MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgn0 Structured version   Visualization version   GIF version

Theorem sgn0 14800
Description: The signum of 0 is 0. (Contributed by David A. Wheeler, 15-May-2015.)
Assertion
Ref Expression
sgn0 (sgn‘0) = 0

Proof of Theorem sgn0
StepHypRef Expression
1 0xr 11022 . . 3 0 ∈ ℝ*
2 sgnval 14799 . . 3 (0 ∈ ℝ* → (sgn‘0) = if(0 = 0, 0, if(0 < 0, -1, 1)))
31, 2ax-mp 5 . 2 (sgn‘0) = if(0 = 0, 0, if(0 < 0, -1, 1))
4 eqid 2738 . . 3 0 = 0
54iftruei 4466 . 2 if(0 = 0, 0, if(0 < 0, -1, 1)) = 0
63, 5eqtri 2766 1 (sgn‘0) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  ifcif 4459   class class class wbr 5074  cfv 6433  0cc0 10871  1c1 10872  *cxr 11008   < clt 11009  -cneg 11206  sgncsgn 14797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-i2m1 10939  ax-rnegex 10942  ax-cnre 10944
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-xr 11013  df-neg 11208  df-sgn 14798
This theorem is referenced by:  sgncl  32505  sgnmul  32509  sgnsgn  32515  signstfveq0  32556
  Copyright terms: Public domain W3C validator