| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sgnp | Structured version Visualization version GIF version | ||
| Description: The signum of a positive extended real is 1. (Contributed by David A. Wheeler, 15-May-2015.) |
| Ref | Expression |
|---|---|
| sgnp | ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sgnval 14990 | . . 3 ⊢ (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) |
| 3 | 0xr 11154 | . . . . 5 ⊢ 0 ∈ ℝ* | |
| 4 | xrltne 13057 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
| 5 | 3, 4 | mp3an1 1450 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 𝐴 ≠ 0) |
| 6 | 5 | neneqd 2933 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → ¬ 𝐴 = 0) |
| 7 | 6 | iffalsed 4481 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)) = if(𝐴 < 0, -1, 1)) |
| 8 | xrltnsym 13031 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (0 < 𝐴 → ¬ 𝐴 < 0)) | |
| 9 | 3, 8 | mpan 690 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (0 < 𝐴 → ¬ 𝐴 < 0)) |
| 10 | 9 | imp 406 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → ¬ 𝐴 < 0) |
| 11 | 10 | iffalsed 4481 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → if(𝐴 < 0, -1, 1) = 1) |
| 12 | 2, 7, 11 | 3eqtrd 2770 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ifcif 4470 class class class wbr 5086 ‘cfv 6476 0cc0 11001 1c1 11002 ℝ*cxr 11140 < clt 11141 -cneg 11340 sgncsgn 14988 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-i2m1 11069 ax-rnegex 11072 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-neg 11342 df-sgn 14989 |
| This theorem is referenced by: sgnrrp 14993 sgn1 14994 sgnpnf 14995 sgnval2 32710 sgncl 32806 sgnmul 32810 sgnmulrp2 32811 sgnsub 32812 sgnpbi 32814 |
| Copyright terms: Public domain | W3C validator |