| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brsdom | Structured version Visualization version GIF version | ||
| Description: Strict dominance relation, meaning "𝐵 is strictly greater in size than 𝐴". Definition of [Mendelson] p. 255. (Contributed by NM, 25-Jun-1998.) |
| Ref | Expression |
|---|---|
| brsdom | ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sdom 8960 | . . 3 ⊢ ≺ = ( ≼ ∖ ≈ ) | |
| 2 | 1 | eleq2i 2826 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ ≺ ↔ 〈𝐴, 𝐵〉 ∈ ( ≼ ∖ ≈ )) |
| 3 | df-br 5120 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≺ ) | |
| 4 | df-br 5120 | . . . 4 ⊢ (𝐴 ≼ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≼ ) | |
| 5 | df-br 5120 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≈ ) | |
| 6 | 5 | notbii 320 | . . . 4 ⊢ (¬ 𝐴 ≈ 𝐵 ↔ ¬ 〈𝐴, 𝐵〉 ∈ ≈ ) |
| 7 | 4, 6 | anbi12i 628 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵) ↔ (〈𝐴, 𝐵〉 ∈ ≼ ∧ ¬ 〈𝐴, 𝐵〉 ∈ ≈ )) |
| 8 | eldif 3936 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ ( ≼ ∖ ≈ ) ↔ (〈𝐴, 𝐵〉 ∈ ≼ ∧ ¬ 〈𝐴, 𝐵〉 ∈ ≈ )) | |
| 9 | 7, 8 | bitr4i 278 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵) ↔ 〈𝐴, 𝐵〉 ∈ ( ≼ ∖ ≈ )) |
| 10 | 2, 3, 9 | 3bitr4i 303 | 1 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∖ cdif 3923 〈cop 4607 class class class wbr 5119 ≈ cen 8954 ≼ cdom 8955 ≺ csdm 8956 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-dif 3929 df-br 5120 df-sdom 8960 |
| This theorem is referenced by: sdomdom 8992 sdomnen 8993 0sdomg 9116 0sdomgOLD 9117 sdom0 9120 sdomdomtr 9122 domsdomtr 9124 domtriord 9135 canth2 9142 sdomdomtrfi 9213 domsdomtrfi 9214 php2 9220 php2OLD 9230 php3OLD 9231 nnsdomo 9240 1sdom2 9246 sdom1 9248 1sdom2dom 9253 nnsdomg 9305 nnsdomgOLD 9306 card2inf 9567 cardsdomelir 9985 cardsdom2 10000 fidomtri2 10006 cardmin2 10011 alephordi 10086 alephord 10087 isfin4p1 10327 isfin5-2 10403 canthnum 10661 canthwe 10663 canthp1 10666 gchdjuidm 10680 gchxpidm 10681 gchhar 10691 axgroth6 10840 hashsdom 14397 ruc 16259 iscard5 43507 |
| Copyright terms: Public domain | W3C validator |