![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sgnp | Structured version Visualization version GIF version |
Description: The signum of a positive extended real is 1. (Contributed by David A. Wheeler, 15-May-2015.) |
Ref | Expression |
---|---|
sgnp | ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sgnval 15124 | . . 3 ⊢ (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) |
3 | 0xr 11306 | . . . . 5 ⊢ 0 ∈ ℝ* | |
4 | xrltne 13202 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
5 | 3, 4 | mp3an1 1447 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 𝐴 ≠ 0) |
6 | 5 | neneqd 2943 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → ¬ 𝐴 = 0) |
7 | 6 | iffalsed 4542 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)) = if(𝐴 < 0, -1, 1)) |
8 | xrltnsym 13176 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (0 < 𝐴 → ¬ 𝐴 < 0)) | |
9 | 3, 8 | mpan 690 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (0 < 𝐴 → ¬ 𝐴 < 0)) |
10 | 9 | imp 406 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → ¬ 𝐴 < 0) |
11 | 10 | iffalsed 4542 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → if(𝐴 < 0, -1, 1) = 1) |
12 | 2, 7, 11 | 3eqtrd 2779 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ifcif 4531 class class class wbr 5148 ‘cfv 6563 0cc0 11153 1c1 11154 ℝ*cxr 11292 < clt 11293 -cneg 11491 sgncsgn 15122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-i2m1 11221 ax-rnegex 11224 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-neg 11493 df-sgn 15123 |
This theorem is referenced by: sgnrrp 15127 sgn1 15128 sgnpnf 15129 sgncl 34520 sgnmul 34524 sgnmulrp2 34525 sgnsub 34526 sgnpbi 34528 |
Copyright terms: Public domain | W3C validator |