Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sgn0 | Structured version Visualization version GIF version |
Description: The signum of 0 is 0. (Contributed by David A. Wheeler, 15-May-2015.) |
Ref | Expression |
---|---|
sgn0 | ⊢ (sgn‘0) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 10953 | . . 3 ⊢ 0 ∈ ℝ* | |
2 | sgnval 14727 | . . 3 ⊢ (0 ∈ ℝ* → (sgn‘0) = if(0 = 0, 0, if(0 < 0, -1, 1))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (sgn‘0) = if(0 = 0, 0, if(0 < 0, -1, 1)) |
4 | eqid 2738 | . . 3 ⊢ 0 = 0 | |
5 | 4 | iftruei 4463 | . 2 ⊢ if(0 = 0, 0, if(0 < 0, -1, 1)) = 0 |
6 | 3, 5 | eqtri 2766 | 1 ⊢ (sgn‘0) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 ifcif 4456 class class class wbr 5070 ‘cfv 6418 0cc0 10802 1c1 10803 ℝ*cxr 10939 < clt 10940 -cneg 11136 sgncsgn 14725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-i2m1 10870 ax-rnegex 10873 ax-cnre 10875 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-xr 10944 df-neg 11138 df-sgn 14726 |
This theorem is referenced by: sgncl 32405 sgnmul 32409 sgnsgn 32415 signstfveq0 32456 |
Copyright terms: Public domain | W3C validator |