Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  domalom Structured version   Visualization version   GIF version

Theorem domalom 37405
Description: A class which dominates every natural number is not finite. (Contributed by ML, 14-Dec-2020.)
Assertion
Ref Expression
domalom (∀𝑛 ∈ ω 𝑛𝐴 → ¬ 𝐴 ∈ Fin)
Distinct variable group:   𝐴,𝑛

Proof of Theorem domalom
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfra1 3284 . . . 4 𝑛𝑛 ∈ ω 𝑛𝐴
2 breq1 5146 . . . . . . 7 (𝑦 = 𝑛 → (𝑦𝐴𝑛𝐴))
32imbi2d 340 . . . . . 6 (𝑦 = 𝑛 → ((∀𝑛 ∈ ω 𝑛𝐴𝑦𝐴) ↔ (∀𝑛 ∈ ω 𝑛𝐴𝑛𝐴)))
4 breq1 5146 . . . . . . 7 (𝑦 = ∅ → (𝑦𝐴 ↔ ∅ ≺ 𝐴))
5 breq1 5146 . . . . . . 7 (𝑦 = 𝑧 → (𝑦𝐴𝑧𝐴))
6 breq1 5146 . . . . . . 7 (𝑦 = suc 𝑧 → (𝑦𝐴 ↔ suc 𝑧𝐴))
7 1n0 8526 . . . . . . . . 9 1o ≠ ∅
8 1onn 8678 . . . . . . . . . 10 1o ∈ ω
9 0sdomg 9144 . . . . . . . . . 10 (1o ∈ ω → (∅ ≺ 1o ↔ 1o ≠ ∅))
108, 9ax-mp 5 . . . . . . . . 9 (∅ ≺ 1o ↔ 1o ≠ ∅)
117, 10mpbir 231 . . . . . . . 8 ∅ ≺ 1o
12 breq1 5146 . . . . . . . . . 10 (𝑛 = 1o → (𝑛𝐴 ↔ 1o𝐴))
1312rspccv 3619 . . . . . . . . 9 (∀𝑛 ∈ ω 𝑛𝐴 → (1o ∈ ω → 1o𝐴))
148, 13mpi 20 . . . . . . . 8 (∀𝑛 ∈ ω 𝑛𝐴 → 1o𝐴)
15 sdomdomtr 9150 . . . . . . . 8 ((∅ ≺ 1o ∧ 1o𝐴) → ∅ ≺ 𝐴)
1611, 14, 15sylancr 587 . . . . . . 7 (∀𝑛 ∈ ω 𝑛𝐴 → ∅ ≺ 𝐴)
17 peano2 7912 . . . . . . . . . . 11 (𝑧 ∈ ω → suc 𝑧 ∈ ω)
18 php4 9250 . . . . . . . . . . 11 (suc 𝑧 ∈ ω → suc 𝑧 ≺ suc suc 𝑧)
1917, 18syl 17 . . . . . . . . . 10 (𝑧 ∈ ω → suc 𝑧 ≺ suc suc 𝑧)
20 breq1 5146 . . . . . . . . . . . 12 (𝑛 = suc suc 𝑧 → (𝑛𝐴 ↔ suc suc 𝑧𝐴))
2120rspccv 3619 . . . . . . . . . . 11 (∀𝑛 ∈ ω 𝑛𝐴 → (suc suc 𝑧 ∈ ω → suc suc 𝑧𝐴))
22 peano2 7912 . . . . . . . . . . . 12 (suc 𝑧 ∈ ω → suc suc 𝑧 ∈ ω)
2317, 22syl 17 . . . . . . . . . . 11 (𝑧 ∈ ω → suc suc 𝑧 ∈ ω)
2421, 23impel 505 . . . . . . . . . 10 ((∀𝑛 ∈ ω 𝑛𝐴𝑧 ∈ ω) → suc suc 𝑧𝐴)
25 sdomdomtr 9150 . . . . . . . . . 10 ((suc 𝑧 ≺ suc suc 𝑧 ∧ suc suc 𝑧𝐴) → suc 𝑧𝐴)
2619, 24, 25syl2an2 686 . . . . . . . . 9 ((∀𝑛 ∈ ω 𝑛𝐴𝑧 ∈ ω) → suc 𝑧𝐴)
2726a1d 25 . . . . . . . 8 ((∀𝑛 ∈ ω 𝑛𝐴𝑧 ∈ ω) → (𝑧𝐴 → suc 𝑧𝐴))
2827expcom 413 . . . . . . 7 (𝑧 ∈ ω → (∀𝑛 ∈ ω 𝑛𝐴 → (𝑧𝐴 → suc 𝑧𝐴)))
294, 5, 6, 16, 28finds2 7920 . . . . . 6 (𝑦 ∈ ω → (∀𝑛 ∈ ω 𝑛𝐴𝑦𝐴))
303, 29vtoclga 3577 . . . . 5 (𝑛 ∈ ω → (∀𝑛 ∈ ω 𝑛𝐴𝑛𝐴))
3130com12 32 . . . 4 (∀𝑛 ∈ ω 𝑛𝐴 → (𝑛 ∈ ω → 𝑛𝐴))
321, 31ralrimi 3257 . . 3 (∀𝑛 ∈ ω 𝑛𝐴 → ∀𝑛 ∈ ω 𝑛𝐴)
33 sdomnen 9021 . . . . 5 (𝑛𝐴 → ¬ 𝑛𝐴)
34 ensym 9043 . . . . 5 (𝐴𝑛𝑛𝐴)
3533, 34nsyl 140 . . . 4 (𝑛𝐴 → ¬ 𝐴𝑛)
3635ralimi 3083 . . 3 (∀𝑛 ∈ ω 𝑛𝐴 → ∀𝑛 ∈ ω ¬ 𝐴𝑛)
3732, 36syl 17 . 2 (∀𝑛 ∈ ω 𝑛𝐴 → ∀𝑛 ∈ ω ¬ 𝐴𝑛)
38 isfi 9016 . . . 4 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
3938notbii 320 . . 3 𝐴 ∈ Fin ↔ ¬ ∃𝑛 ∈ ω 𝐴𝑛)
40 ralnex 3072 . . 3 (∀𝑛 ∈ ω ¬ 𝐴𝑛 ↔ ¬ ∃𝑛 ∈ ω 𝐴𝑛)
4139, 40bitr4i 278 . 2 𝐴 ∈ Fin ↔ ∀𝑛 ∈ ω ¬ 𝐴𝑛)
4237, 41sylibr 234 1 (∀𝑛 ∈ ω 𝑛𝐴 → ¬ 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  c0 4333   class class class wbr 5143  suc csuc 6386  ωcom 7887  1oc1o 8499  cen 8982  cdom 8983  csdm 8984  Fincfn 8985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-om 7888  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989
This theorem is referenced by:  isinf2  37406
  Copyright terms: Public domain W3C validator