| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sgn0 | Structured version Visualization version GIF version | ||
| Description: The signum of 0 is 0. (Contributed by David A. Wheeler, 15-May-2015.) |
| Ref | Expression |
|---|---|
| sgn0 | ⊢ (sgn‘0) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 11221 | . . 3 ⊢ 0 ∈ ℝ* | |
| 2 | sgnval 15054 | . . 3 ⊢ (0 ∈ ℝ* → (sgn‘0) = if(0 = 0, 0, if(0 < 0, -1, 1))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (sgn‘0) = if(0 = 0, 0, if(0 < 0, -1, 1)) |
| 4 | eqid 2729 | . . 3 ⊢ 0 = 0 | |
| 5 | 4 | iftruei 4495 | . 2 ⊢ if(0 = 0, 0, if(0 < 0, -1, 1)) = 0 |
| 6 | 3, 5 | eqtri 2752 | 1 ⊢ (sgn‘0) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ifcif 4488 class class class wbr 5107 ‘cfv 6511 0cc0 11068 1c1 11069 ℝ*cxr 11207 < clt 11208 -cneg 11406 sgncsgn 15052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-i2m1 11136 ax-rnegex 11139 ax-cnre 11141 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-xr 11212 df-neg 11408 df-sgn 15053 |
| This theorem is referenced by: sgncl 32756 sgnmul 32760 sgnsgn 32766 signstfveq0 34568 |
| Copyright terms: Public domain | W3C validator |