Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscard5 Structured version   Visualization version   GIF version

Theorem iscard5 43526
Description: Two ways to express the property of being a cardinal number. (Contributed by RP, 8-Nov-2023.)
Assertion
Ref Expression
iscard5 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 ¬ 𝑥𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem iscard5
StepHypRef Expression
1 iscard 10013 . 2 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 𝑥𝐴))
2 sdomnen 9020 . . . . 5 (𝑥𝐴 → ¬ 𝑥𝐴)
3 onelss 6428 . . . . . . . 8 (𝐴 ∈ On → (𝑥𝐴𝑥𝐴))
4 ssdomg 9039 . . . . . . . 8 (𝐴 ∈ On → (𝑥𝐴𝑥𝐴))
53, 4syld 47 . . . . . . 7 (𝐴 ∈ On → (𝑥𝐴𝑥𝐴))
65imp 406 . . . . . 6 ((𝐴 ∈ On ∧ 𝑥𝐴) → 𝑥𝐴)
7 brsdom 9014 . . . . . . . 8 (𝑥𝐴 ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐴))
87biimpri 228 . . . . . . 7 ((𝑥𝐴 ∧ ¬ 𝑥𝐴) → 𝑥𝐴)
98a1i 11 . . . . . 6 ((𝐴 ∈ On ∧ 𝑥𝐴) → ((𝑥𝐴 ∧ ¬ 𝑥𝐴) → 𝑥𝐴))
106, 9mpand 695 . . . . 5 ((𝐴 ∈ On ∧ 𝑥𝐴) → (¬ 𝑥𝐴𝑥𝐴))
112, 10impbid2 226 . . . 4 ((𝐴 ∈ On ∧ 𝑥𝐴) → (𝑥𝐴 ↔ ¬ 𝑥𝐴))
1211ralbidva 3174 . . 3 (𝐴 ∈ On → (∀𝑥𝐴 𝑥𝐴 ↔ ∀𝑥𝐴 ¬ 𝑥𝐴))
1312pm5.32i 574 . 2 ((𝐴 ∈ On ∧ ∀𝑥𝐴 𝑥𝐴) ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 ¬ 𝑥𝐴))
141, 13bitri 275 1 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 ¬ 𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wss 3963   class class class wbr 5148  Oncon0 6386  cfv 6563  cen 8981  cdom 8982  csdm 8983  cardccrd 9973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-card 9977
This theorem is referenced by:  elrncard  43527
  Copyright terms: Public domain W3C validator