Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscard5 Structured version   Visualization version   GIF version

Theorem iscard5 43532
Description: Two ways to express the property of being a cardinal number. (Contributed by RP, 8-Nov-2023.)
Assertion
Ref Expression
iscard5 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 ¬ 𝑥𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem iscard5
StepHypRef Expression
1 iscard 9935 . 2 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 𝑥𝐴))
2 sdomnen 8955 . . . . 5 (𝑥𝐴 → ¬ 𝑥𝐴)
3 onelss 6377 . . . . . . . 8 (𝐴 ∈ On → (𝑥𝐴𝑥𝐴))
4 ssdomg 8974 . . . . . . . 8 (𝐴 ∈ On → (𝑥𝐴𝑥𝐴))
53, 4syld 47 . . . . . . 7 (𝐴 ∈ On → (𝑥𝐴𝑥𝐴))
65imp 406 . . . . . 6 ((𝐴 ∈ On ∧ 𝑥𝐴) → 𝑥𝐴)
7 brsdom 8949 . . . . . . . 8 (𝑥𝐴 ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐴))
87biimpri 228 . . . . . . 7 ((𝑥𝐴 ∧ ¬ 𝑥𝐴) → 𝑥𝐴)
98a1i 11 . . . . . 6 ((𝐴 ∈ On ∧ 𝑥𝐴) → ((𝑥𝐴 ∧ ¬ 𝑥𝐴) → 𝑥𝐴))
106, 9mpand 695 . . . . 5 ((𝐴 ∈ On ∧ 𝑥𝐴) → (¬ 𝑥𝐴𝑥𝐴))
112, 10impbid2 226 . . . 4 ((𝐴 ∈ On ∧ 𝑥𝐴) → (𝑥𝐴 ↔ ¬ 𝑥𝐴))
1211ralbidva 3155 . . 3 (𝐴 ∈ On → (∀𝑥𝐴 𝑥𝐴 ↔ ∀𝑥𝐴 ¬ 𝑥𝐴))
1312pm5.32i 574 . 2 ((𝐴 ∈ On ∧ ∀𝑥𝐴 𝑥𝐴) ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 ¬ 𝑥𝐴))
141, 13bitri 275 1 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 ¬ 𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wss 3917   class class class wbr 5110  Oncon0 6335  cfv 6514  cen 8918  cdom 8919  csdm 8920  cardccrd 9895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-card 9899
This theorem is referenced by:  elrncard  43533
  Copyright terms: Public domain W3C validator