MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgnval Structured version   Visualization version   GIF version

Theorem sgnval 14992
Description: Value of the signum function. (Contributed by David A. Wheeler, 15-May-2015.)
Assertion
Ref Expression
sgnval (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)))

Proof of Theorem sgnval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2735 . . 3 (𝑥 = 𝐴 → (𝑥 = 0 ↔ 𝐴 = 0))
2 breq1 5094 . . . 4 (𝑥 = 𝐴 → (𝑥 < 0 ↔ 𝐴 < 0))
32ifbid 4499 . . 3 (𝑥 = 𝐴 → if(𝑥 < 0, -1, 1) = if(𝐴 < 0, -1, 1))
41, 3ifbieq2d 4502 . 2 (𝑥 = 𝐴 → if(𝑥 = 0, 0, if(𝑥 < 0, -1, 1)) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)))
5 df-sgn 14991 . 2 sgn = (𝑥 ∈ ℝ* ↦ if(𝑥 = 0, 0, if(𝑥 < 0, -1, 1)))
6 c0ex 11103 . . 3 0 ∈ V
7 negex 11355 . . . 4 -1 ∈ V
8 1ex 11105 . . . 4 1 ∈ V
97, 8ifex 4526 . . 3 if(𝐴 < 0, -1, 1) ∈ V
106, 9ifex 4526 . 2 if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)) ∈ V
114, 5, 10fvmpt 6929 1 (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  ifcif 4475   class class class wbr 5091  cfv 6481  0cc0 11003  1c1 11004  *cxr 11142   < clt 11143  -cneg 11342  sgncsgn 14990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-mulcl 11065  ax-i2m1 11071
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-neg 11344  df-sgn 14991
This theorem is referenced by:  sgn0  14993  sgnp  14994  sgnn  14998  sgnneg  32811  sgn3da  32812  reabssgn  43668
  Copyright terms: Public domain W3C validator