Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sgnp | Structured version Visualization version GIF version |
Description: The signum of a positive extended real is 1. (Contributed by David A. Wheeler, 15-May-2015.) |
Ref | Expression |
---|---|
sgnp | ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sgnval 14780 | . . 3 ⊢ (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) |
3 | 0xr 11006 | . . . . 5 ⊢ 0 ∈ ℝ* | |
4 | xrltne 12879 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
5 | 3, 4 | mp3an1 1446 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 𝐴 ≠ 0) |
6 | 5 | neneqd 2949 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → ¬ 𝐴 = 0) |
7 | 6 | iffalsed 4475 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)) = if(𝐴 < 0, -1, 1)) |
8 | xrltnsym 12853 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (0 < 𝐴 → ¬ 𝐴 < 0)) | |
9 | 3, 8 | mpan 686 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (0 < 𝐴 → ¬ 𝐴 < 0)) |
10 | 9 | imp 406 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → ¬ 𝐴 < 0) |
11 | 10 | iffalsed 4475 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → if(𝐴 < 0, -1, 1) = 1) |
12 | 2, 7, 11 | 3eqtrd 2783 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ifcif 4464 class class class wbr 5078 ‘cfv 6430 0cc0 10855 1c1 10856 ℝ*cxr 10992 < clt 10993 -cneg 11189 sgncsgn 14778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-i2m1 10923 ax-rnegex 10926 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-neg 11191 df-sgn 14779 |
This theorem is referenced by: sgnrrp 14783 sgn1 14784 sgnpnf 14785 sgncl 32484 sgnmul 32488 sgnmulrp2 32489 sgnsub 32490 sgnpbi 32492 |
Copyright terms: Public domain | W3C validator |