![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sdomsdomcardi | Structured version Visualization version GIF version |
Description: A set strictly dominates if its cardinal strictly dominates. (Contributed by Mario Carneiro, 13-Jan-2013.) |
Ref | Expression |
---|---|
sdomsdomcardi | ⊢ (𝐴 ≺ (card‘𝐵) → 𝐴 ≺ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdom0 9147 | . . . . 5 ⊢ ¬ 𝐴 ≺ ∅ | |
2 | ndmfv 6942 | . . . . . 6 ⊢ (¬ 𝐵 ∈ dom card → (card‘𝐵) = ∅) | |
3 | 2 | breq2d 5160 | . . . . 5 ⊢ (¬ 𝐵 ∈ dom card → (𝐴 ≺ (card‘𝐵) ↔ 𝐴 ≺ ∅)) |
4 | 1, 3 | mtbiri 327 | . . . 4 ⊢ (¬ 𝐵 ∈ dom card → ¬ 𝐴 ≺ (card‘𝐵)) |
5 | 4 | con4i 114 | . . 3 ⊢ (𝐴 ≺ (card‘𝐵) → 𝐵 ∈ dom card) |
6 | cardid2 9991 | . . 3 ⊢ (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝐴 ≺ (card‘𝐵) → (card‘𝐵) ≈ 𝐵) |
8 | sdomentr 9150 | . 2 ⊢ ((𝐴 ≺ (card‘𝐵) ∧ (card‘𝐵) ≈ 𝐵) → 𝐴 ≺ 𝐵) | |
9 | 7, 8 | mpdan 687 | 1 ⊢ (𝐴 ≺ (card‘𝐵) → 𝐴 ≺ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2106 ∅c0 4339 class class class wbr 5148 dom cdm 5689 ‘cfv 6563 ≈ cen 8981 ≺ csdm 8983 cardccrd 9973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-card 9977 |
This theorem is referenced by: sdomsdomcard 10598 |
Copyright terms: Public domain | W3C validator |