| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brsdom | Structured version Visualization version GIF version | ||
| Description: Strict dominance relation, meaning "𝐵 is strictly greater in size than 𝐴". Definition of [Mendelson] p. 255. (Contributed by NM, 25-Jun-1998.) |
| Ref | Expression |
|---|---|
| brsdom | ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sdom 8898 | . . 3 ⊢ ≺ = ( ≼ ∖ ≈ ) | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ ≺ ↔ 〈𝐴, 𝐵〉 ∈ ( ≼ ∖ ≈ )) |
| 3 | df-br 5103 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≺ ) | |
| 4 | df-br 5103 | . . . 4 ⊢ (𝐴 ≼ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≼ ) | |
| 5 | df-br 5103 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≈ ) | |
| 6 | 5 | notbii 320 | . . . 4 ⊢ (¬ 𝐴 ≈ 𝐵 ↔ ¬ 〈𝐴, 𝐵〉 ∈ ≈ ) |
| 7 | 4, 6 | anbi12i 628 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵) ↔ (〈𝐴, 𝐵〉 ∈ ≼ ∧ ¬ 〈𝐴, 𝐵〉 ∈ ≈ )) |
| 8 | eldif 3921 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ ( ≼ ∖ ≈ ) ↔ (〈𝐴, 𝐵〉 ∈ ≼ ∧ ¬ 〈𝐴, 𝐵〉 ∈ ≈ )) | |
| 9 | 7, 8 | bitr4i 278 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵) ↔ 〈𝐴, 𝐵〉 ∈ ( ≼ ∖ ≈ )) |
| 10 | 2, 3, 9 | 3bitr4i 303 | 1 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∖ cdif 3908 〈cop 4591 class class class wbr 5102 ≈ cen 8892 ≼ cdom 8893 ≺ csdm 8894 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-dif 3914 df-br 5103 df-sdom 8898 |
| This theorem is referenced by: sdomdom 8928 sdomnen 8929 0sdomg 9047 sdom0 9050 sdomdomtr 9051 domsdomtr 9053 domtriord 9064 canth2 9071 sdomdomtrfi 9142 domsdomtrfi 9143 php2 9149 nnsdomo 9159 1sdom2 9164 sdom1 9166 1sdom2dom 9170 nnsdomg 9222 nnsdomgOLD 9223 card2inf 9484 cardsdomelir 9902 cardsdom2 9917 fidomtri2 9923 cardmin2 9928 alephordi 10003 alephord 10004 isfin4p1 10244 isfin5-2 10320 canthnum 10578 canthwe 10580 canthp1 10583 gchdjuidm 10597 gchxpidm 10598 gchhar 10608 axgroth6 10757 hashsdom 14322 ruc 16187 iscard5 43498 |
| Copyright terms: Public domain | W3C validator |