| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mat0scmat | Structured version Visualization version GIF version | ||
| Description: The empty matrix over a ring is a scalar matrix (and therefore, by scmatdmat 22400, also a diagonal matrix). (Contributed by AV, 21-Dec-2019.) |
| Ref | Expression |
|---|---|
| mat0scmat | ⊢ (𝑅 ∈ Ring → ∅ ∈ (∅ ScMat 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5246 | . . . 4 ⊢ ∅ ∈ V | |
| 2 | 1 | snid 4614 | . . 3 ⊢ ∅ ∈ {∅} |
| 3 | mat0dimbas0 22351 | . . 3 ⊢ (𝑅 ∈ Ring → (Base‘(∅ Mat 𝑅)) = {∅}) | |
| 4 | 2, 3 | eleqtrrid 2835 | . 2 ⊢ (𝑅 ∈ Ring → ∅ ∈ (Base‘(∅ Mat 𝑅))) |
| 5 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 6 | eqid 2729 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 7 | 5, 6 | ringidcl 20150 | . . . 4 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 8 | oveq1 7356 | . . . . . 6 ⊢ (𝑐 = (1r‘𝑅) → (𝑐( ·𝑠 ‘(∅ Mat 𝑅))∅) = ((1r‘𝑅)( ·𝑠 ‘(∅ Mat 𝑅))∅)) | |
| 9 | 8 | eqeq2d 2740 | . . . . 5 ⊢ (𝑐 = (1r‘𝑅) → (∅ = (𝑐( ·𝑠 ‘(∅ Mat 𝑅))∅) ↔ ∅ = ((1r‘𝑅)( ·𝑠 ‘(∅ Mat 𝑅))∅))) |
| 10 | 9 | adantl 481 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑐 = (1r‘𝑅)) → (∅ = (𝑐( ·𝑠 ‘(∅ Mat 𝑅))∅) ↔ ∅ = ((1r‘𝑅)( ·𝑠 ‘(∅ Mat 𝑅))∅))) |
| 11 | eqid 2729 | . . . . . . 7 ⊢ (∅ Mat 𝑅) = (∅ Mat 𝑅) | |
| 12 | 11 | mat0dimscm 22354 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ∈ (Base‘𝑅)) → ((1r‘𝑅)( ·𝑠 ‘(∅ Mat 𝑅))∅) = ∅) |
| 13 | 7, 12 | mpdan 687 | . . . . 5 ⊢ (𝑅 ∈ Ring → ((1r‘𝑅)( ·𝑠 ‘(∅ Mat 𝑅))∅) = ∅) |
| 14 | 13 | eqcomd 2735 | . . . 4 ⊢ (𝑅 ∈ Ring → ∅ = ((1r‘𝑅)( ·𝑠 ‘(∅ Mat 𝑅))∅)) |
| 15 | 7, 10, 14 | rspcedvd 3579 | . . 3 ⊢ (𝑅 ∈ Ring → ∃𝑐 ∈ (Base‘𝑅)∅ = (𝑐( ·𝑠 ‘(∅ Mat 𝑅))∅)) |
| 16 | 11 | mat0dimid 22353 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (1r‘(∅ Mat 𝑅)) = ∅) |
| 17 | 16 | oveq2d 7365 | . . . . 5 ⊢ (𝑅 ∈ Ring → (𝑐( ·𝑠 ‘(∅ Mat 𝑅))(1r‘(∅ Mat 𝑅))) = (𝑐( ·𝑠 ‘(∅ Mat 𝑅))∅)) |
| 18 | 17 | eqeq2d 2740 | . . . 4 ⊢ (𝑅 ∈ Ring → (∅ = (𝑐( ·𝑠 ‘(∅ Mat 𝑅))(1r‘(∅ Mat 𝑅))) ↔ ∅ = (𝑐( ·𝑠 ‘(∅ Mat 𝑅))∅))) |
| 19 | 18 | rexbidv 3153 | . . 3 ⊢ (𝑅 ∈ Ring → (∃𝑐 ∈ (Base‘𝑅)∅ = (𝑐( ·𝑠 ‘(∅ Mat 𝑅))(1r‘(∅ Mat 𝑅))) ↔ ∃𝑐 ∈ (Base‘𝑅)∅ = (𝑐( ·𝑠 ‘(∅ Mat 𝑅))∅))) |
| 20 | 15, 19 | mpbird 257 | . 2 ⊢ (𝑅 ∈ Ring → ∃𝑐 ∈ (Base‘𝑅)∅ = (𝑐( ·𝑠 ‘(∅ Mat 𝑅))(1r‘(∅ Mat 𝑅)))) |
| 21 | 0fi 8967 | . . 3 ⊢ ∅ ∈ Fin | |
| 22 | eqid 2729 | . . . 4 ⊢ (Base‘(∅ Mat 𝑅)) = (Base‘(∅ Mat 𝑅)) | |
| 23 | eqid 2729 | . . . 4 ⊢ (1r‘(∅ Mat 𝑅)) = (1r‘(∅ Mat 𝑅)) | |
| 24 | eqid 2729 | . . . 4 ⊢ ( ·𝑠 ‘(∅ Mat 𝑅)) = ( ·𝑠 ‘(∅ Mat 𝑅)) | |
| 25 | eqid 2729 | . . . 4 ⊢ (∅ ScMat 𝑅) = (∅ ScMat 𝑅) | |
| 26 | 5, 11, 22, 23, 24, 25 | scmatel 22390 | . . 3 ⊢ ((∅ ∈ Fin ∧ 𝑅 ∈ Ring) → (∅ ∈ (∅ ScMat 𝑅) ↔ (∅ ∈ (Base‘(∅ Mat 𝑅)) ∧ ∃𝑐 ∈ (Base‘𝑅)∅ = (𝑐( ·𝑠 ‘(∅ Mat 𝑅))(1r‘(∅ Mat 𝑅)))))) |
| 27 | 21, 26 | mpan 690 | . 2 ⊢ (𝑅 ∈ Ring → (∅ ∈ (∅ ScMat 𝑅) ↔ (∅ ∈ (Base‘(∅ Mat 𝑅)) ∧ ∃𝑐 ∈ (Base‘𝑅)∅ = (𝑐( ·𝑠 ‘(∅ Mat 𝑅))(1r‘(∅ Mat 𝑅)))))) |
| 28 | 4, 20, 27 | mpbir2and 713 | 1 ⊢ (𝑅 ∈ Ring → ∅ ∈ (∅ ScMat 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∅c0 4284 {csn 4577 ‘cfv 6482 (class class class)co 7349 Fincfn 8872 Basecbs 17120 ·𝑠 cvsca 17165 1rcur 20066 Ringcrg 20118 Mat cmat 22292 ScMat cscmat 22374 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-sup 9332 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-fzo 13558 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-mulg 18947 df-subg 19002 df-ghm 19092 df-cntz 19196 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-subrg 20455 df-lmod 20765 df-lss 20835 df-sra 21077 df-rgmod 21078 df-dsmm 21639 df-frlm 21654 df-mamu 22276 df-mat 22293 df-scmat 22376 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |