Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscard5 Structured version   Visualization version   GIF version

Theorem iscard5 43492
Description: Two ways to express the property of being a cardinal number. (Contributed by RP, 8-Nov-2023.)
Assertion
Ref Expression
iscard5 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 ¬ 𝑥𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem iscard5
StepHypRef Expression
1 iscard 9982 . 2 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 𝑥𝐴))
2 sdomnen 8990 . . . . 5 (𝑥𝐴 → ¬ 𝑥𝐴)
3 onelss 6392 . . . . . . . 8 (𝐴 ∈ On → (𝑥𝐴𝑥𝐴))
4 ssdomg 9009 . . . . . . . 8 (𝐴 ∈ On → (𝑥𝐴𝑥𝐴))
53, 4syld 47 . . . . . . 7 (𝐴 ∈ On → (𝑥𝐴𝑥𝐴))
65imp 406 . . . . . 6 ((𝐴 ∈ On ∧ 𝑥𝐴) → 𝑥𝐴)
7 brsdom 8984 . . . . . . . 8 (𝑥𝐴 ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐴))
87biimpri 228 . . . . . . 7 ((𝑥𝐴 ∧ ¬ 𝑥𝐴) → 𝑥𝐴)
98a1i 11 . . . . . 6 ((𝐴 ∈ On ∧ 𝑥𝐴) → ((𝑥𝐴 ∧ ¬ 𝑥𝐴) → 𝑥𝐴))
106, 9mpand 695 . . . . 5 ((𝐴 ∈ On ∧ 𝑥𝐴) → (¬ 𝑥𝐴𝑥𝐴))
112, 10impbid2 226 . . . 4 ((𝐴 ∈ On ∧ 𝑥𝐴) → (𝑥𝐴 ↔ ¬ 𝑥𝐴))
1211ralbidva 3159 . . 3 (𝐴 ∈ On → (∀𝑥𝐴 𝑥𝐴 ↔ ∀𝑥𝐴 ¬ 𝑥𝐴))
1312pm5.32i 574 . 2 ((𝐴 ∈ On ∧ ∀𝑥𝐴 𝑥𝐴) ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 ¬ 𝑥𝐴))
141, 13bitri 275 1 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 ¬ 𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3050  wss 3924   class class class wbr 5117  Oncon0 6350  cfv 6528  cen 8951  cdom 8952  csdm 8953  cardccrd 9942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-int 4921  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-ord 6353  df-on 6354  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-er 8714  df-en 8955  df-dom 8956  df-sdom 8957  df-card 9946
This theorem is referenced by:  elrncard  43493
  Copyright terms: Public domain W3C validator