MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgn0 Structured version   Visualization version   GIF version

Theorem sgn0 14998
Description: The signum of 0 is 0. (Contributed by David A. Wheeler, 15-May-2015.)
Assertion
Ref Expression
sgn0 (sgn‘0) = 0

Proof of Theorem sgn0
StepHypRef Expression
1 0xr 11166 . . 3 0 ∈ ℝ*
2 sgnval 14997 . . 3 (0 ∈ ℝ* → (sgn‘0) = if(0 = 0, 0, if(0 < 0, -1, 1)))
31, 2ax-mp 5 . 2 (sgn‘0) = if(0 = 0, 0, if(0 < 0, -1, 1))
4 eqid 2733 . . 3 0 = 0
54iftruei 4481 . 2 if(0 = 0, 0, if(0 < 0, -1, 1)) = 0
63, 5eqtri 2756 1 (sgn‘0) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113  ifcif 4474   class class class wbr 5093  cfv 6486  0cc0 11013  1c1 11014  *cxr 11152   < clt 11153  -cneg 11352  sgncsgn 14995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-i2m1 11081  ax-rnegex 11084  ax-cnre 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-xr 11157  df-neg 11354  df-sgn 14996
This theorem is referenced by:  sgncl  32819  sgnmul  32823  sgnsgn  32829  signstfveq0  34611
  Copyright terms: Public domain W3C validator