Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscard5 Structured version   Visualization version   GIF version

Theorem iscard5 40767
Description: Two ways to express the property of being a cardinal number. (Contributed by RP, 8-Nov-2023.)
Assertion
Ref Expression
iscard5 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 ¬ 𝑥𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem iscard5
StepHypRef Expression
1 iscard 9556 . 2 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 𝑥𝐴))
2 sdomnen 8635 . . . . 5 (𝑥𝐴 → ¬ 𝑥𝐴)
3 onelss 6233 . . . . . . . 8 (𝐴 ∈ On → (𝑥𝐴𝑥𝐴))
4 ssdomg 8652 . . . . . . . 8 (𝐴 ∈ On → (𝑥𝐴𝑥𝐴))
53, 4syld 47 . . . . . . 7 (𝐴 ∈ On → (𝑥𝐴𝑥𝐴))
65imp 410 . . . . . 6 ((𝐴 ∈ On ∧ 𝑥𝐴) → 𝑥𝐴)
7 brsdom 8629 . . . . . . . 8 (𝑥𝐴 ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐴))
87biimpri 231 . . . . . . 7 ((𝑥𝐴 ∧ ¬ 𝑥𝐴) → 𝑥𝐴)
98a1i 11 . . . . . 6 ((𝐴 ∈ On ∧ 𝑥𝐴) → ((𝑥𝐴 ∧ ¬ 𝑥𝐴) → 𝑥𝐴))
106, 9mpand 695 . . . . 5 ((𝐴 ∈ On ∧ 𝑥𝐴) → (¬ 𝑥𝐴𝑥𝐴))
112, 10impbid2 229 . . . 4 ((𝐴 ∈ On ∧ 𝑥𝐴) → (𝑥𝐴 ↔ ¬ 𝑥𝐴))
1211ralbidva 3107 . . 3 (𝐴 ∈ On → (∀𝑥𝐴 𝑥𝐴 ↔ ∀𝑥𝐴 ¬ 𝑥𝐴))
1312pm5.32i 578 . 2 ((𝐴 ∈ On ∧ ∀𝑥𝐴 𝑥𝐴) ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 ¬ 𝑥𝐴))
141, 13bitri 278 1 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 ¬ 𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wral 3051  wss 3853   class class class wbr 5039  Oncon0 6191  cfv 6358  cen 8601  cdom 8602  csdm 8603  cardccrd 9516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-ord 6194  df-on 6195  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-card 9520
This theorem is referenced by:  elrncard  40768
  Copyright terms: Public domain W3C validator