 df-gsum 16767 df-prds 16772 df-pws 16774 df-mre 16908 df-mrc 16909 df-acs 16911 df-mgm 17911 df-sgrp 17960 df-mnd 17971 df-mhm 18015 df-submnd 18016 df-grp 18165 df-minusg 18166 df-sbg 18167 df-mulg 18285 df-subg 18336 df-ghm 18416 df-cntz 18507 df-cmn 18968 df-abl 18969 df-mgp 19301 df-ur 19313 df-ring 19360 df-subrg 19594 df-lmod 19697 df-lss 19765 df-sra 20005 df-rgmod 20006 df-dsmm 20490 df-frlm 20505 df-mamu 21079 df-mat 21101 df-scmat 21184 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |