| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sgn0 | Structured version Visualization version GIF version | ||
| Description: The signum of 0 is 0. (Contributed by David A. Wheeler, 15-May-2015.) |
| Ref | Expression |
|---|---|
| sgn0 | ⊢ (sgn‘0) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 11228 | . . 3 ⊢ 0 ∈ ℝ* | |
| 2 | sgnval 15061 | . . 3 ⊢ (0 ∈ ℝ* → (sgn‘0) = if(0 = 0, 0, if(0 < 0, -1, 1))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (sgn‘0) = if(0 = 0, 0, if(0 < 0, -1, 1)) |
| 4 | eqid 2730 | . . 3 ⊢ 0 = 0 | |
| 5 | 4 | iftruei 4498 | . 2 ⊢ if(0 = 0, 0, if(0 < 0, -1, 1)) = 0 |
| 6 | 3, 5 | eqtri 2753 | 1 ⊢ (sgn‘0) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ifcif 4491 class class class wbr 5110 ‘cfv 6514 0cc0 11075 1c1 11076 ℝ*cxr 11214 < clt 11215 -cneg 11413 sgncsgn 15059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-i2m1 11143 ax-rnegex 11146 ax-cnre 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-xr 11219 df-neg 11415 df-sgn 15060 |
| This theorem is referenced by: sgncl 32763 sgnmul 32767 sgnsgn 32773 signstfveq0 34575 |
| Copyright terms: Public domain | W3C validator |