| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brsdom | Structured version Visualization version GIF version | ||
| Description: Strict dominance relation, meaning "𝐵 is strictly greater in size than 𝐴". Definition of [Mendelson] p. 255. (Contributed by NM, 25-Jun-1998.) |
| Ref | Expression |
|---|---|
| brsdom | ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sdom 8921 | . . 3 ⊢ ≺ = ( ≼ ∖ ≈ ) | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ ≺ ↔ 〈𝐴, 𝐵〉 ∈ ( ≼ ∖ ≈ )) |
| 3 | df-br 5108 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≺ ) | |
| 4 | df-br 5108 | . . . 4 ⊢ (𝐴 ≼ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≼ ) | |
| 5 | df-br 5108 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≈ ) | |
| 6 | 5 | notbii 320 | . . . 4 ⊢ (¬ 𝐴 ≈ 𝐵 ↔ ¬ 〈𝐴, 𝐵〉 ∈ ≈ ) |
| 7 | 4, 6 | anbi12i 628 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵) ↔ (〈𝐴, 𝐵〉 ∈ ≼ ∧ ¬ 〈𝐴, 𝐵〉 ∈ ≈ )) |
| 8 | eldif 3924 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ ( ≼ ∖ ≈ ) ↔ (〈𝐴, 𝐵〉 ∈ ≼ ∧ ¬ 〈𝐴, 𝐵〉 ∈ ≈ )) | |
| 9 | 7, 8 | bitr4i 278 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵) ↔ 〈𝐴, 𝐵〉 ∈ ( ≼ ∖ ≈ )) |
| 10 | 2, 3, 9 | 3bitr4i 303 | 1 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∖ cdif 3911 〈cop 4595 class class class wbr 5107 ≈ cen 8915 ≼ cdom 8916 ≺ csdm 8917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-br 5108 df-sdom 8921 |
| This theorem is referenced by: sdomdom 8951 sdomnen 8952 0sdomg 9070 sdom0 9073 sdomdomtr 9074 domsdomtr 9076 domtriord 9087 canth2 9094 sdomdomtrfi 9165 domsdomtrfi 9166 php2 9172 nnsdomo 9182 1sdom2 9187 sdom1 9189 1sdom2dom 9194 nnsdomg 9246 nnsdomgOLD 9247 card2inf 9508 cardsdomelir 9926 cardsdom2 9941 fidomtri2 9947 cardmin2 9952 alephordi 10027 alephord 10028 isfin4p1 10268 isfin5-2 10344 canthnum 10602 canthwe 10604 canthp1 10607 gchdjuidm 10621 gchxpidm 10622 gchhar 10632 axgroth6 10781 hashsdom 14346 ruc 16211 iscard5 43525 |
| Copyright terms: Public domain | W3C validator |