MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgnval Structured version   Visualization version   GIF version

Theorem sgnval 14795
Description: Value of the signum function. (Contributed by David A. Wheeler, 15-May-2015.)
Assertion
Ref Expression
sgnval (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)))

Proof of Theorem sgnval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2744 . . 3 (𝑥 = 𝐴 → (𝑥 = 0 ↔ 𝐴 = 0))
2 breq1 5082 . . . 4 (𝑥 = 𝐴 → (𝑥 < 0 ↔ 𝐴 < 0))
32ifbid 4488 . . 3 (𝑥 = 𝐴 → if(𝑥 < 0, -1, 1) = if(𝐴 < 0, -1, 1))
41, 3ifbieq2d 4491 . 2 (𝑥 = 𝐴 → if(𝑥 = 0, 0, if(𝑥 < 0, -1, 1)) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)))
5 df-sgn 14794 . 2 sgn = (𝑥 ∈ ℝ* ↦ if(𝑥 = 0, 0, if(𝑥 < 0, -1, 1)))
6 c0ex 10968 . . 3 0 ∈ V
7 negex 11217 . . . 4 -1 ∈ V
8 1ex 10970 . . . 4 1 ∈ V
97, 8ifex 4515 . . 3 if(𝐴 < 0, -1, 1) ∈ V
106, 9ifex 4515 . 2 if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)) ∈ V
114, 5, 10fvmpt 6870 1 (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2110  ifcif 4465   class class class wbr 5079  cfv 6431  0cc0 10870  1c1 10871  *cxr 11007   < clt 11008  -cneg 11204  sgncsgn 14793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356  ax-1cn 10928  ax-icn 10929  ax-addcl 10930  ax-mulcl 10932  ax-i2m1 10938
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6389  df-fun 6433  df-fv 6439  df-ov 7272  df-neg 11206  df-sgn 14794
This theorem is referenced by:  sgn0  14796  sgnp  14797  sgnn  14801  sgnneg  32501  sgn3da  32502  reabssgn  41212
  Copyright terms: Public domain W3C validator