Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omiscard Structured version   Visualization version   GIF version

Theorem omiscard 43650
Description: ω is a cardinal number. (Contributed by RP, 1-Oct-2023.)
Assertion
Ref Expression
omiscard ω ∈ ran card

Proof of Theorem omiscard
StepHypRef Expression
1 omelon 9546 . 2 ω ∈ On
2 nnsdom 9554 . . . 4 (𝑥 ∈ ω → 𝑥 ≺ ω)
3 sdomnen 8913 . . . 4 (𝑥 ≺ ω → ¬ 𝑥 ≈ ω)
42, 3syl 17 . . 3 (𝑥 ∈ ω → ¬ 𝑥 ≈ ω)
54rgen 3051 . 2 𝑥 ∈ ω ¬ 𝑥 ≈ ω
6 elrncard 43644 . 2 (ω ∈ ran card ↔ (ω ∈ On ∧ ∀𝑥 ∈ ω ¬ 𝑥 ≈ ω))
71, 5, 6mpbir2an 711 1 ω ∈ ran card
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2113  wral 3049   class class class wbr 5095  ran crn 5622  Oncon0 6314  ωcom 7805  cen 8875  csdm 8877  cardccrd 9838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-om 7806  df-1o 8394  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-card 9842
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator