HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj1i Structured version   Visualization version   GIF version

Theorem cdj1i 31375
Description: Two ways to express "𝐴 and 𝐵 are completely disjoint subspaces." (1) => (2) in Lemma 5 of [Holland] p. 1520. (Contributed by NM, 21-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj1.1 𝐴S
cdj1.2 𝐵S
Assertion
Ref Expression
cdj1i (∃𝑤 ∈ ℝ (0 < 𝑤 ∧ ∀𝑦𝐴𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣)))) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) = 1 → 𝑥 ≤ (norm‘(𝑦 𝑧)))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝐴   𝑥,𝑣,𝐵,𝑦,𝑧,𝑤
Allowed substitution hint:   𝐴(𝑣)

Proof of Theorem cdj1i
StepHypRef Expression
1 gt0ne0 11620 . . . . . . 7 ((𝑤 ∈ ℝ ∧ 0 < 𝑤) → 𝑤 ≠ 0)
2 rereccl 11873 . . . . . . 7 ((𝑤 ∈ ℝ ∧ 𝑤 ≠ 0) → (1 / 𝑤) ∈ ℝ)
31, 2syldan 591 . . . . . 6 ((𝑤 ∈ ℝ ∧ 0 < 𝑤) → (1 / 𝑤) ∈ ℝ)
43adantrr 715 . . . . 5 ((𝑤 ∈ ℝ ∧ (0 < 𝑤 ∧ ∀𝑦𝐴𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))))) → (1 / 𝑤) ∈ ℝ)
5 recgt0 12001 . . . . . 6 ((𝑤 ∈ ℝ ∧ 0 < 𝑤) → 0 < (1 / 𝑤))
65adantrr 715 . . . . 5 ((𝑤 ∈ ℝ ∧ (0 < 𝑤 ∧ ∀𝑦𝐴𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))))) → 0 < (1 / 𝑤))
7 1red 11156 . . . . . . . . . . . . . . . 16 ((((𝑤 ∈ ℝ ∧ 𝑦𝐴) ∧ 𝑧𝐵) ∧ (∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) ∧ (norm𝑦) = 1)) → 1 ∈ ℝ)
8 1re 11155 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ
9 neg1cn 12267 . . . . . . . . . . . . . . . . . . . . 21 -1 ∈ ℂ
10 cdj1.2 . . . . . . . . . . . . . . . . . . . . . 22 𝐵S
1110sheli 30156 . . . . . . . . . . . . . . . . . . . . 21 (𝑧𝐵𝑧 ∈ ℋ)
12 hvmulcl 29955 . . . . . . . . . . . . . . . . . . . . 21 ((-1 ∈ ℂ ∧ 𝑧 ∈ ℋ) → (-1 · 𝑧) ∈ ℋ)
139, 11, 12sylancr 587 . . . . . . . . . . . . . . . . . . . 20 (𝑧𝐵 → (-1 · 𝑧) ∈ ℋ)
14 normcl 30067 . . . . . . . . . . . . . . . . . . . 20 ((-1 · 𝑧) ∈ ℋ → (norm‘(-1 · 𝑧)) ∈ ℝ)
1513, 14syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑧𝐵 → (norm‘(-1 · 𝑧)) ∈ ℝ)
1615adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℝ ∧ 𝑦𝐴) ∧ 𝑧𝐵) → (norm‘(-1 · 𝑧)) ∈ ℝ)
17 readdcl 11134 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ ∧ (norm‘(-1 · 𝑧)) ∈ ℝ) → (1 + (norm‘(-1 · 𝑧))) ∈ ℝ)
188, 16, 17sylancr 587 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℝ ∧ 𝑦𝐴) ∧ 𝑧𝐵) → (1 + (norm‘(-1 · 𝑧))) ∈ ℝ)
1918adantr 481 . . . . . . . . . . . . . . . 16 ((((𝑤 ∈ ℝ ∧ 𝑦𝐴) ∧ 𝑧𝐵) ∧ (∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) ∧ (norm𝑦) = 1)) → (1 + (norm‘(-1 · 𝑧))) ∈ ℝ)
20 cdj1.1 . . . . . . . . . . . . . . . . . . . . . 22 𝐴S
2120sheli 30156 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐴𝑦 ∈ ℋ)
22 hvsubcl 29959 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 𝑧) ∈ ℋ)
2321, 11, 22syl2an 596 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝐴𝑧𝐵) → (𝑦 𝑧) ∈ ℋ)
24 normcl 30067 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 𝑧) ∈ ℋ → (norm‘(𝑦 𝑧)) ∈ ℝ)
2523, 24syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑦𝐴𝑧𝐵) → (norm‘(𝑦 𝑧)) ∈ ℝ)
26 remulcl 11136 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ ℝ ∧ (norm‘(𝑦 𝑧)) ∈ ℝ) → (𝑤 · (norm‘(𝑦 𝑧))) ∈ ℝ)
2725, 26sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ (𝑦𝐴𝑧𝐵)) → (𝑤 · (norm‘(𝑦 𝑧))) ∈ ℝ)
2827anassrs 468 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℝ ∧ 𝑦𝐴) ∧ 𝑧𝐵) → (𝑤 · (norm‘(𝑦 𝑧))) ∈ ℝ)
2928adantr 481 . . . . . . . . . . . . . . . 16 ((((𝑤 ∈ ℝ ∧ 𝑦𝐴) ∧ 𝑧𝐵) ∧ (∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) ∧ (norm𝑦) = 1)) → (𝑤 · (norm‘(𝑦 𝑧))) ∈ ℝ)
30 normge0 30068 . . . . . . . . . . . . . . . . . . 19 ((-1 · 𝑧) ∈ ℋ → 0 ≤ (norm‘(-1 · 𝑧)))
3113, 30syl 17 . . . . . . . . . . . . . . . . . 18 (𝑧𝐵 → 0 ≤ (norm‘(-1 · 𝑧)))
32 addge01 11665 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℝ ∧ (norm‘(-1 · 𝑧)) ∈ ℝ) → (0 ≤ (norm‘(-1 · 𝑧)) ↔ 1 ≤ (1 + (norm‘(-1 · 𝑧)))))
338, 32mpan 688 . . . . . . . . . . . . . . . . . . 19 ((norm‘(-1 · 𝑧)) ∈ ℝ → (0 ≤ (norm‘(-1 · 𝑧)) ↔ 1 ≤ (1 + (norm‘(-1 · 𝑧)))))
3433biimpa 477 . . . . . . . . . . . . . . . . . 18 (((norm‘(-1 · 𝑧)) ∈ ℝ ∧ 0 ≤ (norm‘(-1 · 𝑧))) → 1 ≤ (1 + (norm‘(-1 · 𝑧))))
3515, 31, 34syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝑧𝐵 → 1 ≤ (1 + (norm‘(-1 · 𝑧))))
3635ad2antlr 725 . . . . . . . . . . . . . . . 16 ((((𝑤 ∈ ℝ ∧ 𝑦𝐴) ∧ 𝑧𝐵) ∧ (∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) ∧ (norm𝑦) = 1)) → 1 ≤ (1 + (norm‘(-1 · 𝑧))))
37 shmulcl 30160 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵S ∧ -1 ∈ ℂ ∧ 𝑧𝐵) → (-1 · 𝑧) ∈ 𝐵)
3810, 9, 37mp3an12 1451 . . . . . . . . . . . . . . . . . . . 20 (𝑧𝐵 → (-1 · 𝑧) ∈ 𝐵)
39 fveq2 6842 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 = (-1 · 𝑧) → (norm𝑣) = (norm‘(-1 · 𝑧)))
4039oveq2d 7373 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = (-1 · 𝑧) → ((norm𝑦) + (norm𝑣)) = ((norm𝑦) + (norm‘(-1 · 𝑧))))
41 oveq2 7365 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 = (-1 · 𝑧) → (𝑦 + 𝑣) = (𝑦 + (-1 · 𝑧)))
4241fveq2d 6846 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 = (-1 · 𝑧) → (norm‘(𝑦 + 𝑣)) = (norm‘(𝑦 + (-1 · 𝑧))))
4342oveq2d 7373 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = (-1 · 𝑧) → (𝑤 · (norm‘(𝑦 + 𝑣))) = (𝑤 · (norm‘(𝑦 + (-1 · 𝑧)))))
4440, 43breq12d 5118 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (-1 · 𝑧) → (((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) ↔ ((norm𝑦) + (norm‘(-1 · 𝑧))) ≤ (𝑤 · (norm‘(𝑦 + (-1 · 𝑧))))))
4544rspcv 3577 . . . . . . . . . . . . . . . . . . . 20 ((-1 · 𝑧) ∈ 𝐵 → (∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) → ((norm𝑦) + (norm‘(-1 · 𝑧))) ≤ (𝑤 · (norm‘(𝑦 + (-1 · 𝑧))))))
4638, 45syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑧𝐵 → (∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) → ((norm𝑦) + (norm‘(-1 · 𝑧))) ≤ (𝑤 · (norm‘(𝑦 + (-1 · 𝑧))))))
4746imp 407 . . . . . . . . . . . . . . . . . 18 ((𝑧𝐵 ∧ ∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣)))) → ((norm𝑦) + (norm‘(-1 · 𝑧))) ≤ (𝑤 · (norm‘(𝑦 + (-1 · 𝑧)))))
4847ad2ant2lr 746 . . . . . . . . . . . . . . . . 17 ((((𝑤 ∈ ℝ ∧ 𝑦𝐴) ∧ 𝑧𝐵) ∧ (∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) ∧ (norm𝑦) = 1)) → ((norm𝑦) + (norm‘(-1 · 𝑧))) ≤ (𝑤 · (norm‘(𝑦 + (-1 · 𝑧)))))
49 oveq1 7364 . . . . . . . . . . . . . . . . . . 19 (1 = (norm𝑦) → (1 + (norm‘(-1 · 𝑧))) = ((norm𝑦) + (norm‘(-1 · 𝑧))))
5049eqcoms 2744 . . . . . . . . . . . . . . . . . 18 ((norm𝑦) = 1 → (1 + (norm‘(-1 · 𝑧))) = ((norm𝑦) + (norm‘(-1 · 𝑧))))
5150ad2antll 727 . . . . . . . . . . . . . . . . 17 ((((𝑤 ∈ ℝ ∧ 𝑦𝐴) ∧ 𝑧𝐵) ∧ (∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) ∧ (norm𝑦) = 1)) → (1 + (norm‘(-1 · 𝑧))) = ((norm𝑦) + (norm‘(-1 · 𝑧))))
52 hvsubval 29958 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 𝑧) = (𝑦 + (-1 · 𝑧)))
5321, 11, 52syl2an 596 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝐴𝑧𝐵) → (𝑦 𝑧) = (𝑦 + (-1 · 𝑧)))
5453fveq2d 6846 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝐴𝑧𝐵) → (norm‘(𝑦 𝑧)) = (norm‘(𝑦 + (-1 · 𝑧))))
5554oveq2d 7373 . . . . . . . . . . . . . . . . . . 19 ((𝑦𝐴𝑧𝐵) → (𝑤 · (norm‘(𝑦 𝑧))) = (𝑤 · (norm‘(𝑦 + (-1 · 𝑧)))))
5655adantll 712 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℝ ∧ 𝑦𝐴) ∧ 𝑧𝐵) → (𝑤 · (norm‘(𝑦 𝑧))) = (𝑤 · (norm‘(𝑦 + (-1 · 𝑧)))))
5756adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝑤 ∈ ℝ ∧ 𝑦𝐴) ∧ 𝑧𝐵) ∧ (∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) ∧ (norm𝑦) = 1)) → (𝑤 · (norm‘(𝑦 𝑧))) = (𝑤 · (norm‘(𝑦 + (-1 · 𝑧)))))
5848, 51, 573brtr4d 5137 . . . . . . . . . . . . . . . 16 ((((𝑤 ∈ ℝ ∧ 𝑦𝐴) ∧ 𝑧𝐵) ∧ (∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) ∧ (norm𝑦) = 1)) → (1 + (norm‘(-1 · 𝑧))) ≤ (𝑤 · (norm‘(𝑦 𝑧))))
597, 19, 29, 36, 58letrd 11312 . . . . . . . . . . . . . . 15 ((((𝑤 ∈ ℝ ∧ 𝑦𝐴) ∧ 𝑧𝐵) ∧ (∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) ∧ (norm𝑦) = 1)) → 1 ≤ (𝑤 · (norm‘(𝑦 𝑧))))
6059ex 413 . . . . . . . . . . . . . 14 (((𝑤 ∈ ℝ ∧ 𝑦𝐴) ∧ 𝑧𝐵) → ((∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) ∧ (norm𝑦) = 1) → 1 ≤ (𝑤 · (norm‘(𝑦 𝑧)))))
6160adantllr 717 . . . . . . . . . . . . 13 ((((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) ∧ 𝑧𝐵) → ((∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) ∧ (norm𝑦) = 1) → 1 ≤ (𝑤 · (norm‘(𝑦 𝑧)))))
62 simplll 773 . . . . . . . . . . . . . . 15 ((((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) ∧ 𝑧𝐵) → 𝑤 ∈ ℝ)
6323adantll 712 . . . . . . . . . . . . . . . 16 ((((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) ∧ 𝑧𝐵) → (𝑦 𝑧) ∈ ℋ)
6463, 24syl 17 . . . . . . . . . . . . . . 15 ((((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) ∧ 𝑧𝐵) → (norm‘(𝑦 𝑧)) ∈ ℝ)
6562, 64, 26syl2anc 584 . . . . . . . . . . . . . 14 ((((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) ∧ 𝑧𝐵) → (𝑤 · (norm‘(𝑦 𝑧))) ∈ ℝ)
66 simpllr 774 . . . . . . . . . . . . . 14 ((((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) ∧ 𝑧𝐵) → 0 < 𝑤)
67 lediv1 12020 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ (𝑤 · (norm‘(𝑦 𝑧))) ∈ ℝ ∧ (𝑤 ∈ ℝ ∧ 0 < 𝑤)) → (1 ≤ (𝑤 · (norm‘(𝑦 𝑧))) ↔ (1 / 𝑤) ≤ ((𝑤 · (norm‘(𝑦 𝑧))) / 𝑤)))
688, 67mp3an1 1448 . . . . . . . . . . . . . 14 (((𝑤 · (norm‘(𝑦 𝑧))) ∈ ℝ ∧ (𝑤 ∈ ℝ ∧ 0 < 𝑤)) → (1 ≤ (𝑤 · (norm‘(𝑦 𝑧))) ↔ (1 / 𝑤) ≤ ((𝑤 · (norm‘(𝑦 𝑧))) / 𝑤)))
6965, 62, 66, 68syl12anc 835 . . . . . . . . . . . . 13 ((((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) ∧ 𝑧𝐵) → (1 ≤ (𝑤 · (norm‘(𝑦 𝑧))) ↔ (1 / 𝑤) ≤ ((𝑤 · (norm‘(𝑦 𝑧))) / 𝑤)))
7061, 69sylibd 238 . . . . . . . . . . . 12 ((((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) ∧ 𝑧𝐵) → ((∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) ∧ (norm𝑦) = 1) → (1 / 𝑤) ≤ ((𝑤 · (norm‘(𝑦 𝑧))) / 𝑤)))
7170imp 407 . . . . . . . . . . 11 (((((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) ∧ 𝑧𝐵) ∧ (∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) ∧ (norm𝑦) = 1)) → (1 / 𝑤) ≤ ((𝑤 · (norm‘(𝑦 𝑧))) / 𝑤))
7225recnd 11183 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑧𝐵) → (norm‘(𝑦 𝑧)) ∈ ℂ)
7372adantll 712 . . . . . . . . . . . . 13 ((((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) ∧ 𝑧𝐵) → (norm‘(𝑦 𝑧)) ∈ ℂ)
74 recn 11141 . . . . . . . . . . . . . 14 (𝑤 ∈ ℝ → 𝑤 ∈ ℂ)
7574ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) ∧ 𝑧𝐵) → 𝑤 ∈ ℂ)
761ad2antrr 724 . . . . . . . . . . . . 13 ((((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) ∧ 𝑧𝐵) → 𝑤 ≠ 0)
7773, 75, 76divcan3d 11936 . . . . . . . . . . . 12 ((((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) ∧ 𝑧𝐵) → ((𝑤 · (norm‘(𝑦 𝑧))) / 𝑤) = (norm‘(𝑦 𝑧)))
7877adantr 481 . . . . . . . . . . 11 (((((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) ∧ 𝑧𝐵) ∧ (∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) ∧ (norm𝑦) = 1)) → ((𝑤 · (norm‘(𝑦 𝑧))) / 𝑤) = (norm‘(𝑦 𝑧)))
7971, 78breqtrd 5131 . . . . . . . . . 10 (((((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) ∧ 𝑧𝐵) ∧ (∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) ∧ (norm𝑦) = 1)) → (1 / 𝑤) ≤ (norm‘(𝑦 𝑧)))
8079exp43 437 . . . . . . . . 9 (((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) → (𝑧𝐵 → (∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) → ((norm𝑦) = 1 → (1 / 𝑤) ≤ (norm‘(𝑦 𝑧))))))
8180com23 86 . . . . . . . 8 (((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) → (∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) → (𝑧𝐵 → ((norm𝑦) = 1 → (1 / 𝑤) ≤ (norm‘(𝑦 𝑧))))))
8281ralrimdv 3149 . . . . . . 7 (((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) → (∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) → ∀𝑧𝐵 ((norm𝑦) = 1 → (1 / 𝑤) ≤ (norm‘(𝑦 𝑧)))))
8382ralimdva 3164 . . . . . 6 ((𝑤 ∈ ℝ ∧ 0 < 𝑤) → (∀𝑦𝐴𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) → ∀𝑦𝐴𝑧𝐵 ((norm𝑦) = 1 → (1 / 𝑤) ≤ (norm‘(𝑦 𝑧)))))
8483impr 455 . . . . 5 ((𝑤 ∈ ℝ ∧ (0 < 𝑤 ∧ ∀𝑦𝐴𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))))) → ∀𝑦𝐴𝑧𝐵 ((norm𝑦) = 1 → (1 / 𝑤) ≤ (norm‘(𝑦 𝑧))))
854, 6, 84jca32 516 . . . 4 ((𝑤 ∈ ℝ ∧ (0 < 𝑤 ∧ ∀𝑦𝐴𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))))) → ((1 / 𝑤) ∈ ℝ ∧ (0 < (1 / 𝑤) ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) = 1 → (1 / 𝑤) ≤ (norm‘(𝑦 𝑧))))))
8685ex 413 . . 3 (𝑤 ∈ ℝ → ((0 < 𝑤 ∧ ∀𝑦𝐴𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣)))) → ((1 / 𝑤) ∈ ℝ ∧ (0 < (1 / 𝑤) ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) = 1 → (1 / 𝑤) ≤ (norm‘(𝑦 𝑧)))))))
87 breq2 5109 . . . . 5 (𝑥 = (1 / 𝑤) → (0 < 𝑥 ↔ 0 < (1 / 𝑤)))
88 breq1 5108 . . . . . . 7 (𝑥 = (1 / 𝑤) → (𝑥 ≤ (norm‘(𝑦 𝑧)) ↔ (1 / 𝑤) ≤ (norm‘(𝑦 𝑧))))
8988imbi2d 340 . . . . . 6 (𝑥 = (1 / 𝑤) → (((norm𝑦) = 1 → 𝑥 ≤ (norm‘(𝑦 𝑧))) ↔ ((norm𝑦) = 1 → (1 / 𝑤) ≤ (norm‘(𝑦 𝑧)))))
90892ralbidv 3212 . . . . 5 (𝑥 = (1 / 𝑤) → (∀𝑦𝐴𝑧𝐵 ((norm𝑦) = 1 → 𝑥 ≤ (norm‘(𝑦 𝑧))) ↔ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) = 1 → (1 / 𝑤) ≤ (norm‘(𝑦 𝑧)))))
9187, 90anbi12d 631 . . . 4 (𝑥 = (1 / 𝑤) → ((0 < 𝑥 ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) = 1 → 𝑥 ≤ (norm‘(𝑦 𝑧)))) ↔ (0 < (1 / 𝑤) ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) = 1 → (1 / 𝑤) ≤ (norm‘(𝑦 𝑧))))))
9291rspcev 3581 . . 3 (((1 / 𝑤) ∈ ℝ ∧ (0 < (1 / 𝑤) ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) = 1 → (1 / 𝑤) ≤ (norm‘(𝑦 𝑧))))) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) = 1 → 𝑥 ≤ (norm‘(𝑦 𝑧)))))
9386, 92syl6 35 . 2 (𝑤 ∈ ℝ → ((0 < 𝑤 ∧ ∀𝑦𝐴𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣)))) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) = 1 → 𝑥 ≤ (norm‘(𝑦 𝑧))))))
9493rexlimiv 3145 1 (∃𝑤 ∈ ℝ (0 < 𝑤 ∧ ∀𝑦𝐴𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣)))) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) = 1 → 𝑥 ≤ (norm‘(𝑦 𝑧)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  -cneg 11386   / cdiv 11812  chba 29861   + cva 29862   · csm 29863  normcno 29865   cmv 29867   S csh 29870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-hilex 29941  ax-hfvadd 29942  ax-hv0cl 29945  ax-hfvmul 29947  ax-hvmul0 29952  ax-hfi 30021  ax-his1 30024  ax-his3 30026  ax-his4 30027
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-hnorm 29910  df-hvsub 29913  df-sh 30149
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator