| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sgnval | Structured version Visualization version GIF version | ||
| Description: Value of the signum function. (Contributed by David A. Wheeler, 15-May-2015.) |
| Ref | Expression |
|---|---|
| sgnval | ⊢ (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2733 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 0 ↔ 𝐴 = 0)) | |
| 2 | breq1 5110 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 < 0 ↔ 𝐴 < 0)) | |
| 3 | 2 | ifbid 4512 | . . 3 ⊢ (𝑥 = 𝐴 → if(𝑥 < 0, -1, 1) = if(𝐴 < 0, -1, 1)) |
| 4 | 1, 3 | ifbieq2d 4515 | . 2 ⊢ (𝑥 = 𝐴 → if(𝑥 = 0, 0, if(𝑥 < 0, -1, 1)) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) |
| 5 | df-sgn 15053 | . 2 ⊢ sgn = (𝑥 ∈ ℝ* ↦ if(𝑥 = 0, 0, if(𝑥 < 0, -1, 1))) | |
| 6 | c0ex 11168 | . . 3 ⊢ 0 ∈ V | |
| 7 | negex 11419 | . . . 4 ⊢ -1 ∈ V | |
| 8 | 1ex 11170 | . . . 4 ⊢ 1 ∈ V | |
| 9 | 7, 8 | ifex 4539 | . . 3 ⊢ if(𝐴 < 0, -1, 1) ∈ V |
| 10 | 6, 9 | ifex 4539 | . 2 ⊢ if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)) ∈ V |
| 11 | 4, 5, 10 | fvmpt 6968 | 1 ⊢ (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ifcif 4488 class class class wbr 5107 ‘cfv 6511 0cc0 11068 1c1 11069 ℝ*cxr 11207 < clt 11208 -cneg 11406 sgncsgn 15052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-mulcl 11130 ax-i2m1 11136 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-neg 11408 df-sgn 15053 |
| This theorem is referenced by: sgn0 15055 sgnp 15056 sgnn 15060 sgnneg 32758 sgn3da 32759 reabssgn 43625 |
| Copyright terms: Public domain | W3C validator |