![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sgn0 | Structured version Visualization version GIF version |
Description: The signum of 0 is 0. (Contributed by David A. Wheeler, 15-May-2015.) |
Ref | Expression |
---|---|
sgn0 | ⊢ (sgn‘0) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 11257 | . . 3 ⊢ 0 ∈ ℝ* | |
2 | sgnval 15031 | . . 3 ⊢ (0 ∈ ℝ* → (sgn‘0) = if(0 = 0, 0, if(0 < 0, -1, 1))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (sgn‘0) = if(0 = 0, 0, if(0 < 0, -1, 1)) |
4 | eqid 2732 | . . 3 ⊢ 0 = 0 | |
5 | 4 | iftruei 4534 | . 2 ⊢ if(0 = 0, 0, if(0 < 0, -1, 1)) = 0 |
6 | 3, 5 | eqtri 2760 | 1 ⊢ (sgn‘0) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 ifcif 4527 class class class wbr 5147 ‘cfv 6540 0cc0 11106 1c1 11107 ℝ*cxr 11243 < clt 11244 -cneg 11441 sgncsgn 15029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-i2m1 11174 ax-rnegex 11177 ax-cnre 11179 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-ov 7408 df-xr 11248 df-neg 11443 df-sgn 15030 |
This theorem is referenced by: sgncl 33525 sgnmul 33529 sgnsgn 33535 signstfveq0 33576 |
Copyright terms: Public domain | W3C validator |