![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sgnval | Structured version Visualization version GIF version |
Description: Value of the signum function. (Contributed by David A. Wheeler, 15-May-2015.) |
Ref | Expression |
---|---|
sgnval | ⊢ (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2737 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 0 ↔ 𝐴 = 0)) | |
2 | breq1 5152 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 < 0 ↔ 𝐴 < 0)) | |
3 | 2 | ifbid 4552 | . . 3 ⊢ (𝑥 = 𝐴 → if(𝑥 < 0, -1, 1) = if(𝐴 < 0, -1, 1)) |
4 | 1, 3 | ifbieq2d 4555 | . 2 ⊢ (𝑥 = 𝐴 → if(𝑥 = 0, 0, if(𝑥 < 0, -1, 1)) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) |
5 | df-sgn 15034 | . 2 ⊢ sgn = (𝑥 ∈ ℝ* ↦ if(𝑥 = 0, 0, if(𝑥 < 0, -1, 1))) | |
6 | c0ex 11208 | . . 3 ⊢ 0 ∈ V | |
7 | negex 11458 | . . . 4 ⊢ -1 ∈ V | |
8 | 1ex 11210 | . . . 4 ⊢ 1 ∈ V | |
9 | 7, 8 | ifex 4579 | . . 3 ⊢ if(𝐴 < 0, -1, 1) ∈ V |
10 | 6, 9 | ifex 4579 | . 2 ⊢ if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)) ∈ V |
11 | 4, 5, 10 | fvmpt 6999 | 1 ⊢ (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ifcif 4529 class class class wbr 5149 ‘cfv 6544 0cc0 11110 1c1 11111 ℝ*cxr 11247 < clt 11248 -cneg 11445 sgncsgn 15033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-mulcl 11172 ax-i2m1 11178 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-neg 11447 df-sgn 15034 |
This theorem is referenced by: sgn0 15036 sgnp 15037 sgnn 15041 sgnneg 33539 sgn3da 33540 reabssgn 42387 |
Copyright terms: Public domain | W3C validator |