| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iscard5 | Structured version Visualization version GIF version | ||
| Description: Two ways to express the property of being a cardinal number. (Contributed by RP, 8-Nov-2023.) |
| Ref | Expression |
|---|---|
| iscard5 | ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ≈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscard 9871 | . 2 ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 𝑥 ≺ 𝐴)) | |
| 2 | sdomnen 8906 | . . . . 5 ⊢ (𝑥 ≺ 𝐴 → ¬ 𝑥 ≈ 𝐴) | |
| 3 | onelss 6349 | . . . . . . . 8 ⊢ (𝐴 ∈ On → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) | |
| 4 | ssdomg 8925 | . . . . . . . 8 ⊢ (𝐴 ∈ On → (𝑥 ⊆ 𝐴 → 𝑥 ≼ 𝐴)) | |
| 5 | 3, 4 | syld 47 | . . . . . . 7 ⊢ (𝐴 ∈ On → (𝑥 ∈ 𝐴 → 𝑥 ≼ 𝐴)) |
| 6 | 5 | imp 406 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → 𝑥 ≼ 𝐴) |
| 7 | brsdom 8900 | . . . . . . . 8 ⊢ (𝑥 ≺ 𝐴 ↔ (𝑥 ≼ 𝐴 ∧ ¬ 𝑥 ≈ 𝐴)) | |
| 8 | 7 | biimpri 228 | . . . . . . 7 ⊢ ((𝑥 ≼ 𝐴 ∧ ¬ 𝑥 ≈ 𝐴) → 𝑥 ≺ 𝐴) |
| 9 | 8 | a1i 11 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → ((𝑥 ≼ 𝐴 ∧ ¬ 𝑥 ≈ 𝐴) → 𝑥 ≺ 𝐴)) |
| 10 | 6, 9 | mpand 695 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → (¬ 𝑥 ≈ 𝐴 → 𝑥 ≺ 𝐴)) |
| 11 | 2, 10 | impbid2 226 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → (𝑥 ≺ 𝐴 ↔ ¬ 𝑥 ≈ 𝐴)) |
| 12 | 11 | ralbidva 3150 | . . 3 ⊢ (𝐴 ∈ On → (∀𝑥 ∈ 𝐴 𝑥 ≺ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ≈ 𝐴)) |
| 13 | 12 | pm5.32i 574 | . 2 ⊢ ((𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 𝑥 ≺ 𝐴) ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ≈ 𝐴)) |
| 14 | 1, 13 | bitri 275 | 1 ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ≈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3903 class class class wbr 5092 Oncon0 6307 ‘cfv 6482 ≈ cen 8869 ≼ cdom 8870 ≺ csdm 8871 cardccrd 9831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-card 9835 |
| This theorem is referenced by: elrncard 43510 |
| Copyright terms: Public domain | W3C validator |