MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgn0 Structured version   Visualization version   GIF version

Theorem sgn0 15055
Description: The signum of 0 is 0. (Contributed by David A. Wheeler, 15-May-2015.)
Assertion
Ref Expression
sgn0 (sgn‘0) = 0

Proof of Theorem sgn0
StepHypRef Expression
1 0xr 11221 . . 3 0 ∈ ℝ*
2 sgnval 15054 . . 3 (0 ∈ ℝ* → (sgn‘0) = if(0 = 0, 0, if(0 < 0, -1, 1)))
31, 2ax-mp 5 . 2 (sgn‘0) = if(0 = 0, 0, if(0 < 0, -1, 1))
4 eqid 2729 . . 3 0 = 0
54iftruei 4495 . 2 if(0 = 0, 0, if(0 < 0, -1, 1)) = 0
63, 5eqtri 2752 1 (sgn‘0) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  ifcif 4488   class class class wbr 5107  cfv 6511  0cc0 11068  1c1 11069  *cxr 11207   < clt 11208  -cneg 11406  sgncsgn 15052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-i2m1 11136  ax-rnegex 11139  ax-cnre 11141
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-xr 11212  df-neg 11408  df-sgn 15053
This theorem is referenced by:  sgncl  32756  sgnmul  32760  sgnsgn  32766  signstfveq0  34568
  Copyright terms: Public domain W3C validator