![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mat0scmat | Structured version Visualization version GIF version |
Description: The empty matrix over a ring is a scalar matrix (and therefore, by scmatdmat 22016, also a diagonal matrix). (Contributed by AV, 21-Dec-2019.) |
Ref | Expression |
---|---|
mat0scmat | โข (๐ โ Ring โ โ โ (โ ScMat ๐ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5307 | . . . 4 โข โ โ V | |
2 | 1 | snid 4664 | . . 3 โข โ โ {โ } |
3 | mat0dimbas0 21967 | . . 3 โข (๐ โ Ring โ (Baseโ(โ Mat ๐ )) = {โ }) | |
4 | 2, 3 | eleqtrrid 2840 | . 2 โข (๐ โ Ring โ โ โ (Baseโ(โ Mat ๐ ))) |
5 | eqid 2732 | . . . . 5 โข (Baseโ๐ ) = (Baseโ๐ ) | |
6 | eqid 2732 | . . . . 5 โข (1rโ๐ ) = (1rโ๐ ) | |
7 | 5, 6 | ringidcl 20082 | . . . 4 โข (๐ โ Ring โ (1rโ๐ ) โ (Baseโ๐ )) |
8 | oveq1 7415 | . . . . . 6 โข (๐ = (1rโ๐ ) โ (๐( ยท๐ โ(โ Mat ๐ ))โ ) = ((1rโ๐ )( ยท๐ โ(โ Mat ๐ ))โ )) | |
9 | 8 | eqeq2d 2743 | . . . . 5 โข (๐ = (1rโ๐ ) โ (โ = (๐( ยท๐ โ(โ Mat ๐ ))โ ) โ โ = ((1rโ๐ )( ยท๐ โ(โ Mat ๐ ))โ ))) |
10 | 9 | adantl 482 | . . . 4 โข ((๐ โ Ring โง ๐ = (1rโ๐ )) โ (โ = (๐( ยท๐ โ(โ Mat ๐ ))โ ) โ โ = ((1rโ๐ )( ยท๐ โ(โ Mat ๐ ))โ ))) |
11 | eqid 2732 | . . . . . . 7 โข (โ Mat ๐ ) = (โ Mat ๐ ) | |
12 | 11 | mat0dimscm 21970 | . . . . . 6 โข ((๐ โ Ring โง (1rโ๐ ) โ (Baseโ๐ )) โ ((1rโ๐ )( ยท๐ โ(โ Mat ๐ ))โ ) = โ ) |
13 | 7, 12 | mpdan 685 | . . . . 5 โข (๐ โ Ring โ ((1rโ๐ )( ยท๐ โ(โ Mat ๐ ))โ ) = โ ) |
14 | 13 | eqcomd 2738 | . . . 4 โข (๐ โ Ring โ โ = ((1rโ๐ )( ยท๐ โ(โ Mat ๐ ))โ )) |
15 | 7, 10, 14 | rspcedvd 3614 | . . 3 โข (๐ โ Ring โ โ๐ โ (Baseโ๐ )โ = (๐( ยท๐ โ(โ Mat ๐ ))โ )) |
16 | 11 | mat0dimid 21969 | . . . . . 6 โข (๐ โ Ring โ (1rโ(โ Mat ๐ )) = โ ) |
17 | 16 | oveq2d 7424 | . . . . 5 โข (๐ โ Ring โ (๐( ยท๐ โ(โ Mat ๐ ))(1rโ(โ Mat ๐ ))) = (๐( ยท๐ โ(โ Mat ๐ ))โ )) |
18 | 17 | eqeq2d 2743 | . . . 4 โข (๐ โ Ring โ (โ = (๐( ยท๐ โ(โ Mat ๐ ))(1rโ(โ Mat ๐ ))) โ โ = (๐( ยท๐ โ(โ Mat ๐ ))โ ))) |
19 | 18 | rexbidv 3178 | . . 3 โข (๐ โ Ring โ (โ๐ โ (Baseโ๐ )โ = (๐( ยท๐ โ(โ Mat ๐ ))(1rโ(โ Mat ๐ ))) โ โ๐ โ (Baseโ๐ )โ = (๐( ยท๐ โ(โ Mat ๐ ))โ ))) |
20 | 15, 19 | mpbird 256 | . 2 โข (๐ โ Ring โ โ๐ โ (Baseโ๐ )โ = (๐( ยท๐ โ(โ Mat ๐ ))(1rโ(โ Mat ๐ )))) |
21 | 0fin 9170 | . . 3 โข โ โ Fin | |
22 | eqid 2732 | . . . 4 โข (Baseโ(โ Mat ๐ )) = (Baseโ(โ Mat ๐ )) | |
23 | eqid 2732 | . . . 4 โข (1rโ(โ Mat ๐ )) = (1rโ(โ Mat ๐ )) | |
24 | eqid 2732 | . . . 4 โข ( ยท๐ โ(โ Mat ๐ )) = ( ยท๐ โ(โ Mat ๐ )) | |
25 | eqid 2732 | . . . 4 โข (โ ScMat ๐ ) = (โ ScMat ๐ ) | |
26 | 5, 11, 22, 23, 24, 25 | scmatel 22006 | . . 3 โข ((โ โ Fin โง ๐ โ Ring) โ (โ โ (โ ScMat ๐ ) โ (โ โ (Baseโ(โ Mat ๐ )) โง โ๐ โ (Baseโ๐ )โ = (๐( ยท๐ โ(โ Mat ๐ ))(1rโ(โ Mat ๐ )))))) |
27 | 21, 26 | mpan 688 | . 2 โข (๐ โ Ring โ (โ โ (โ ScMat ๐ ) โ (โ โ (Baseโ(โ Mat ๐ )) โง โ๐ โ (Baseโ๐ )โ = (๐( ยท๐ โ(โ Mat ๐ ))(1rโ(โ Mat ๐ )))))) |
28 | 4, 20, 27 | mpbir2and 711 | 1 โข (๐ โ Ring โ โ โ (โ ScMat ๐ )) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โ wb 205 โง wa 396 = wceq 1541 โ wcel 2106 โwrex 3070 โ c0 4322 {csn 4628 โcfv 6543 (class class class)co 7408 Fincfn 8938 Basecbs 17143 ยท๐ cvsca 17200 1rcur 20003 Ringcrg 20055 Mat cmat 21906 ScMat cscmat 21990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-ot 4637 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-sup 9436 df-oi 9504 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-fz 13484 df-fzo 13627 df-seq 13966 df-hash 14290 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17386 df-gsum 17387 df-prds 17392 df-pws 17394 df-mre 17529 df-mrc 17530 df-acs 17532 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-mhm 18670 df-submnd 18671 df-grp 18821 df-minusg 18822 df-sbg 18823 df-mulg 18950 df-subg 19002 df-ghm 19089 df-cntz 19180 df-cmn 19649 df-abl 19650 df-mgp 19987 df-ur 20004 df-ring 20057 df-subrg 20316 df-lmod 20472 df-lss 20542 df-sra 20784 df-rgmod 20785 df-dsmm 21286 df-frlm 21301 df-mamu 21885 df-mat 21907 df-scmat 21992 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |