MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brsdom Structured version   Visualization version   GIF version

Theorem brsdom 8718
Description: Strict dominance relation, meaning "𝐵 is strictly greater in size than 𝐴". Definition of [Mendelson] p. 255. (Contributed by NM, 25-Jun-1998.)
Assertion
Ref Expression
brsdom (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵))

Proof of Theorem brsdom
StepHypRef Expression
1 df-sdom 8694 . . 3 ≺ = ( ≼ ∖ ≈ )
21eleq2i 2830 . 2 (⟨𝐴, 𝐵⟩ ∈ ≺ ↔ ⟨𝐴, 𝐵⟩ ∈ ( ≼ ∖ ≈ ))
3 df-br 5071 . 2 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≺ )
4 df-br 5071 . . . 4 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≼ )
5 df-br 5071 . . . . 5 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≈ )
65notbii 319 . . . 4 𝐴𝐵 ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ ≈ )
74, 6anbi12i 626 . . 3 ((𝐴𝐵 ∧ ¬ 𝐴𝐵) ↔ (⟨𝐴, 𝐵⟩ ∈ ≼ ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ ≈ ))
8 eldif 3893 . . 3 (⟨𝐴, 𝐵⟩ ∈ ( ≼ ∖ ≈ ) ↔ (⟨𝐴, 𝐵⟩ ∈ ≼ ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ ≈ ))
97, 8bitr4i 277 . 2 ((𝐴𝐵 ∧ ¬ 𝐴𝐵) ↔ ⟨𝐴, 𝐵⟩ ∈ ( ≼ ∖ ≈ ))
102, 3, 93bitr4i 302 1 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395  wcel 2108  cdif 3880  cop 4564   class class class wbr 5070  cen 8688  cdom 8689  csdm 8690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-br 5071  df-sdom 8694
This theorem is referenced by:  sdomdom  8723  sdomnen  8724  0sdomg  8842  sdomdomtr  8846  domsdomtr  8848  domtriord  8859  canth2  8866  php2  8898  php3  8899  nnsdomo  8948  nnsdomg  9003  card2inf  9244  cardsdomelir  9662  cardsdom2  9677  fidomtri2  9683  cardmin2  9688  alephordi  9761  alephord  9762  isfin4p1  10002  isfin5-2  10078  canthnum  10336  canthwe  10338  canthp1  10341  gchdjuidm  10355  gchxpidm  10356  gchhar  10366  axgroth6  10515  hashsdom  14024  ruc  15880  iscard5  41039
  Copyright terms: Public domain W3C validator