Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscard5 Structured version   Visualization version   GIF version

Theorem iscard5 43525
Description: Two ways to express the property of being a cardinal number. (Contributed by RP, 8-Nov-2023.)
Assertion
Ref Expression
iscard5 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 ¬ 𝑥𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem iscard5
StepHypRef Expression
1 iscard 9928 . 2 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 𝑥𝐴))
2 sdomnen 8952 . . . . 5 (𝑥𝐴 → ¬ 𝑥𝐴)
3 onelss 6374 . . . . . . . 8 (𝐴 ∈ On → (𝑥𝐴𝑥𝐴))
4 ssdomg 8971 . . . . . . . 8 (𝐴 ∈ On → (𝑥𝐴𝑥𝐴))
53, 4syld 47 . . . . . . 7 (𝐴 ∈ On → (𝑥𝐴𝑥𝐴))
65imp 406 . . . . . 6 ((𝐴 ∈ On ∧ 𝑥𝐴) → 𝑥𝐴)
7 brsdom 8946 . . . . . . . 8 (𝑥𝐴 ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐴))
87biimpri 228 . . . . . . 7 ((𝑥𝐴 ∧ ¬ 𝑥𝐴) → 𝑥𝐴)
98a1i 11 . . . . . 6 ((𝐴 ∈ On ∧ 𝑥𝐴) → ((𝑥𝐴 ∧ ¬ 𝑥𝐴) → 𝑥𝐴))
106, 9mpand 695 . . . . 5 ((𝐴 ∈ On ∧ 𝑥𝐴) → (¬ 𝑥𝐴𝑥𝐴))
112, 10impbid2 226 . . . 4 ((𝐴 ∈ On ∧ 𝑥𝐴) → (𝑥𝐴 ↔ ¬ 𝑥𝐴))
1211ralbidva 3154 . . 3 (𝐴 ∈ On → (∀𝑥𝐴 𝑥𝐴 ↔ ∀𝑥𝐴 ¬ 𝑥𝐴))
1312pm5.32i 574 . 2 ((𝐴 ∈ On ∧ ∀𝑥𝐴 𝑥𝐴) ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 ¬ 𝑥𝐴))
141, 13bitri 275 1 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 ¬ 𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3914   class class class wbr 5107  Oncon0 6332  cfv 6511  cen 8915  cdom 8916  csdm 8917  cardccrd 9888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-card 9892
This theorem is referenced by:  elrncard  43526
  Copyright terms: Public domain W3C validator