| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iscard5 | Structured version Visualization version GIF version | ||
| Description: Two ways to express the property of being a cardinal number. (Contributed by RP, 8-Nov-2023.) |
| Ref | Expression |
|---|---|
| iscard5 | ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ≈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscard 9868 | . 2 ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 𝑥 ≺ 𝐴)) | |
| 2 | sdomnen 8903 | . . . . 5 ⊢ (𝑥 ≺ 𝐴 → ¬ 𝑥 ≈ 𝐴) | |
| 3 | onelss 6348 | . . . . . . . 8 ⊢ (𝐴 ∈ On → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) | |
| 4 | ssdomg 8922 | . . . . . . . 8 ⊢ (𝐴 ∈ On → (𝑥 ⊆ 𝐴 → 𝑥 ≼ 𝐴)) | |
| 5 | 3, 4 | syld 47 | . . . . . . 7 ⊢ (𝐴 ∈ On → (𝑥 ∈ 𝐴 → 𝑥 ≼ 𝐴)) |
| 6 | 5 | imp 406 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → 𝑥 ≼ 𝐴) |
| 7 | brsdom 8897 | . . . . . . . 8 ⊢ (𝑥 ≺ 𝐴 ↔ (𝑥 ≼ 𝐴 ∧ ¬ 𝑥 ≈ 𝐴)) | |
| 8 | 7 | biimpri 228 | . . . . . . 7 ⊢ ((𝑥 ≼ 𝐴 ∧ ¬ 𝑥 ≈ 𝐴) → 𝑥 ≺ 𝐴) |
| 9 | 8 | a1i 11 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → ((𝑥 ≼ 𝐴 ∧ ¬ 𝑥 ≈ 𝐴) → 𝑥 ≺ 𝐴)) |
| 10 | 6, 9 | mpand 695 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → (¬ 𝑥 ≈ 𝐴 → 𝑥 ≺ 𝐴)) |
| 11 | 2, 10 | impbid2 226 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → (𝑥 ≺ 𝐴 ↔ ¬ 𝑥 ≈ 𝐴)) |
| 12 | 11 | ralbidva 3153 | . . 3 ⊢ (𝐴 ∈ On → (∀𝑥 ∈ 𝐴 𝑥 ≺ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ≈ 𝐴)) |
| 13 | 12 | pm5.32i 574 | . 2 ⊢ ((𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 𝑥 ≺ 𝐴) ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ≈ 𝐴)) |
| 14 | 1, 13 | bitri 275 | 1 ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ≈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 class class class wbr 5089 Oncon0 6306 ‘cfv 6481 ≈ cen 8866 ≼ cdom 8867 ≺ csdm 8868 cardccrd 9828 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-card 9832 |
| This theorem is referenced by: elrncard 43578 |
| Copyright terms: Public domain | W3C validator |