MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brsdom Structured version   Visualization version   GIF version

Theorem brsdom 8515
Description: Strict dominance relation, meaning "𝐵 is strictly greater in size than 𝐴". Definition of [Mendelson] p. 255. (Contributed by NM, 25-Jun-1998.)
Assertion
Ref Expression
brsdom (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵))

Proof of Theorem brsdom
StepHypRef Expression
1 df-sdom 8495 . . 3 ≺ = ( ≼ ∖ ≈ )
21eleq2i 2881 . 2 (⟨𝐴, 𝐵⟩ ∈ ≺ ↔ ⟨𝐴, 𝐵⟩ ∈ ( ≼ ∖ ≈ ))
3 df-br 5031 . 2 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≺ )
4 df-br 5031 . . . 4 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≼ )
5 df-br 5031 . . . . 5 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≈ )
65notbii 323 . . . 4 𝐴𝐵 ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ ≈ )
74, 6anbi12i 629 . . 3 ((𝐴𝐵 ∧ ¬ 𝐴𝐵) ↔ (⟨𝐴, 𝐵⟩ ∈ ≼ ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ ≈ ))
8 eldif 3891 . . 3 (⟨𝐴, 𝐵⟩ ∈ ( ≼ ∖ ≈ ) ↔ (⟨𝐴, 𝐵⟩ ∈ ≼ ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ ≈ ))
97, 8bitr4i 281 . 2 ((𝐴𝐵 ∧ ¬ 𝐴𝐵) ↔ ⟨𝐴, 𝐵⟩ ∈ ( ≼ ∖ ≈ ))
102, 3, 93bitr4i 306 1 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399  wcel 2111  cdif 3878  cop 4531   class class class wbr 5030  cen 8489  cdom 8490  csdm 8491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-v 3443  df-dif 3884  df-br 5031  df-sdom 8495
This theorem is referenced by:  sdomdom  8520  sdomnen  8521  0sdomg  8630  sdomdomtr  8634  domsdomtr  8636  domtriord  8647  canth2  8654  php2  8686  php3  8687  nnsdomo  8698  nnsdomg  8761  card2inf  9003  cardsdomelir  9386  cardsdom2  9401  fidomtri2  9407  cardmin2  9412  alephordi  9485  alephord  9486  isfin4p1  9726  isfin5-2  9802  canthnum  10060  canthwe  10062  canthp1  10065  gchdjuidm  10079  gchxpidm  10080  gchhar  10090  axgroth6  10239  hashsdom  13738  ruc  15588  iscard5  40242
  Copyright terms: Public domain W3C validator