| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sgnval | Structured version Visualization version GIF version | ||
| Description: Value of the signum function. (Contributed by David A. Wheeler, 15-May-2015.) |
| Ref | Expression |
|---|---|
| sgnval | ⊢ (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2740 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 0 ↔ 𝐴 = 0)) | |
| 2 | breq1 5145 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 < 0 ↔ 𝐴 < 0)) | |
| 3 | 2 | ifbid 4548 | . . 3 ⊢ (𝑥 = 𝐴 → if(𝑥 < 0, -1, 1) = if(𝐴 < 0, -1, 1)) |
| 4 | 1, 3 | ifbieq2d 4551 | . 2 ⊢ (𝑥 = 𝐴 → if(𝑥 = 0, 0, if(𝑥 < 0, -1, 1)) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) |
| 5 | df-sgn 15127 | . 2 ⊢ sgn = (𝑥 ∈ ℝ* ↦ if(𝑥 = 0, 0, if(𝑥 < 0, -1, 1))) | |
| 6 | c0ex 11256 | . . 3 ⊢ 0 ∈ V | |
| 7 | negex 11507 | . . . 4 ⊢ -1 ∈ V | |
| 8 | 1ex 11258 | . . . 4 ⊢ 1 ∈ V | |
| 9 | 7, 8 | ifex 4575 | . . 3 ⊢ if(𝐴 < 0, -1, 1) ∈ V |
| 10 | 6, 9 | ifex 4575 | . 2 ⊢ if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)) ∈ V |
| 11 | 4, 5, 10 | fvmpt 7015 | 1 ⊢ (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ifcif 4524 class class class wbr 5142 ‘cfv 6560 0cc0 11156 1c1 11157 ℝ*cxr 11295 < clt 11296 -cneg 11494 sgncsgn 15126 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-mulcl 11218 ax-i2m1 11224 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-iota 6513 df-fun 6562 df-fv 6568 df-ov 7435 df-neg 11496 df-sgn 15127 |
| This theorem is referenced by: sgn0 15129 sgnp 15130 sgnn 15134 sgnneg 34544 sgn3da 34545 reabssgn 43654 |
| Copyright terms: Public domain | W3C validator |