![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brsdom | Structured version Visualization version GIF version |
Description: Strict dominance relation, meaning "𝐵 is strictly greater in size than 𝐴". Definition of [Mendelson] p. 255. (Contributed by NM, 25-Jun-1998.) |
Ref | Expression |
---|---|
brsdom | ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sdom 8986 | . . 3 ⊢ ≺ = ( ≼ ∖ ≈ ) | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ ≺ ↔ 〈𝐴, 𝐵〉 ∈ ( ≼ ∖ ≈ )) |
3 | df-br 5148 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≺ ) | |
4 | df-br 5148 | . . . 4 ⊢ (𝐴 ≼ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≼ ) | |
5 | df-br 5148 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≈ ) | |
6 | 5 | notbii 320 | . . . 4 ⊢ (¬ 𝐴 ≈ 𝐵 ↔ ¬ 〈𝐴, 𝐵〉 ∈ ≈ ) |
7 | 4, 6 | anbi12i 628 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵) ↔ (〈𝐴, 𝐵〉 ∈ ≼ ∧ ¬ 〈𝐴, 𝐵〉 ∈ ≈ )) |
8 | eldif 3972 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ ( ≼ ∖ ≈ ) ↔ (〈𝐴, 𝐵〉 ∈ ≼ ∧ ¬ 〈𝐴, 𝐵〉 ∈ ≈ )) | |
9 | 7, 8 | bitr4i 278 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵) ↔ 〈𝐴, 𝐵〉 ∈ ( ≼ ∖ ≈ )) |
10 | 2, 3, 9 | 3bitr4i 303 | 1 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∈ wcel 2105 ∖ cdif 3959 〈cop 4636 class class class wbr 5147 ≈ cen 8980 ≼ cdom 8981 ≺ csdm 8982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-dif 3965 df-br 5148 df-sdom 8986 |
This theorem is referenced by: sdomdom 9018 sdomnen 9019 0sdomg 9142 0sdomgOLD 9143 sdom0 9146 sdomdomtr 9148 domsdomtr 9150 domtriord 9161 canth2 9168 sdomdomtrfi 9238 domsdomtrfi 9239 php2 9245 php2OLD 9257 php3OLD 9258 nnsdomo 9267 1sdom2 9273 sdom1 9275 1sdom2dom 9280 nnsdomg 9332 nnsdomgOLD 9333 card2inf 9592 cardsdomelir 10010 cardsdom2 10025 fidomtri2 10031 cardmin2 10036 alephordi 10111 alephord 10112 isfin4p1 10352 isfin5-2 10428 canthnum 10686 canthwe 10688 canthp1 10691 gchdjuidm 10705 gchxpidm 10706 gchhar 10716 axgroth6 10865 hashsdom 14416 ruc 16275 iscard5 43525 |
Copyright terms: Public domain | W3C validator |