Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  domalom Structured version   Visualization version   GIF version

Theorem domalom 36223
Description: A class which dominates every natural number is not finite. (Contributed by ML, 14-Dec-2020.)
Assertion
Ref Expression
domalom (∀𝑛 ∈ ω 𝑛𝐴 → ¬ 𝐴 ∈ Fin)
Distinct variable group:   𝐴,𝑛

Proof of Theorem domalom
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfra1 3282 . . . 4 𝑛𝑛 ∈ ω 𝑛𝐴
2 breq1 5150 . . . . . . 7 (𝑦 = 𝑛 → (𝑦𝐴𝑛𝐴))
32imbi2d 341 . . . . . 6 (𝑦 = 𝑛 → ((∀𝑛 ∈ ω 𝑛𝐴𝑦𝐴) ↔ (∀𝑛 ∈ ω 𝑛𝐴𝑛𝐴)))
4 breq1 5150 . . . . . . 7 (𝑦 = ∅ → (𝑦𝐴 ↔ ∅ ≺ 𝐴))
5 breq1 5150 . . . . . . 7 (𝑦 = 𝑧 → (𝑦𝐴𝑧𝐴))
6 breq1 5150 . . . . . . 7 (𝑦 = suc 𝑧 → (𝑦𝐴 ↔ suc 𝑧𝐴))
7 1n0 8483 . . . . . . . . 9 1o ≠ ∅
8 1onn 8635 . . . . . . . . . 10 1o ∈ ω
9 0sdomg 9100 . . . . . . . . . 10 (1o ∈ ω → (∅ ≺ 1o ↔ 1o ≠ ∅))
108, 9ax-mp 5 . . . . . . . . 9 (∅ ≺ 1o ↔ 1o ≠ ∅)
117, 10mpbir 230 . . . . . . . 8 ∅ ≺ 1o
12 breq1 5150 . . . . . . . . . 10 (𝑛 = 1o → (𝑛𝐴 ↔ 1o𝐴))
1312rspccv 3609 . . . . . . . . 9 (∀𝑛 ∈ ω 𝑛𝐴 → (1o ∈ ω → 1o𝐴))
148, 13mpi 20 . . . . . . . 8 (∀𝑛 ∈ ω 𝑛𝐴 → 1o𝐴)
15 sdomdomtr 9106 . . . . . . . 8 ((∅ ≺ 1o ∧ 1o𝐴) → ∅ ≺ 𝐴)
1611, 14, 15sylancr 588 . . . . . . 7 (∀𝑛 ∈ ω 𝑛𝐴 → ∅ ≺ 𝐴)
17 peano2 7876 . . . . . . . . . . 11 (𝑧 ∈ ω → suc 𝑧 ∈ ω)
18 php4 9209 . . . . . . . . . . 11 (suc 𝑧 ∈ ω → suc 𝑧 ≺ suc suc 𝑧)
1917, 18syl 17 . . . . . . . . . 10 (𝑧 ∈ ω → suc 𝑧 ≺ suc suc 𝑧)
20 breq1 5150 . . . . . . . . . . . 12 (𝑛 = suc suc 𝑧 → (𝑛𝐴 ↔ suc suc 𝑧𝐴))
2120rspccv 3609 . . . . . . . . . . 11 (∀𝑛 ∈ ω 𝑛𝐴 → (suc suc 𝑧 ∈ ω → suc suc 𝑧𝐴))
22 peano2 7876 . . . . . . . . . . . 12 (suc 𝑧 ∈ ω → suc suc 𝑧 ∈ ω)
2317, 22syl 17 . . . . . . . . . . 11 (𝑧 ∈ ω → suc suc 𝑧 ∈ ω)
2421, 23impel 507 . . . . . . . . . 10 ((∀𝑛 ∈ ω 𝑛𝐴𝑧 ∈ ω) → suc suc 𝑧𝐴)
25 sdomdomtr 9106 . . . . . . . . . 10 ((suc 𝑧 ≺ suc suc 𝑧 ∧ suc suc 𝑧𝐴) → suc 𝑧𝐴)
2619, 24, 25syl2an2 685 . . . . . . . . 9 ((∀𝑛 ∈ ω 𝑛𝐴𝑧 ∈ ω) → suc 𝑧𝐴)
2726a1d 25 . . . . . . . 8 ((∀𝑛 ∈ ω 𝑛𝐴𝑧 ∈ ω) → (𝑧𝐴 → suc 𝑧𝐴))
2827expcom 415 . . . . . . 7 (𝑧 ∈ ω → (∀𝑛 ∈ ω 𝑛𝐴 → (𝑧𝐴 → suc 𝑧𝐴)))
294, 5, 6, 16, 28finds2 7886 . . . . . 6 (𝑦 ∈ ω → (∀𝑛 ∈ ω 𝑛𝐴𝑦𝐴))
303, 29vtoclga 3565 . . . . 5 (𝑛 ∈ ω → (∀𝑛 ∈ ω 𝑛𝐴𝑛𝐴))
3130com12 32 . . . 4 (∀𝑛 ∈ ω 𝑛𝐴 → (𝑛 ∈ ω → 𝑛𝐴))
321, 31ralrimi 3255 . . 3 (∀𝑛 ∈ ω 𝑛𝐴 → ∀𝑛 ∈ ω 𝑛𝐴)
33 sdomnen 8973 . . . . 5 (𝑛𝐴 → ¬ 𝑛𝐴)
34 ensym 8995 . . . . 5 (𝐴𝑛𝑛𝐴)
3533, 34nsyl 140 . . . 4 (𝑛𝐴 → ¬ 𝐴𝑛)
3635ralimi 3084 . . 3 (∀𝑛 ∈ ω 𝑛𝐴 → ∀𝑛 ∈ ω ¬ 𝐴𝑛)
3732, 36syl 17 . 2 (∀𝑛 ∈ ω 𝑛𝐴 → ∀𝑛 ∈ ω ¬ 𝐴𝑛)
38 isfi 8968 . . . 4 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
3938notbii 320 . . 3 𝐴 ∈ Fin ↔ ¬ ∃𝑛 ∈ ω 𝐴𝑛)
40 ralnex 3073 . . 3 (∀𝑛 ∈ ω ¬ 𝐴𝑛 ↔ ¬ ∃𝑛 ∈ ω 𝐴𝑛)
4139, 40bitr4i 278 . 2 𝐴 ∈ Fin ↔ ∀𝑛 ∈ ω ¬ 𝐴𝑛)
4237, 41sylibr 233 1 (∀𝑛 ∈ ω 𝑛𝐴 → ¬ 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2941  wral 3062  wrex 3071  c0 4321   class class class wbr 5147  suc csuc 6363  ωcom 7850  1oc1o 8454  cen 8932  cdom 8933  csdm 8934  Fincfn 8935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-om 7851  df-1o 8461  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939
This theorem is referenced by:  isinf2  36224
  Copyright terms: Public domain W3C validator