![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sdomsdomcardi | Structured version Visualization version GIF version |
Description: A set strictly dominates if its cardinal strictly dominates. (Contributed by Mario Carneiro, 13-Jan-2013.) |
Ref | Expression |
---|---|
sdomsdomcardi | β’ (π΄ βΊ (cardβπ΅) β π΄ βΊ π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdom0 9126 | . . . . 5 β’ Β¬ π΄ βΊ β | |
2 | ndmfv 6925 | . . . . . 6 β’ (Β¬ π΅ β dom card β (cardβπ΅) = β ) | |
3 | 2 | breq2d 5156 | . . . . 5 β’ (Β¬ π΅ β dom card β (π΄ βΊ (cardβπ΅) β π΄ βΊ β )) |
4 | 1, 3 | mtbiri 326 | . . . 4 β’ (Β¬ π΅ β dom card β Β¬ π΄ βΊ (cardβπ΅)) |
5 | 4 | con4i 114 | . . 3 β’ (π΄ βΊ (cardβπ΅) β π΅ β dom card) |
6 | cardid2 9971 | . . 3 β’ (π΅ β dom card β (cardβπ΅) β π΅) | |
7 | 5, 6 | syl 17 | . 2 β’ (π΄ βΊ (cardβπ΅) β (cardβπ΅) β π΅) |
8 | sdomentr 9129 | . 2 β’ ((π΄ βΊ (cardβπ΅) β§ (cardβπ΅) β π΅) β π΄ βΊ π΅) | |
9 | 7, 8 | mpdan 685 | 1 β’ (π΄ βΊ (cardβπ΅) β π΄ βΊ π΅) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wcel 2098 β c0 4319 class class class wbr 5144 dom cdm 5673 βcfv 6543 β cen 8954 βΊ csdm 8956 cardccrd 9953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-ord 6368 df-on 6369 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-card 9957 |
This theorem is referenced by: sdomsdomcard 10578 |
Copyright terms: Public domain | W3C validator |