Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  domalom Structured version   Visualization version   GIF version

Theorem domalom 34821
Description: A class which dominates every natural number is not finite. (Contributed by ML, 14-Dec-2020.)
Assertion
Ref Expression
domalom (∀𝑛 ∈ ω 𝑛𝐴 → ¬ 𝐴 ∈ Fin)
Distinct variable group:   𝐴,𝑛

Proof of Theorem domalom
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfra1 3183 . . . 4 𝑛𝑛 ∈ ω 𝑛𝐴
2 breq1 5033 . . . . . . 7 (𝑦 = 𝑛 → (𝑦𝐴𝑛𝐴))
32imbi2d 344 . . . . . 6 (𝑦 = 𝑛 → ((∀𝑛 ∈ ω 𝑛𝐴𝑦𝐴) ↔ (∀𝑛 ∈ ω 𝑛𝐴𝑛𝐴)))
4 breq1 5033 . . . . . . 7 (𝑦 = ∅ → (𝑦𝐴 ↔ ∅ ≺ 𝐴))
5 breq1 5033 . . . . . . 7 (𝑦 = 𝑧 → (𝑦𝐴𝑧𝐴))
6 breq1 5033 . . . . . . 7 (𝑦 = suc 𝑧 → (𝑦𝐴 ↔ suc 𝑧𝐴))
7 1n0 8102 . . . . . . . . 9 1o ≠ ∅
8 1onn 8248 . . . . . . . . . 10 1o ∈ ω
9 0sdomg 8630 . . . . . . . . . 10 (1o ∈ ω → (∅ ≺ 1o ↔ 1o ≠ ∅))
108, 9ax-mp 5 . . . . . . . . 9 (∅ ≺ 1o ↔ 1o ≠ ∅)
117, 10mpbir 234 . . . . . . . 8 ∅ ≺ 1o
12 breq1 5033 . . . . . . . . . 10 (𝑛 = 1o → (𝑛𝐴 ↔ 1o𝐴))
1312rspccv 3568 . . . . . . . . 9 (∀𝑛 ∈ ω 𝑛𝐴 → (1o ∈ ω → 1o𝐴))
148, 13mpi 20 . . . . . . . 8 (∀𝑛 ∈ ω 𝑛𝐴 → 1o𝐴)
15 sdomdomtr 8634 . . . . . . . 8 ((∅ ≺ 1o ∧ 1o𝐴) → ∅ ≺ 𝐴)
1611, 14, 15sylancr 590 . . . . . . 7 (∀𝑛 ∈ ω 𝑛𝐴 → ∅ ≺ 𝐴)
17 peano2 7582 . . . . . . . . . . 11 (𝑧 ∈ ω → suc 𝑧 ∈ ω)
18 php4 8688 . . . . . . . . . . 11 (suc 𝑧 ∈ ω → suc 𝑧 ≺ suc suc 𝑧)
1917, 18syl 17 . . . . . . . . . 10 (𝑧 ∈ ω → suc 𝑧 ≺ suc suc 𝑧)
20 breq1 5033 . . . . . . . . . . . 12 (𝑛 = suc suc 𝑧 → (𝑛𝐴 ↔ suc suc 𝑧𝐴))
2120rspccv 3568 . . . . . . . . . . 11 (∀𝑛 ∈ ω 𝑛𝐴 → (suc suc 𝑧 ∈ ω → suc suc 𝑧𝐴))
22 peano2 7582 . . . . . . . . . . . 12 (suc 𝑧 ∈ ω → suc suc 𝑧 ∈ ω)
2317, 22syl 17 . . . . . . . . . . 11 (𝑧 ∈ ω → suc suc 𝑧 ∈ ω)
2421, 23impel 509 . . . . . . . . . 10 ((∀𝑛 ∈ ω 𝑛𝐴𝑧 ∈ ω) → suc suc 𝑧𝐴)
25 sdomdomtr 8634 . . . . . . . . . 10 ((suc 𝑧 ≺ suc suc 𝑧 ∧ suc suc 𝑧𝐴) → suc 𝑧𝐴)
2619, 24, 25syl2an2 685 . . . . . . . . 9 ((∀𝑛 ∈ ω 𝑛𝐴𝑧 ∈ ω) → suc 𝑧𝐴)
2726a1d 25 . . . . . . . 8 ((∀𝑛 ∈ ω 𝑛𝐴𝑧 ∈ ω) → (𝑧𝐴 → suc 𝑧𝐴))
2827expcom 417 . . . . . . 7 (𝑧 ∈ ω → (∀𝑛 ∈ ω 𝑛𝐴 → (𝑧𝐴 → suc 𝑧𝐴)))
294, 5, 6, 16, 28finds2 7591 . . . . . 6 (𝑦 ∈ ω → (∀𝑛 ∈ ω 𝑛𝐴𝑦𝐴))
303, 29vtoclga 3522 . . . . 5 (𝑛 ∈ ω → (∀𝑛 ∈ ω 𝑛𝐴𝑛𝐴))
3130com12 32 . . . 4 (∀𝑛 ∈ ω 𝑛𝐴 → (𝑛 ∈ ω → 𝑛𝐴))
321, 31ralrimi 3180 . . 3 (∀𝑛 ∈ ω 𝑛𝐴 → ∀𝑛 ∈ ω 𝑛𝐴)
33 sdomnen 8521 . . . . 5 (𝑛𝐴 → ¬ 𝑛𝐴)
34 ensym 8541 . . . . 5 (𝐴𝑛𝑛𝐴)
3533, 34nsyl 142 . . . 4 (𝑛𝐴 → ¬ 𝐴𝑛)
3635ralimi 3128 . . 3 (∀𝑛 ∈ ω 𝑛𝐴 → ∀𝑛 ∈ ω ¬ 𝐴𝑛)
3732, 36syl 17 . 2 (∀𝑛 ∈ ω 𝑛𝐴 → ∀𝑛 ∈ ω ¬ 𝐴𝑛)
38 isfi 8516 . . . 4 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
3938notbii 323 . . 3 𝐴 ∈ Fin ↔ ¬ ∃𝑛 ∈ ω 𝐴𝑛)
40 ralnex 3199 . . 3 (∀𝑛 ∈ ω ¬ 𝐴𝑛 ↔ ¬ ∃𝑛 ∈ ω 𝐴𝑛)
4139, 40bitr4i 281 . 2 𝐴 ∈ Fin ↔ ∀𝑛 ∈ ω ¬ 𝐴𝑛)
4237, 41sylibr 237 1 (∀𝑛 ∈ ω 𝑛𝐴 → ¬ 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  c0 4243   class class class wbr 5030  suc csuc 6161  ωcom 7560  1oc1o 8078  cen 8489  cdom 8490  csdm 8491  Fincfn 8492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-1o 8085  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496
This theorem is referenced by:  isinf2  34822
  Copyright terms: Public domain W3C validator