| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sgnval | Structured version Visualization version GIF version | ||
| Description: Value of the signum function. (Contributed by David A. Wheeler, 15-May-2015.) |
| Ref | Expression |
|---|---|
| sgnval | ⊢ (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2735 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 0 ↔ 𝐴 = 0)) | |
| 2 | breq1 5094 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 < 0 ↔ 𝐴 < 0)) | |
| 3 | 2 | ifbid 4499 | . . 3 ⊢ (𝑥 = 𝐴 → if(𝑥 < 0, -1, 1) = if(𝐴 < 0, -1, 1)) |
| 4 | 1, 3 | ifbieq2d 4502 | . 2 ⊢ (𝑥 = 𝐴 → if(𝑥 = 0, 0, if(𝑥 < 0, -1, 1)) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) |
| 5 | df-sgn 14991 | . 2 ⊢ sgn = (𝑥 ∈ ℝ* ↦ if(𝑥 = 0, 0, if(𝑥 < 0, -1, 1))) | |
| 6 | c0ex 11103 | . . 3 ⊢ 0 ∈ V | |
| 7 | negex 11355 | . . . 4 ⊢ -1 ∈ V | |
| 8 | 1ex 11105 | . . . 4 ⊢ 1 ∈ V | |
| 9 | 7, 8 | ifex 4526 | . . 3 ⊢ if(𝐴 < 0, -1, 1) ∈ V |
| 10 | 6, 9 | ifex 4526 | . 2 ⊢ if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)) ∈ V |
| 11 | 4, 5, 10 | fvmpt 6929 | 1 ⊢ (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ifcif 4475 class class class wbr 5091 ‘cfv 6481 0cc0 11003 1c1 11004 ℝ*cxr 11142 < clt 11143 -cneg 11342 sgncsgn 14990 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-mulcl 11065 ax-i2m1 11071 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-neg 11344 df-sgn 14991 |
| This theorem is referenced by: sgn0 14993 sgnp 14994 sgnn 14998 sgnneg 32811 sgn3da 32812 reabssgn 43668 |
| Copyright terms: Public domain | W3C validator |