![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sgnval | Structured version Visualization version GIF version |
Description: Value of the signum function. (Contributed by David A. Wheeler, 15-May-2015.) |
Ref | Expression |
---|---|
sgnval | ⊢ (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2732 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 0 ↔ 𝐴 = 0)) | |
2 | breq1 5151 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 < 0 ↔ 𝐴 < 0)) | |
3 | 2 | ifbid 4552 | . . 3 ⊢ (𝑥 = 𝐴 → if(𝑥 < 0, -1, 1) = if(𝐴 < 0, -1, 1)) |
4 | 1, 3 | ifbieq2d 4555 | . 2 ⊢ (𝑥 = 𝐴 → if(𝑥 = 0, 0, if(𝑥 < 0, -1, 1)) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) |
5 | df-sgn 15067 | . 2 ⊢ sgn = (𝑥 ∈ ℝ* ↦ if(𝑥 = 0, 0, if(𝑥 < 0, -1, 1))) | |
6 | c0ex 11239 | . . 3 ⊢ 0 ∈ V | |
7 | negex 11489 | . . . 4 ⊢ -1 ∈ V | |
8 | 1ex 11241 | . . . 4 ⊢ 1 ∈ V | |
9 | 7, 8 | ifex 4579 | . . 3 ⊢ if(𝐴 < 0, -1, 1) ∈ V |
10 | 6, 9 | ifex 4579 | . 2 ⊢ if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)) ∈ V |
11 | 4, 5, 10 | fvmpt 7005 | 1 ⊢ (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ifcif 4529 class class class wbr 5148 ‘cfv 6548 0cc0 11139 1c1 11140 ℝ*cxr 11278 < clt 11279 -cneg 11476 sgncsgn 15066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-mulcl 11201 ax-i2m1 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6500 df-fun 6550 df-fv 6556 df-ov 7423 df-neg 11478 df-sgn 15067 |
This theorem is referenced by: sgn0 15069 sgnp 15070 sgnn 15074 sgnneg 34160 sgn3da 34161 reabssgn 43066 |
Copyright terms: Public domain | W3C validator |