Proof of Theorem cdj1i
Step | Hyp | Ref
| Expression |
1 | | gt0ne0 11440 |
. . . . . . 7
⊢ ((𝑤 ∈ ℝ ∧ 0 <
𝑤) → 𝑤 ≠ 0) |
2 | | rereccl 11693 |
. . . . . . 7
⊢ ((𝑤 ∈ ℝ ∧ 𝑤 ≠ 0) → (1 / 𝑤) ∈
ℝ) |
3 | 1, 2 | syldan 591 |
. . . . . 6
⊢ ((𝑤 ∈ ℝ ∧ 0 <
𝑤) → (1 / 𝑤) ∈
ℝ) |
4 | 3 | adantrr 714 |
. . . . 5
⊢ ((𝑤 ∈ ℝ ∧ (0 <
𝑤 ∧ ∀𝑦 ∈ 𝐴 ∀𝑣 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑣)) ≤ (𝑤 ·
(normℎ‘(𝑦 +ℎ 𝑣))))) → (1 / 𝑤) ∈ ℝ) |
5 | | recgt0 11821 |
. . . . . 6
⊢ ((𝑤 ∈ ℝ ∧ 0 <
𝑤) → 0 < (1 / 𝑤)) |
6 | 5 | adantrr 714 |
. . . . 5
⊢ ((𝑤 ∈ ℝ ∧ (0 <
𝑤 ∧ ∀𝑦 ∈ 𝐴 ∀𝑣 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑣)) ≤ (𝑤 ·
(normℎ‘(𝑦 +ℎ 𝑣))))) → 0 < (1 / 𝑤)) |
7 | | 1red 10976 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑤 ∈ ℝ ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐵) ∧ (∀𝑣 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑣)) ≤ (𝑤 ·
(normℎ‘(𝑦 +ℎ 𝑣))) ∧
(normℎ‘𝑦) = 1)) → 1 ∈
ℝ) |
8 | | 1re 10975 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
ℝ |
9 | | neg1cn 12087 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ -1 ∈
ℂ |
10 | | cdj1.2 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝐵 ∈
Sℋ |
11 | 10 | sheli 29576 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ 𝐵 → 𝑧 ∈ ℋ) |
12 | | hvmulcl 29375 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((-1
∈ ℂ ∧ 𝑧
∈ ℋ) → (-1 ·ℎ 𝑧) ∈
ℋ) |
13 | 9, 11, 12 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ 𝐵 → (-1
·ℎ 𝑧) ∈ ℋ) |
14 | | normcl 29487 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((-1
·ℎ 𝑧) ∈ ℋ →
(normℎ‘(-1 ·ℎ 𝑧)) ∈
ℝ) |
15 | 13, 14 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ 𝐵 → (normℎ‘(-1
·ℎ 𝑧)) ∈ ℝ) |
16 | 15 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑤 ∈ ℝ ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐵) → (normℎ‘(-1
·ℎ 𝑧)) ∈ ℝ) |
17 | | readdcl 10954 |
. . . . . . . . . . . . . . . . . 18
⊢ ((1
∈ ℝ ∧ (normℎ‘(-1
·ℎ 𝑧)) ∈ ℝ) → (1 +
(normℎ‘(-1 ·ℎ 𝑧))) ∈
ℝ) |
18 | 8, 16, 17 | sylancr 587 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑤 ∈ ℝ ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐵) → (1 +
(normℎ‘(-1 ·ℎ 𝑧))) ∈
ℝ) |
19 | 18 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑤 ∈ ℝ ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐵) ∧ (∀𝑣 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑣)) ≤ (𝑤 ·
(normℎ‘(𝑦 +ℎ 𝑣))) ∧
(normℎ‘𝑦) = 1)) → (1 +
(normℎ‘(-1 ·ℎ 𝑧))) ∈
ℝ) |
20 | | cdj1.1 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝐴 ∈
Sℋ |
21 | 20 | sheli 29576 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ ℋ) |
22 | | hvsubcl 29379 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 −ℎ
𝑧) ∈
ℋ) |
23 | 21, 11, 22 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → (𝑦 −ℎ 𝑧) ∈
ℋ) |
24 | | normcl 29487 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 −ℎ
𝑧) ∈ ℋ →
(normℎ‘(𝑦 −ℎ 𝑧)) ∈
ℝ) |
25 | 23, 24 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) →
(normℎ‘(𝑦 −ℎ 𝑧)) ∈
ℝ) |
26 | | remulcl 10956 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤 ∈ ℝ ∧
(normℎ‘(𝑦 −ℎ 𝑧)) ∈ ℝ) → (𝑤 ·
(normℎ‘(𝑦 −ℎ 𝑧))) ∈
ℝ) |
27 | 25, 26 | sylan2 593 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑤 ∈ ℝ ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) → (𝑤 ·
(normℎ‘(𝑦 −ℎ 𝑧))) ∈
ℝ) |
28 | 27 | anassrs 468 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑤 ∈ ℝ ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐵) → (𝑤 ·
(normℎ‘(𝑦 −ℎ 𝑧))) ∈
ℝ) |
29 | 28 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑤 ∈ ℝ ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐵) ∧ (∀𝑣 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑣)) ≤ (𝑤 ·
(normℎ‘(𝑦 +ℎ 𝑣))) ∧
(normℎ‘𝑦) = 1)) → (𝑤 ·
(normℎ‘(𝑦 −ℎ 𝑧))) ∈
ℝ) |
30 | | normge0 29488 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((-1
·ℎ 𝑧) ∈ ℋ → 0 ≤
(normℎ‘(-1 ·ℎ 𝑧))) |
31 | 13, 30 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ 𝐵 → 0 ≤
(normℎ‘(-1 ·ℎ 𝑧))) |
32 | | addge01 11485 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((1
∈ ℝ ∧ (normℎ‘(-1
·ℎ 𝑧)) ∈ ℝ) → (0 ≤
(normℎ‘(-1 ·ℎ 𝑧)) ↔ 1 ≤ (1 +
(normℎ‘(-1 ·ℎ 𝑧))))) |
33 | 8, 32 | mpan 687 |
. . . . . . . . . . . . . . . . . . 19
⊢
((normℎ‘(-1 ·ℎ
𝑧)) ∈ ℝ →
(0 ≤ (normℎ‘(-1 ·ℎ
𝑧)) ↔ 1 ≤ (1 +
(normℎ‘(-1 ·ℎ 𝑧))))) |
34 | 33 | biimpa 477 |
. . . . . . . . . . . . . . . . . 18
⊢
(((normℎ‘(-1 ·ℎ
𝑧)) ∈ ℝ ∧ 0
≤ (normℎ‘(-1 ·ℎ
𝑧))) → 1 ≤ (1 +
(normℎ‘(-1 ·ℎ 𝑧)))) |
35 | 15, 31, 34 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ 𝐵 → 1 ≤ (1 +
(normℎ‘(-1 ·ℎ 𝑧)))) |
36 | 35 | ad2antlr 724 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑤 ∈ ℝ ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐵) ∧ (∀𝑣 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑣)) ≤ (𝑤 ·
(normℎ‘(𝑦 +ℎ 𝑣))) ∧
(normℎ‘𝑦) = 1)) → 1 ≤ (1 +
(normℎ‘(-1 ·ℎ 𝑧)))) |
37 | | shmulcl 29580 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐵 ∈
Sℋ ∧ -1 ∈ ℂ ∧ 𝑧 ∈ 𝐵) → (-1
·ℎ 𝑧) ∈ 𝐵) |
38 | 10, 9, 37 | mp3an12 1450 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ 𝐵 → (-1
·ℎ 𝑧) ∈ 𝐵) |
39 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑣 = (-1
·ℎ 𝑧) → (normℎ‘𝑣) =
(normℎ‘(-1 ·ℎ 𝑧))) |
40 | 39 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑣 = (-1
·ℎ 𝑧) →
((normℎ‘𝑦) + (normℎ‘𝑣)) =
((normℎ‘𝑦) + (normℎ‘(-1
·ℎ 𝑧)))) |
41 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑣 = (-1
·ℎ 𝑧) → (𝑦 +ℎ 𝑣) = (𝑦 +ℎ (-1
·ℎ 𝑧))) |
42 | 41 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑣 = (-1
·ℎ 𝑧) →
(normℎ‘(𝑦 +ℎ 𝑣)) = (normℎ‘(𝑦 +ℎ (-1
·ℎ 𝑧)))) |
43 | 42 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑣 = (-1
·ℎ 𝑧) → (𝑤 ·
(normℎ‘(𝑦 +ℎ 𝑣))) = (𝑤 ·
(normℎ‘(𝑦 +ℎ (-1
·ℎ 𝑧))))) |
44 | 40, 43 | breq12d 5087 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 = (-1
·ℎ 𝑧) →
(((normℎ‘𝑦) + (normℎ‘𝑣)) ≤ (𝑤 ·
(normℎ‘(𝑦 +ℎ 𝑣))) ↔
((normℎ‘𝑦) + (normℎ‘(-1
·ℎ 𝑧))) ≤ (𝑤 ·
(normℎ‘(𝑦 +ℎ (-1
·ℎ 𝑧)))))) |
45 | 44 | rspcv 3557 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((-1
·ℎ 𝑧) ∈ 𝐵 → (∀𝑣 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑣)) ≤ (𝑤 ·
(normℎ‘(𝑦 +ℎ 𝑣))) →
((normℎ‘𝑦) + (normℎ‘(-1
·ℎ 𝑧))) ≤ (𝑤 ·
(normℎ‘(𝑦 +ℎ (-1
·ℎ 𝑧)))))) |
46 | 38, 45 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ 𝐵 → (∀𝑣 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑣)) ≤ (𝑤 ·
(normℎ‘(𝑦 +ℎ 𝑣))) →
((normℎ‘𝑦) + (normℎ‘(-1
·ℎ 𝑧))) ≤ (𝑤 ·
(normℎ‘(𝑦 +ℎ (-1
·ℎ 𝑧)))))) |
47 | 46 | imp 407 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ 𝐵 ∧ ∀𝑣 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑣)) ≤ (𝑤 ·
(normℎ‘(𝑦 +ℎ 𝑣)))) →
((normℎ‘𝑦) + (normℎ‘(-1
·ℎ 𝑧))) ≤ (𝑤 ·
(normℎ‘(𝑦 +ℎ (-1
·ℎ 𝑧))))) |
48 | 47 | ad2ant2lr 745 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑤 ∈ ℝ ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐵) ∧ (∀𝑣 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑣)) ≤ (𝑤 ·
(normℎ‘(𝑦 +ℎ 𝑣))) ∧
(normℎ‘𝑦) = 1)) →
((normℎ‘𝑦) + (normℎ‘(-1
·ℎ 𝑧))) ≤ (𝑤 ·
(normℎ‘(𝑦 +ℎ (-1
·ℎ 𝑧))))) |
49 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . 19
⊢ (1 =
(normℎ‘𝑦) → (1 +
(normℎ‘(-1 ·ℎ 𝑧))) =
((normℎ‘𝑦) + (normℎ‘(-1
·ℎ 𝑧)))) |
50 | 49 | eqcoms 2746 |
. . . . . . . . . . . . . . . . . 18
⊢
((normℎ‘𝑦) = 1 → (1 +
(normℎ‘(-1 ·ℎ 𝑧))) =
((normℎ‘𝑦) + (normℎ‘(-1
·ℎ 𝑧)))) |
51 | 50 | ad2antll 726 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑤 ∈ ℝ ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐵) ∧ (∀𝑣 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑣)) ≤ (𝑤 ·
(normℎ‘(𝑦 +ℎ 𝑣))) ∧
(normℎ‘𝑦) = 1)) → (1 +
(normℎ‘(-1 ·ℎ 𝑧))) =
((normℎ‘𝑦) + (normℎ‘(-1
·ℎ 𝑧)))) |
52 | | hvsubval 29378 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 −ℎ
𝑧) = (𝑦 +ℎ (-1
·ℎ 𝑧))) |
53 | 21, 11, 52 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → (𝑦 −ℎ 𝑧) = (𝑦 +ℎ (-1
·ℎ 𝑧))) |
54 | 53 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) →
(normℎ‘(𝑦 −ℎ 𝑧)) =
(normℎ‘(𝑦 +ℎ (-1
·ℎ 𝑧)))) |
55 | 54 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → (𝑤 ·
(normℎ‘(𝑦 −ℎ 𝑧))) = (𝑤 ·
(normℎ‘(𝑦 +ℎ (-1
·ℎ 𝑧))))) |
56 | 55 | adantll 711 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑤 ∈ ℝ ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐵) → (𝑤 ·
(normℎ‘(𝑦 −ℎ 𝑧))) = (𝑤 ·
(normℎ‘(𝑦 +ℎ (-1
·ℎ 𝑧))))) |
57 | 56 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑤 ∈ ℝ ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐵) ∧ (∀𝑣 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑣)) ≤ (𝑤 ·
(normℎ‘(𝑦 +ℎ 𝑣))) ∧
(normℎ‘𝑦) = 1)) → (𝑤 ·
(normℎ‘(𝑦 −ℎ 𝑧))) = (𝑤 ·
(normℎ‘(𝑦 +ℎ (-1
·ℎ 𝑧))))) |
58 | 48, 51, 57 | 3brtr4d 5106 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑤 ∈ ℝ ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐵) ∧ (∀𝑣 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑣)) ≤ (𝑤 ·
(normℎ‘(𝑦 +ℎ 𝑣))) ∧
(normℎ‘𝑦) = 1)) → (1 +
(normℎ‘(-1 ·ℎ 𝑧))) ≤ (𝑤 ·
(normℎ‘(𝑦 −ℎ 𝑧)))) |
59 | 7, 19, 29, 36, 58 | letrd 11132 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑤 ∈ ℝ ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐵) ∧ (∀𝑣 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑣)) ≤ (𝑤 ·
(normℎ‘(𝑦 +ℎ 𝑣))) ∧
(normℎ‘𝑦) = 1)) → 1 ≤ (𝑤 ·
(normℎ‘(𝑦 −ℎ 𝑧)))) |
60 | 59 | ex 413 |
. . . . . . . . . . . . . 14
⊢ (((𝑤 ∈ ℝ ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐵) → ((∀𝑣 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑣)) ≤ (𝑤 ·
(normℎ‘(𝑦 +ℎ 𝑣))) ∧
(normℎ‘𝑦) = 1) → 1 ≤ (𝑤 ·
(normℎ‘(𝑦 −ℎ 𝑧))))) |
61 | 60 | adantllr 716 |
. . . . . . . . . . . . 13
⊢ ((((𝑤 ∈ ℝ ∧ 0 <
𝑤) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐵) → ((∀𝑣 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑣)) ≤ (𝑤 ·
(normℎ‘(𝑦 +ℎ 𝑣))) ∧
(normℎ‘𝑦) = 1) → 1 ≤ (𝑤 ·
(normℎ‘(𝑦 −ℎ 𝑧))))) |
62 | | simplll 772 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑤 ∈ ℝ ∧ 0 <
𝑤) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐵) → 𝑤 ∈ ℝ) |
63 | 23 | adantll 711 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑤 ∈ ℝ ∧ 0 <
𝑤) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐵) → (𝑦 −ℎ 𝑧) ∈
ℋ) |
64 | 63, 24 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑤 ∈ ℝ ∧ 0 <
𝑤) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐵) →
(normℎ‘(𝑦 −ℎ 𝑧)) ∈
ℝ) |
65 | 62, 64, 26 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝑤 ∈ ℝ ∧ 0 <
𝑤) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐵) → (𝑤 ·
(normℎ‘(𝑦 −ℎ 𝑧))) ∈
ℝ) |
66 | | simpllr 773 |
. . . . . . . . . . . . . 14
⊢ ((((𝑤 ∈ ℝ ∧ 0 <
𝑤) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐵) → 0 < 𝑤) |
67 | | lediv1 11840 |
. . . . . . . . . . . . . . 15
⊢ ((1
∈ ℝ ∧ (𝑤
· (normℎ‘(𝑦 −ℎ 𝑧))) ∈ ℝ ∧ (𝑤 ∈ ℝ ∧ 0 <
𝑤)) → (1 ≤ (𝑤 ·
(normℎ‘(𝑦 −ℎ 𝑧))) ↔ (1 / 𝑤) ≤ ((𝑤 ·
(normℎ‘(𝑦 −ℎ 𝑧))) / 𝑤))) |
68 | 8, 67 | mp3an1 1447 |
. . . . . . . . . . . . . 14
⊢ (((𝑤 ·
(normℎ‘(𝑦 −ℎ 𝑧))) ∈ ℝ ∧ (𝑤 ∈ ℝ ∧ 0 <
𝑤)) → (1 ≤ (𝑤 ·
(normℎ‘(𝑦 −ℎ 𝑧))) ↔ (1 / 𝑤) ≤ ((𝑤 ·
(normℎ‘(𝑦 −ℎ 𝑧))) / 𝑤))) |
69 | 65, 62, 66, 68 | syl12anc 834 |
. . . . . . . . . . . . 13
⊢ ((((𝑤 ∈ ℝ ∧ 0 <
𝑤) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐵) → (1 ≤ (𝑤 ·
(normℎ‘(𝑦 −ℎ 𝑧))) ↔ (1 / 𝑤) ≤ ((𝑤 ·
(normℎ‘(𝑦 −ℎ 𝑧))) / 𝑤))) |
70 | 61, 69 | sylibd 238 |
. . . . . . . . . . . 12
⊢ ((((𝑤 ∈ ℝ ∧ 0 <
𝑤) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐵) → ((∀𝑣 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑣)) ≤ (𝑤 ·
(normℎ‘(𝑦 +ℎ 𝑣))) ∧
(normℎ‘𝑦) = 1) → (1 / 𝑤) ≤ ((𝑤 ·
(normℎ‘(𝑦 −ℎ 𝑧))) / 𝑤))) |
71 | 70 | imp 407 |
. . . . . . . . . . 11
⊢
(((((𝑤 ∈
ℝ ∧ 0 < 𝑤)
∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐵) ∧ (∀𝑣 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑣)) ≤ (𝑤 ·
(normℎ‘(𝑦 +ℎ 𝑣))) ∧
(normℎ‘𝑦) = 1)) → (1 / 𝑤) ≤ ((𝑤 ·
(normℎ‘(𝑦 −ℎ 𝑧))) / 𝑤)) |
72 | 25 | recnd 11003 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) →
(normℎ‘(𝑦 −ℎ 𝑧)) ∈
ℂ) |
73 | 72 | adantll 711 |
. . . . . . . . . . . . 13
⊢ ((((𝑤 ∈ ℝ ∧ 0 <
𝑤) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐵) →
(normℎ‘(𝑦 −ℎ 𝑧)) ∈
ℂ) |
74 | | recn 10961 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ ℝ → 𝑤 ∈
ℂ) |
75 | 74 | ad3antrrr 727 |
. . . . . . . . . . . . 13
⊢ ((((𝑤 ∈ ℝ ∧ 0 <
𝑤) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐵) → 𝑤 ∈ ℂ) |
76 | 1 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ ((((𝑤 ∈ ℝ ∧ 0 <
𝑤) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐵) → 𝑤 ≠ 0) |
77 | 73, 75, 76 | divcan3d 11756 |
. . . . . . . . . . . 12
⊢ ((((𝑤 ∈ ℝ ∧ 0 <
𝑤) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐵) → ((𝑤 ·
(normℎ‘(𝑦 −ℎ 𝑧))) / 𝑤) = (normℎ‘(𝑦 −ℎ
𝑧))) |
78 | 77 | adantr 481 |
. . . . . . . . . . 11
⊢
(((((𝑤 ∈
ℝ ∧ 0 < 𝑤)
∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐵) ∧ (∀𝑣 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑣)) ≤ (𝑤 ·
(normℎ‘(𝑦 +ℎ 𝑣))) ∧
(normℎ‘𝑦) = 1)) → ((𝑤 ·
(normℎ‘(𝑦 −ℎ 𝑧))) / 𝑤) = (normℎ‘(𝑦 −ℎ
𝑧))) |
79 | 71, 78 | breqtrd 5100 |
. . . . . . . . . 10
⊢
(((((𝑤 ∈
ℝ ∧ 0 < 𝑤)
∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐵) ∧ (∀𝑣 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑣)) ≤ (𝑤 ·
(normℎ‘(𝑦 +ℎ 𝑣))) ∧
(normℎ‘𝑦) = 1)) → (1 / 𝑤) ≤ (normℎ‘(𝑦 −ℎ
𝑧))) |
80 | 79 | exp43 437 |
. . . . . . . . 9
⊢ (((𝑤 ∈ ℝ ∧ 0 <
𝑤) ∧ 𝑦 ∈ 𝐴) → (𝑧 ∈ 𝐵 → (∀𝑣 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑣)) ≤ (𝑤 ·
(normℎ‘(𝑦 +ℎ 𝑣))) →
((normℎ‘𝑦) = 1 → (1 / 𝑤) ≤ (normℎ‘(𝑦 −ℎ
𝑧)))))) |
81 | 80 | com23 86 |
. . . . . . . 8
⊢ (((𝑤 ∈ ℝ ∧ 0 <
𝑤) ∧ 𝑦 ∈ 𝐴) → (∀𝑣 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑣)) ≤ (𝑤 ·
(normℎ‘(𝑦 +ℎ 𝑣))) → (𝑧 ∈ 𝐵 →
((normℎ‘𝑦) = 1 → (1 / 𝑤) ≤ (normℎ‘(𝑦 −ℎ
𝑧)))))) |
82 | 81 | ralrimdv 3105 |
. . . . . . 7
⊢ (((𝑤 ∈ ℝ ∧ 0 <
𝑤) ∧ 𝑦 ∈ 𝐴) → (∀𝑣 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑣)) ≤ (𝑤 ·
(normℎ‘(𝑦 +ℎ 𝑣))) → ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) = 1 → (1 / 𝑤) ≤
(normℎ‘(𝑦 −ℎ 𝑧))))) |
83 | 82 | ralimdva 3108 |
. . . . . 6
⊢ ((𝑤 ∈ ℝ ∧ 0 <
𝑤) → (∀𝑦 ∈ 𝐴 ∀𝑣 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑣)) ≤ (𝑤 ·
(normℎ‘(𝑦 +ℎ 𝑣))) → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) = 1 → (1 / 𝑤) ≤
(normℎ‘(𝑦 −ℎ 𝑧))))) |
84 | 83 | impr 455 |
. . . . 5
⊢ ((𝑤 ∈ ℝ ∧ (0 <
𝑤 ∧ ∀𝑦 ∈ 𝐴 ∀𝑣 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑣)) ≤ (𝑤 ·
(normℎ‘(𝑦 +ℎ 𝑣))))) → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) = 1 → (1 / 𝑤) ≤
(normℎ‘(𝑦 −ℎ 𝑧)))) |
85 | 4, 6, 84 | jca32 516 |
. . . 4
⊢ ((𝑤 ∈ ℝ ∧ (0 <
𝑤 ∧ ∀𝑦 ∈ 𝐴 ∀𝑣 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑣)) ≤ (𝑤 ·
(normℎ‘(𝑦 +ℎ 𝑣))))) → ((1 / 𝑤) ∈ ℝ ∧ (0 < (1 / 𝑤) ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) = 1 → (1 / 𝑤) ≤
(normℎ‘(𝑦 −ℎ 𝑧)))))) |
86 | 85 | ex 413 |
. . 3
⊢ (𝑤 ∈ ℝ → ((0 <
𝑤 ∧ ∀𝑦 ∈ 𝐴 ∀𝑣 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑣)) ≤ (𝑤 ·
(normℎ‘(𝑦 +ℎ 𝑣)))) → ((1 / 𝑤) ∈ ℝ ∧ (0 < (1 / 𝑤) ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) = 1 → (1 / 𝑤) ≤
(normℎ‘(𝑦 −ℎ 𝑧))))))) |
87 | | breq2 5078 |
. . . . 5
⊢ (𝑥 = (1 / 𝑤) → (0 < 𝑥 ↔ 0 < (1 / 𝑤))) |
88 | | breq1 5077 |
. . . . . . 7
⊢ (𝑥 = (1 / 𝑤) → (𝑥 ≤ (normℎ‘(𝑦 −ℎ
𝑧)) ↔ (1 / 𝑤) ≤
(normℎ‘(𝑦 −ℎ 𝑧)))) |
89 | 88 | imbi2d 341 |
. . . . . 6
⊢ (𝑥 = (1 / 𝑤) →
(((normℎ‘𝑦) = 1 → 𝑥 ≤ (normℎ‘(𝑦 −ℎ
𝑧))) ↔
((normℎ‘𝑦) = 1 → (1 / 𝑤) ≤ (normℎ‘(𝑦 −ℎ
𝑧))))) |
90 | 89 | 2ralbidv 3129 |
. . . . 5
⊢ (𝑥 = (1 / 𝑤) → (∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) = 1 → 𝑥 ≤ (normℎ‘(𝑦 −ℎ
𝑧))) ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) = 1 → (1 / 𝑤) ≤
(normℎ‘(𝑦 −ℎ 𝑧))))) |
91 | 87, 90 | anbi12d 631 |
. . . 4
⊢ (𝑥 = (1 / 𝑤) → ((0 < 𝑥 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) = 1 → 𝑥 ≤ (normℎ‘(𝑦 −ℎ
𝑧)))) ↔ (0 < (1 /
𝑤) ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) = 1 → (1 / 𝑤) ≤
(normℎ‘(𝑦 −ℎ 𝑧)))))) |
92 | 91 | rspcev 3561 |
. . 3
⊢ (((1 /
𝑤) ∈ ℝ ∧ (0
< (1 / 𝑤) ∧
∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) = 1 → (1 / 𝑤) ≤
(normℎ‘(𝑦 −ℎ 𝑧))))) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) = 1 → 𝑥 ≤ (normℎ‘(𝑦 −ℎ
𝑧))))) |
93 | 86, 92 | syl6 35 |
. 2
⊢ (𝑤 ∈ ℝ → ((0 <
𝑤 ∧ ∀𝑦 ∈ 𝐴 ∀𝑣 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑣)) ≤ (𝑤 ·
(normℎ‘(𝑦 +ℎ 𝑣)))) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) = 1 → 𝑥 ≤ (normℎ‘(𝑦 −ℎ
𝑧)))))) |
94 | 93 | rexlimiv 3209 |
1
⊢
(∃𝑤 ∈
ℝ (0 < 𝑤 ∧
∀𝑦 ∈ 𝐴 ∀𝑣 ∈ 𝐵 ((normℎ‘𝑦) +
(normℎ‘𝑣)) ≤ (𝑤 ·
(normℎ‘(𝑦 +ℎ 𝑣)))) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) = 1 → 𝑥 ≤ (normℎ‘(𝑦 −ℎ
𝑧))))) |