| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iscard5 | Structured version Visualization version GIF version | ||
| Description: Two ways to express the property of being a cardinal number. (Contributed by RP, 8-Nov-2023.) |
| Ref | Expression |
|---|---|
| iscard5 | ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ≈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscard 9982 | . 2 ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 𝑥 ≺ 𝐴)) | |
| 2 | sdomnen 8990 | . . . . 5 ⊢ (𝑥 ≺ 𝐴 → ¬ 𝑥 ≈ 𝐴) | |
| 3 | onelss 6392 | . . . . . . . 8 ⊢ (𝐴 ∈ On → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) | |
| 4 | ssdomg 9009 | . . . . . . . 8 ⊢ (𝐴 ∈ On → (𝑥 ⊆ 𝐴 → 𝑥 ≼ 𝐴)) | |
| 5 | 3, 4 | syld 47 | . . . . . . 7 ⊢ (𝐴 ∈ On → (𝑥 ∈ 𝐴 → 𝑥 ≼ 𝐴)) |
| 6 | 5 | imp 406 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → 𝑥 ≼ 𝐴) |
| 7 | brsdom 8984 | . . . . . . . 8 ⊢ (𝑥 ≺ 𝐴 ↔ (𝑥 ≼ 𝐴 ∧ ¬ 𝑥 ≈ 𝐴)) | |
| 8 | 7 | biimpri 228 | . . . . . . 7 ⊢ ((𝑥 ≼ 𝐴 ∧ ¬ 𝑥 ≈ 𝐴) → 𝑥 ≺ 𝐴) |
| 9 | 8 | a1i 11 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → ((𝑥 ≼ 𝐴 ∧ ¬ 𝑥 ≈ 𝐴) → 𝑥 ≺ 𝐴)) |
| 10 | 6, 9 | mpand 695 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → (¬ 𝑥 ≈ 𝐴 → 𝑥 ≺ 𝐴)) |
| 11 | 2, 10 | impbid2 226 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → (𝑥 ≺ 𝐴 ↔ ¬ 𝑥 ≈ 𝐴)) |
| 12 | 11 | ralbidva 3159 | . . 3 ⊢ (𝐴 ∈ On → (∀𝑥 ∈ 𝐴 𝑥 ≺ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ≈ 𝐴)) |
| 13 | 12 | pm5.32i 574 | . 2 ⊢ ((𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 𝑥 ≺ 𝐴) ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ≈ 𝐴)) |
| 14 | 1, 13 | bitri 275 | 1 ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ≈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ⊆ wss 3924 class class class wbr 5117 Oncon0 6350 ‘cfv 6528 ≈ cen 8951 ≼ cdom 8952 ≺ csdm 8953 cardccrd 9942 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-int 4921 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-ord 6353 df-on 6354 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-er 8714 df-en 8955 df-dom 8956 df-sdom 8957 df-card 9946 |
| This theorem is referenced by: elrncard 43493 |
| Copyright terms: Public domain | W3C validator |