| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sgn0 | Structured version Visualization version GIF version | ||
| Description: The signum of 0 is 0. (Contributed by David A. Wheeler, 15-May-2015.) |
| Ref | Expression |
|---|---|
| sgn0 | ⊢ (sgn‘0) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 11166 | . . 3 ⊢ 0 ∈ ℝ* | |
| 2 | sgnval 14997 | . . 3 ⊢ (0 ∈ ℝ* → (sgn‘0) = if(0 = 0, 0, if(0 < 0, -1, 1))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (sgn‘0) = if(0 = 0, 0, if(0 < 0, -1, 1)) |
| 4 | eqid 2733 | . . 3 ⊢ 0 = 0 | |
| 5 | 4 | iftruei 4481 | . 2 ⊢ if(0 = 0, 0, if(0 < 0, -1, 1)) = 0 |
| 6 | 3, 5 | eqtri 2756 | 1 ⊢ (sgn‘0) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 ifcif 4474 class class class wbr 5093 ‘cfv 6486 0cc0 11013 1c1 11014 ℝ*cxr 11152 < clt 11153 -cneg 11352 sgncsgn 14995 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-i2m1 11081 ax-rnegex 11084 ax-cnre 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-xr 11157 df-neg 11354 df-sgn 14996 |
| This theorem is referenced by: sgncl 32819 sgnmul 32823 sgnsgn 32829 signstfveq0 34611 |
| Copyright terms: Public domain | W3C validator |