![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscard5 | Structured version Visualization version GIF version |
Description: Two ways to express the property of being a cardinal number. (Contributed by RP, 8-Nov-2023.) |
Ref | Expression |
---|---|
iscard5 | ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ≈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscard 10044 | . 2 ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 𝑥 ≺ 𝐴)) | |
2 | sdomnen 9041 | . . . . 5 ⊢ (𝑥 ≺ 𝐴 → ¬ 𝑥 ≈ 𝐴) | |
3 | onelss 6437 | . . . . . . . 8 ⊢ (𝐴 ∈ On → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) | |
4 | ssdomg 9060 | . . . . . . . 8 ⊢ (𝐴 ∈ On → (𝑥 ⊆ 𝐴 → 𝑥 ≼ 𝐴)) | |
5 | 3, 4 | syld 47 | . . . . . . 7 ⊢ (𝐴 ∈ On → (𝑥 ∈ 𝐴 → 𝑥 ≼ 𝐴)) |
6 | 5 | imp 406 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → 𝑥 ≼ 𝐴) |
7 | brsdom 9035 | . . . . . . . 8 ⊢ (𝑥 ≺ 𝐴 ↔ (𝑥 ≼ 𝐴 ∧ ¬ 𝑥 ≈ 𝐴)) | |
8 | 7 | biimpri 228 | . . . . . . 7 ⊢ ((𝑥 ≼ 𝐴 ∧ ¬ 𝑥 ≈ 𝐴) → 𝑥 ≺ 𝐴) |
9 | 8 | a1i 11 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → ((𝑥 ≼ 𝐴 ∧ ¬ 𝑥 ≈ 𝐴) → 𝑥 ≺ 𝐴)) |
10 | 6, 9 | mpand 694 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → (¬ 𝑥 ≈ 𝐴 → 𝑥 ≺ 𝐴)) |
11 | 2, 10 | impbid2 226 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → (𝑥 ≺ 𝐴 ↔ ¬ 𝑥 ≈ 𝐴)) |
12 | 11 | ralbidva 3182 | . . 3 ⊢ (𝐴 ∈ On → (∀𝑥 ∈ 𝐴 𝑥 ≺ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ≈ 𝐴)) |
13 | 12 | pm5.32i 574 | . 2 ⊢ ((𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 𝑥 ≺ 𝐴) ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ≈ 𝐴)) |
14 | 1, 13 | bitri 275 | 1 ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ≈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 class class class wbr 5166 Oncon0 6395 ‘cfv 6573 ≈ cen 9000 ≼ cdom 9001 ≺ csdm 9002 cardccrd 10004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-card 10008 |
This theorem is referenced by: elrncard 43499 |
Copyright terms: Public domain | W3C validator |