Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brsdom | Structured version Visualization version GIF version |
Description: Strict dominance relation, meaning "𝐵 is strictly greater in size than 𝐴". Definition of [Mendelson] p. 255. (Contributed by NM, 25-Jun-1998.) |
Ref | Expression |
---|---|
brsdom | ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sdom 8736 | . . 3 ⊢ ≺ = ( ≼ ∖ ≈ ) | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ ≺ ↔ 〈𝐴, 𝐵〉 ∈ ( ≼ ∖ ≈ )) |
3 | df-br 5075 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≺ ) | |
4 | df-br 5075 | . . . 4 ⊢ (𝐴 ≼ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≼ ) | |
5 | df-br 5075 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≈ ) | |
6 | 5 | notbii 320 | . . . 4 ⊢ (¬ 𝐴 ≈ 𝐵 ↔ ¬ 〈𝐴, 𝐵〉 ∈ ≈ ) |
7 | 4, 6 | anbi12i 627 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵) ↔ (〈𝐴, 𝐵〉 ∈ ≼ ∧ ¬ 〈𝐴, 𝐵〉 ∈ ≈ )) |
8 | eldif 3897 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ ( ≼ ∖ ≈ ) ↔ (〈𝐴, 𝐵〉 ∈ ≼ ∧ ¬ 〈𝐴, 𝐵〉 ∈ ≈ )) | |
9 | 7, 8 | bitr4i 277 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵) ↔ 〈𝐴, 𝐵〉 ∈ ( ≼ ∖ ≈ )) |
10 | 2, 3, 9 | 3bitr4i 303 | 1 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∖ cdif 3884 〈cop 4567 class class class wbr 5074 ≈ cen 8730 ≼ cdom 8731 ≺ csdm 8732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-br 5075 df-sdom 8736 |
This theorem is referenced by: sdomdom 8768 sdomnen 8769 0sdomg 8891 0sdomgOLD 8892 sdom0 8895 sdomdomtr 8897 domsdomtr 8899 domtriord 8910 canth2 8917 sdomdomtrfi 8987 domsdomtrfi 8988 php2 8994 php2OLD 9006 php3OLD 9007 nnsdomo 9017 nnsdomg 9073 card2inf 9314 cardsdomelir 9731 cardsdom2 9746 fidomtri2 9752 cardmin2 9757 alephordi 9830 alephord 9831 isfin4p1 10071 isfin5-2 10147 canthnum 10405 canthwe 10407 canthp1 10410 gchdjuidm 10424 gchxpidm 10425 gchhar 10435 axgroth6 10584 hashsdom 14096 ruc 15952 iscard5 41143 |
Copyright terms: Public domain | W3C validator |