MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgnp Structured version   Visualization version   GIF version

Theorem sgnp 14846
Description: The signum of a positive extended real is 1. (Contributed by David A. Wheeler, 15-May-2015.)
Assertion
Ref Expression
sgnp ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = 1)

Proof of Theorem sgnp
StepHypRef Expression
1 sgnval 14844 . . 3 (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)))
21adantr 482 . 2 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)))
3 0xr 11068 . . . . 5 0 ∈ ℝ*
4 xrltne 12943 . . . . 5 ((0 ∈ ℝ*𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 𝐴 ≠ 0)
53, 4mp3an1 1448 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 𝐴 ≠ 0)
65neneqd 2946 . . 3 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → ¬ 𝐴 = 0)
76iffalsed 4476 . 2 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)) = if(𝐴 < 0, -1, 1))
8 xrltnsym 12917 . . . . 5 ((0 ∈ ℝ*𝐴 ∈ ℝ*) → (0 < 𝐴 → ¬ 𝐴 < 0))
93, 8mpan 688 . . . 4 (𝐴 ∈ ℝ* → (0 < 𝐴 → ¬ 𝐴 < 0))
109imp 408 . . 3 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → ¬ 𝐴 < 0)
1110iffalsed 4476 . 2 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → if(𝐴 < 0, -1, 1) = 1)
122, 7, 113eqtrd 2780 1 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1539  wcel 2104  wne 2941  ifcif 4465   class class class wbr 5081  cfv 6458  0cc0 10917  1c1 10918  *cxr 11054   < clt 11055  -cneg 11252  sgncsgn 14842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-i2m1 10985  ax-rnegex 10988  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-po 5514  df-so 5515  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-neg 11254  df-sgn 14843
This theorem is referenced by:  sgnrrp  14847  sgn1  14848  sgnpnf  14849  sgncl  32550  sgnmul  32554  sgnmulrp2  32555  sgnsub  32556  sgnpbi  32558
  Copyright terms: Public domain W3C validator