![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscard5 | Structured version Visualization version GIF version |
Description: Two ways to express the property of being a cardinal number. (Contributed by RP, 8-Nov-2023.) |
Ref | Expression |
---|---|
iscard5 | ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ≈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscard 9976 | . 2 ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 𝑥 ≺ 𝐴)) | |
2 | sdomnen 8983 | . . . . 5 ⊢ (𝑥 ≺ 𝐴 → ¬ 𝑥 ≈ 𝐴) | |
3 | onelss 6406 | . . . . . . . 8 ⊢ (𝐴 ∈ On → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) | |
4 | ssdomg 9002 | . . . . . . . 8 ⊢ (𝐴 ∈ On → (𝑥 ⊆ 𝐴 → 𝑥 ≼ 𝐴)) | |
5 | 3, 4 | syld 47 | . . . . . . 7 ⊢ (𝐴 ∈ On → (𝑥 ∈ 𝐴 → 𝑥 ≼ 𝐴)) |
6 | 5 | imp 406 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → 𝑥 ≼ 𝐴) |
7 | brsdom 8977 | . . . . . . . 8 ⊢ (𝑥 ≺ 𝐴 ↔ (𝑥 ≼ 𝐴 ∧ ¬ 𝑥 ≈ 𝐴)) | |
8 | 7 | biimpri 227 | . . . . . . 7 ⊢ ((𝑥 ≼ 𝐴 ∧ ¬ 𝑥 ≈ 𝐴) → 𝑥 ≺ 𝐴) |
9 | 8 | a1i 11 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → ((𝑥 ≼ 𝐴 ∧ ¬ 𝑥 ≈ 𝐴) → 𝑥 ≺ 𝐴)) |
10 | 6, 9 | mpand 692 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → (¬ 𝑥 ≈ 𝐴 → 𝑥 ≺ 𝐴)) |
11 | 2, 10 | impbid2 225 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → (𝑥 ≺ 𝐴 ↔ ¬ 𝑥 ≈ 𝐴)) |
12 | 11 | ralbidva 3174 | . . 3 ⊢ (𝐴 ∈ On → (∀𝑥 ∈ 𝐴 𝑥 ≺ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ≈ 𝐴)) |
13 | 12 | pm5.32i 574 | . 2 ⊢ ((𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 𝑥 ≺ 𝐴) ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ≈ 𝐴)) |
14 | 1, 13 | bitri 275 | 1 ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ≈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ⊆ wss 3948 class class class wbr 5148 Oncon0 6364 ‘cfv 6543 ≈ cen 8942 ≼ cdom 8943 ≺ csdm 8944 cardccrd 9936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-card 9940 |
This theorem is referenced by: elrncard 42753 |
Copyright terms: Public domain | W3C validator |