MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgnval Structured version   Visualization version   GIF version

Theorem sgnval 15061
Description: Value of the signum function. (Contributed by David A. Wheeler, 15-May-2015.)
Assertion
Ref Expression
sgnval (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)))

Proof of Theorem sgnval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2734 . . 3 (𝑥 = 𝐴 → (𝑥 = 0 ↔ 𝐴 = 0))
2 breq1 5113 . . . 4 (𝑥 = 𝐴 → (𝑥 < 0 ↔ 𝐴 < 0))
32ifbid 4515 . . 3 (𝑥 = 𝐴 → if(𝑥 < 0, -1, 1) = if(𝐴 < 0, -1, 1))
41, 3ifbieq2d 4518 . 2 (𝑥 = 𝐴 → if(𝑥 = 0, 0, if(𝑥 < 0, -1, 1)) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)))
5 df-sgn 15060 . 2 sgn = (𝑥 ∈ ℝ* ↦ if(𝑥 = 0, 0, if(𝑥 < 0, -1, 1)))
6 c0ex 11175 . . 3 0 ∈ V
7 negex 11426 . . . 4 -1 ∈ V
8 1ex 11177 . . . 4 1 ∈ V
97, 8ifex 4542 . . 3 if(𝐴 < 0, -1, 1) ∈ V
106, 9ifex 4542 . 2 if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)) ∈ V
114, 5, 10fvmpt 6971 1 (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  ifcif 4491   class class class wbr 5110  cfv 6514  0cc0 11075  1c1 11076  *cxr 11214   < clt 11215  -cneg 11413  sgncsgn 15059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-mulcl 11137  ax-i2m1 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-neg 11415  df-sgn 15060
This theorem is referenced by:  sgn0  15062  sgnp  15063  sgnn  15067  sgnneg  32765  sgn3da  32766  reabssgn  43632
  Copyright terms: Public domain W3C validator