MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgn0 Structured version   Visualization version   GIF version

Theorem sgn0 15014
Description: The signum of 0 is 0. (Contributed by David A. Wheeler, 15-May-2015.)
Assertion
Ref Expression
sgn0 (sgn‘0) = 0

Proof of Theorem sgn0
StepHypRef Expression
1 0xr 11181 . . 3 0 ∈ ℝ*
2 sgnval 15013 . . 3 (0 ∈ ℝ* → (sgn‘0) = if(0 = 0, 0, if(0 < 0, -1, 1)))
31, 2ax-mp 5 . 2 (sgn‘0) = if(0 = 0, 0, if(0 < 0, -1, 1))
4 eqid 2729 . . 3 0 = 0
54iftruei 4485 . 2 if(0 = 0, 0, if(0 < 0, -1, 1)) = 0
63, 5eqtri 2752 1 (sgn‘0) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  ifcif 4478   class class class wbr 5095  cfv 6486  0cc0 11028  1c1 11029  *cxr 11167   < clt 11168  -cneg 11366  sgncsgn 15011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-i2m1 11096  ax-rnegex 11099  ax-cnre 11101
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-xr 11172  df-neg 11368  df-sgn 15012
This theorem is referenced by:  sgncl  32789  sgnmul  32793  sgnsgn  32799  signstfveq0  34544
  Copyright terms: Public domain W3C validator