MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdomsdomcardi Structured version   Visualization version   GIF version

Theorem sdomsdomcardi 9130
Description: A set strictly dominates if its cardinal strictly dominates. (Contributed by Mario Carneiro, 13-Jan-2013.)
Assertion
Ref Expression
sdomsdomcardi (𝐴 ≺ (card‘𝐵) → 𝐴𝐵)

Proof of Theorem sdomsdomcardi
StepHypRef Expression
1 sdom0 8380 . . . . 5 ¬ 𝐴 ≺ ∅
2 ndmfv 6476 . . . . . 6 𝐵 ∈ dom card → (card‘𝐵) = ∅)
32breq2d 4898 . . . . 5 𝐵 ∈ dom card → (𝐴 ≺ (card‘𝐵) ↔ 𝐴 ≺ ∅))
41, 3mtbiri 319 . . . 4 𝐵 ∈ dom card → ¬ 𝐴 ≺ (card‘𝐵))
54con4i 114 . . 3 (𝐴 ≺ (card‘𝐵) → 𝐵 ∈ dom card)
6 cardid2 9112 . . 3 (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵)
75, 6syl 17 . 2 (𝐴 ≺ (card‘𝐵) → (card‘𝐵) ≈ 𝐵)
8 sdomentr 8382 . 2 ((𝐴 ≺ (card‘𝐵) ∧ (card‘𝐵) ≈ 𝐵) → 𝐴𝐵)
97, 8mpdan 677 1 (𝐴 ≺ (card‘𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2106  c0 4140   class class class wbr 4886  dom cdm 5355  cfv 6135  cen 8238  csdm 8240  cardccrd 9094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3399  df-sbc 3652  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-ord 5979  df-on 5980  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-card 9098
This theorem is referenced by:  sdomsdomcard  9717
  Copyright terms: Public domain W3C validator