Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  domalom Structured version   Visualization version   GIF version

Theorem domalom 35195
Description: A class which dominates every natural number is not finite. (Contributed by ML, 14-Dec-2020.)
Assertion
Ref Expression
domalom (∀𝑛 ∈ ω 𝑛𝐴 → ¬ 𝐴 ∈ Fin)
Distinct variable group:   𝐴,𝑛

Proof of Theorem domalom
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfra1 3131 . . . 4 𝑛𝑛 ∈ ω 𝑛𝐴
2 breq1 5034 . . . . . . 7 (𝑦 = 𝑛 → (𝑦𝐴𝑛𝐴))
32imbi2d 344 . . . . . 6 (𝑦 = 𝑛 → ((∀𝑛 ∈ ω 𝑛𝐴𝑦𝐴) ↔ (∀𝑛 ∈ ω 𝑛𝐴𝑛𝐴)))
4 breq1 5034 . . . . . . 7 (𝑦 = ∅ → (𝑦𝐴 ↔ ∅ ≺ 𝐴))
5 breq1 5034 . . . . . . 7 (𝑦 = 𝑧 → (𝑦𝐴𝑧𝐴))
6 breq1 5034 . . . . . . 7 (𝑦 = suc 𝑧 → (𝑦𝐴 ↔ suc 𝑧𝐴))
7 1n0 8151 . . . . . . . . 9 1o ≠ ∅
8 1onn 8297 . . . . . . . . . 10 1o ∈ ω
9 0sdomg 8697 . . . . . . . . . 10 (1o ∈ ω → (∅ ≺ 1o ↔ 1o ≠ ∅))
108, 9ax-mp 5 . . . . . . . . 9 (∅ ≺ 1o ↔ 1o ≠ ∅)
117, 10mpbir 234 . . . . . . . 8 ∅ ≺ 1o
12 breq1 5034 . . . . . . . . . 10 (𝑛 = 1o → (𝑛𝐴 ↔ 1o𝐴))
1312rspccv 3524 . . . . . . . . 9 (∀𝑛 ∈ ω 𝑛𝐴 → (1o ∈ ω → 1o𝐴))
148, 13mpi 20 . . . . . . . 8 (∀𝑛 ∈ ω 𝑛𝐴 → 1o𝐴)
15 sdomdomtr 8701 . . . . . . . 8 ((∅ ≺ 1o ∧ 1o𝐴) → ∅ ≺ 𝐴)
1611, 14, 15sylancr 590 . . . . . . 7 (∀𝑛 ∈ ω 𝑛𝐴 → ∅ ≺ 𝐴)
17 peano2 7622 . . . . . . . . . . 11 (𝑧 ∈ ω → suc 𝑧 ∈ ω)
18 php4 8755 . . . . . . . . . . 11 (suc 𝑧 ∈ ω → suc 𝑧 ≺ suc suc 𝑧)
1917, 18syl 17 . . . . . . . . . 10 (𝑧 ∈ ω → suc 𝑧 ≺ suc suc 𝑧)
20 breq1 5034 . . . . . . . . . . . 12 (𝑛 = suc suc 𝑧 → (𝑛𝐴 ↔ suc suc 𝑧𝐴))
2120rspccv 3524 . . . . . . . . . . 11 (∀𝑛 ∈ ω 𝑛𝐴 → (suc suc 𝑧 ∈ ω → suc suc 𝑧𝐴))
22 peano2 7622 . . . . . . . . . . . 12 (suc 𝑧 ∈ ω → suc suc 𝑧 ∈ ω)
2317, 22syl 17 . . . . . . . . . . 11 (𝑧 ∈ ω → suc suc 𝑧 ∈ ω)
2421, 23impel 509 . . . . . . . . . 10 ((∀𝑛 ∈ ω 𝑛𝐴𝑧 ∈ ω) → suc suc 𝑧𝐴)
25 sdomdomtr 8701 . . . . . . . . . 10 ((suc 𝑧 ≺ suc suc 𝑧 ∧ suc suc 𝑧𝐴) → suc 𝑧𝐴)
2619, 24, 25syl2an2 686 . . . . . . . . 9 ((∀𝑛 ∈ ω 𝑛𝐴𝑧 ∈ ω) → suc 𝑧𝐴)
2726a1d 25 . . . . . . . 8 ((∀𝑛 ∈ ω 𝑛𝐴𝑧 ∈ ω) → (𝑧𝐴 → suc 𝑧𝐴))
2827expcom 417 . . . . . . 7 (𝑧 ∈ ω → (∀𝑛 ∈ ω 𝑛𝐴 → (𝑧𝐴 → suc 𝑧𝐴)))
294, 5, 6, 16, 28finds2 7632 . . . . . 6 (𝑦 ∈ ω → (∀𝑛 ∈ ω 𝑛𝐴𝑦𝐴))
303, 29vtoclga 3479 . . . . 5 (𝑛 ∈ ω → (∀𝑛 ∈ ω 𝑛𝐴𝑛𝐴))
3130com12 32 . . . 4 (∀𝑛 ∈ ω 𝑛𝐴 → (𝑛 ∈ ω → 𝑛𝐴))
321, 31ralrimi 3128 . . 3 (∀𝑛 ∈ ω 𝑛𝐴 → ∀𝑛 ∈ ω 𝑛𝐴)
33 sdomnen 8585 . . . . 5 (𝑛𝐴 → ¬ 𝑛𝐴)
34 ensym 8605 . . . . 5 (𝐴𝑛𝑛𝐴)
3533, 34nsyl 142 . . . 4 (𝑛𝐴 → ¬ 𝐴𝑛)
3635ralimi 3075 . . 3 (∀𝑛 ∈ ω 𝑛𝐴 → ∀𝑛 ∈ ω ¬ 𝐴𝑛)
3732, 36syl 17 . 2 (∀𝑛 ∈ ω 𝑛𝐴 → ∀𝑛 ∈ ω ¬ 𝐴𝑛)
38 isfi 8580 . . . 4 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
3938notbii 323 . . 3 𝐴 ∈ Fin ↔ ¬ ∃𝑛 ∈ ω 𝐴𝑛)
40 ralnex 3149 . . 3 (∀𝑛 ∈ ω ¬ 𝐴𝑛 ↔ ¬ ∃𝑛 ∈ ω 𝐴𝑛)
4139, 40bitr4i 281 . 2 𝐴 ∈ Fin ↔ ∀𝑛 ∈ ω ¬ 𝐴𝑛)
4237, 41sylibr 237 1 (∀𝑛 ∈ ω 𝑛𝐴 → ¬ 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1542  wcel 2113  wne 2934  wral 3053  wrex 3054  c0 4212   class class class wbr 5031  suc csuc 6175  ωcom 7600  1oc1o 8125  cen 8553  cdom 8554  csdm 8555  Fincfn 8556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7480
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-sbc 3683  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-br 5032  df-opab 5094  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-om 7601  df-1o 8132  df-er 8321  df-en 8557  df-dom 8558  df-sdom 8559  df-fin 8560
This theorem is referenced by:  isinf2  35196
  Copyright terms: Public domain W3C validator