| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sgnval | Structured version Visualization version GIF version | ||
| Description: Value of the signum function. (Contributed by David A. Wheeler, 15-May-2015.) |
| Ref | Expression |
|---|---|
| sgnval | ⊢ (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2737 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 0 ↔ 𝐴 = 0)) | |
| 2 | breq1 5096 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 < 0 ↔ 𝐴 < 0)) | |
| 3 | 2 | ifbid 4498 | . . 3 ⊢ (𝑥 = 𝐴 → if(𝑥 < 0, -1, 1) = if(𝐴 < 0, -1, 1)) |
| 4 | 1, 3 | ifbieq2d 4501 | . 2 ⊢ (𝑥 = 𝐴 → if(𝑥 = 0, 0, if(𝑥 < 0, -1, 1)) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) |
| 5 | df-sgn 14996 | . 2 ⊢ sgn = (𝑥 ∈ ℝ* ↦ if(𝑥 = 0, 0, if(𝑥 < 0, -1, 1))) | |
| 6 | c0ex 11113 | . . 3 ⊢ 0 ∈ V | |
| 7 | negex 11365 | . . . 4 ⊢ -1 ∈ V | |
| 8 | 1ex 11115 | . . . 4 ⊢ 1 ∈ V | |
| 9 | 7, 8 | ifex 4525 | . . 3 ⊢ if(𝐴 < 0, -1, 1) ∈ V |
| 10 | 6, 9 | ifex 4525 | . 2 ⊢ if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)) ∈ V |
| 11 | 4, 5, 10 | fvmpt 6935 | 1 ⊢ (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ifcif 4474 class class class wbr 5093 ‘cfv 6486 0cc0 11013 1c1 11014 ℝ*cxr 11152 < clt 11153 -cneg 11352 sgncsgn 14995 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-mulcl 11075 ax-i2m1 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-neg 11354 df-sgn 14996 |
| This theorem is referenced by: sgn0 14998 sgnp 14999 sgnn 15003 sgnneg 32821 sgn3da 32822 reabssgn 43753 |
| Copyright terms: Public domain | W3C validator |