![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sgnp | Structured version Visualization version GIF version |
Description: The signum of a positive extended real is 1. (Contributed by David A. Wheeler, 15-May-2015.) |
Ref | Expression |
---|---|
sgnp | ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sgnval 15035 | . . 3 ⊢ (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) | |
2 | 1 | adantr 482 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) |
3 | 0xr 11261 | . . . . 5 ⊢ 0 ∈ ℝ* | |
4 | xrltne 13142 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
5 | 3, 4 | mp3an1 1449 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 𝐴 ≠ 0) |
6 | 5 | neneqd 2946 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → ¬ 𝐴 = 0) |
7 | 6 | iffalsed 4540 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)) = if(𝐴 < 0, -1, 1)) |
8 | xrltnsym 13116 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (0 < 𝐴 → ¬ 𝐴 < 0)) | |
9 | 3, 8 | mpan 689 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (0 < 𝐴 → ¬ 𝐴 < 0)) |
10 | 9 | imp 408 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → ¬ 𝐴 < 0) |
11 | 10 | iffalsed 4540 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → if(𝐴 < 0, -1, 1) = 1) |
12 | 2, 7, 11 | 3eqtrd 2777 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ifcif 4529 class class class wbr 5149 ‘cfv 6544 0cc0 11110 1c1 11111 ℝ*cxr 11247 < clt 11248 -cneg 11445 sgncsgn 15033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-i2m1 11178 ax-rnegex 11181 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-neg 11447 df-sgn 15034 |
This theorem is referenced by: sgnrrp 15038 sgn1 15039 sgnpnf 15040 sgncl 33537 sgnmul 33541 sgnmulrp2 33542 sgnsub 33543 sgnpbi 33545 |
Copyright terms: Public domain | W3C validator |