| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brsdom | Structured version Visualization version GIF version | ||
| Description: Strict dominance relation, meaning "𝐵 is strictly greater in size than 𝐴". Definition of [Mendelson] p. 255. (Contributed by NM, 25-Jun-1998.) |
| Ref | Expression |
|---|---|
| brsdom | ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sdom 8872 | . . 3 ⊢ ≺ = ( ≼ ∖ ≈ ) | |
| 2 | 1 | eleq2i 2823 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ ≺ ↔ 〈𝐴, 𝐵〉 ∈ ( ≼ ∖ ≈ )) |
| 3 | df-br 5090 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≺ ) | |
| 4 | df-br 5090 | . . . 4 ⊢ (𝐴 ≼ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≼ ) | |
| 5 | df-br 5090 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≈ ) | |
| 6 | 5 | notbii 320 | . . . 4 ⊢ (¬ 𝐴 ≈ 𝐵 ↔ ¬ 〈𝐴, 𝐵〉 ∈ ≈ ) |
| 7 | 4, 6 | anbi12i 628 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵) ↔ (〈𝐴, 𝐵〉 ∈ ≼ ∧ ¬ 〈𝐴, 𝐵〉 ∈ ≈ )) |
| 8 | eldif 3907 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ ( ≼ ∖ ≈ ) ↔ (〈𝐴, 𝐵〉 ∈ ≼ ∧ ¬ 〈𝐴, 𝐵〉 ∈ ≈ )) | |
| 9 | 7, 8 | bitr4i 278 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵) ↔ 〈𝐴, 𝐵〉 ∈ ( ≼ ∖ ≈ )) |
| 10 | 2, 3, 9 | 3bitr4i 303 | 1 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ∖ cdif 3894 〈cop 4579 class class class wbr 5089 ≈ cen 8866 ≼ cdom 8867 ≺ csdm 8868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-br 5090 df-sdom 8872 |
| This theorem is referenced by: sdomdom 8902 sdomnen 8903 0sdomg 9019 sdom0 9022 sdomdomtr 9023 domsdomtr 9025 domtriord 9036 canth2 9043 sdomdomtrfi 9110 domsdomtrfi 9111 php2 9117 nnsdomo 9127 1sdom2 9132 sdom1 9134 1sdom2dom 9138 nnsdomg 9183 card2inf 9441 cardsdomelir 9866 cardsdom2 9881 fidomtri2 9887 cardmin2 9892 alephordi 9965 alephord 9966 isfin4p1 10206 isfin5-2 10282 canthnum 10540 canthwe 10542 canthp1 10545 gchdjuidm 10559 gchxpidm 10560 gchhar 10570 axgroth6 10719 hashsdom 14288 ruc 16152 iscard5 43639 |
| Copyright terms: Public domain | W3C validator |