HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj1i Structured version   Visualization version   GIF version

Theorem cdj1i 29864
Description: Two ways to express "𝐴 and 𝐵 are completely disjoint subspaces." (1) => (2) in Lemma 5 of [Holland] p. 1520. (Contributed by NM, 21-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj1.1 𝐴S
cdj1.2 𝐵S
Assertion
Ref Expression
cdj1i (∃𝑤 ∈ ℝ (0 < 𝑤 ∧ ∀𝑦𝐴𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣)))) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) = 1 → 𝑥 ≤ (norm‘(𝑦 𝑧)))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝐴   𝑥,𝑣,𝐵,𝑦,𝑧,𝑤
Allowed substitution hint:   𝐴(𝑣)

Proof of Theorem cdj1i
StepHypRef Expression
1 gt0ne0 10840 . . . . . . 7 ((𝑤 ∈ ℝ ∧ 0 < 𝑤) → 𝑤 ≠ 0)
2 rereccl 11093 . . . . . . 7 ((𝑤 ∈ ℝ ∧ 𝑤 ≠ 0) → (1 / 𝑤) ∈ ℝ)
31, 2syldan 585 . . . . . 6 ((𝑤 ∈ ℝ ∧ 0 < 𝑤) → (1 / 𝑤) ∈ ℝ)
43adantrr 707 . . . . 5 ((𝑤 ∈ ℝ ∧ (0 < 𝑤 ∧ ∀𝑦𝐴𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))))) → (1 / 𝑤) ∈ ℝ)
5 recgt0 11221 . . . . . 6 ((𝑤 ∈ ℝ ∧ 0 < 𝑤) → 0 < (1 / 𝑤))
65adantrr 707 . . . . 5 ((𝑤 ∈ ℝ ∧ (0 < 𝑤 ∧ ∀𝑦𝐴𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))))) → 0 < (1 / 𝑤))
7 1red 10377 . . . . . . . . . . . . . . . 16 ((((𝑤 ∈ ℝ ∧ 𝑦𝐴) ∧ 𝑧𝐵) ∧ (∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) ∧ (norm𝑦) = 1)) → 1 ∈ ℝ)
8 1re 10376 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ
9 neg1cn 11496 . . . . . . . . . . . . . . . . . . . . 21 -1 ∈ ℂ
10 cdj1.2 . . . . . . . . . . . . . . . . . . . . . 22 𝐵S
1110sheli 28643 . . . . . . . . . . . . . . . . . . . . 21 (𝑧𝐵𝑧 ∈ ℋ)
12 hvmulcl 28442 . . . . . . . . . . . . . . . . . . . . 21 ((-1 ∈ ℂ ∧ 𝑧 ∈ ℋ) → (-1 · 𝑧) ∈ ℋ)
139, 11, 12sylancr 581 . . . . . . . . . . . . . . . . . . . 20 (𝑧𝐵 → (-1 · 𝑧) ∈ ℋ)
14 normcl 28554 . . . . . . . . . . . . . . . . . . . 20 ((-1 · 𝑧) ∈ ℋ → (norm‘(-1 · 𝑧)) ∈ ℝ)
1513, 14syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑧𝐵 → (norm‘(-1 · 𝑧)) ∈ ℝ)
1615adantl 475 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℝ ∧ 𝑦𝐴) ∧ 𝑧𝐵) → (norm‘(-1 · 𝑧)) ∈ ℝ)
17 readdcl 10355 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ ∧ (norm‘(-1 · 𝑧)) ∈ ℝ) → (1 + (norm‘(-1 · 𝑧))) ∈ ℝ)
188, 16, 17sylancr 581 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℝ ∧ 𝑦𝐴) ∧ 𝑧𝐵) → (1 + (norm‘(-1 · 𝑧))) ∈ ℝ)
1918adantr 474 . . . . . . . . . . . . . . . 16 ((((𝑤 ∈ ℝ ∧ 𝑦𝐴) ∧ 𝑧𝐵) ∧ (∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) ∧ (norm𝑦) = 1)) → (1 + (norm‘(-1 · 𝑧))) ∈ ℝ)
20 cdj1.1 . . . . . . . . . . . . . . . . . . . . . 22 𝐴S
2120sheli 28643 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐴𝑦 ∈ ℋ)
22 hvsubcl 28446 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 𝑧) ∈ ℋ)
2321, 11, 22syl2an 589 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝐴𝑧𝐵) → (𝑦 𝑧) ∈ ℋ)
24 normcl 28554 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 𝑧) ∈ ℋ → (norm‘(𝑦 𝑧)) ∈ ℝ)
2523, 24syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑦𝐴𝑧𝐵) → (norm‘(𝑦 𝑧)) ∈ ℝ)
26 remulcl 10357 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ ℝ ∧ (norm‘(𝑦 𝑧)) ∈ ℝ) → (𝑤 · (norm‘(𝑦 𝑧))) ∈ ℝ)
2725, 26sylan2 586 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ (𝑦𝐴𝑧𝐵)) → (𝑤 · (norm‘(𝑦 𝑧))) ∈ ℝ)
2827anassrs 461 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℝ ∧ 𝑦𝐴) ∧ 𝑧𝐵) → (𝑤 · (norm‘(𝑦 𝑧))) ∈ ℝ)
2928adantr 474 . . . . . . . . . . . . . . . 16 ((((𝑤 ∈ ℝ ∧ 𝑦𝐴) ∧ 𝑧𝐵) ∧ (∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) ∧ (norm𝑦) = 1)) → (𝑤 · (norm‘(𝑦 𝑧))) ∈ ℝ)
30 normge0 28555 . . . . . . . . . . . . . . . . . . 19 ((-1 · 𝑧) ∈ ℋ → 0 ≤ (norm‘(-1 · 𝑧)))
3113, 30syl 17 . . . . . . . . . . . . . . . . . 18 (𝑧𝐵 → 0 ≤ (norm‘(-1 · 𝑧)))
32 addge01 10885 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℝ ∧ (norm‘(-1 · 𝑧)) ∈ ℝ) → (0 ≤ (norm‘(-1 · 𝑧)) ↔ 1 ≤ (1 + (norm‘(-1 · 𝑧)))))
338, 32mpan 680 . . . . . . . . . . . . . . . . . . 19 ((norm‘(-1 · 𝑧)) ∈ ℝ → (0 ≤ (norm‘(-1 · 𝑧)) ↔ 1 ≤ (1 + (norm‘(-1 · 𝑧)))))
3433biimpa 470 . . . . . . . . . . . . . . . . . 18 (((norm‘(-1 · 𝑧)) ∈ ℝ ∧ 0 ≤ (norm‘(-1 · 𝑧))) → 1 ≤ (1 + (norm‘(-1 · 𝑧))))
3515, 31, 34syl2anc 579 . . . . . . . . . . . . . . . . 17 (𝑧𝐵 → 1 ≤ (1 + (norm‘(-1 · 𝑧))))
3635ad2antlr 717 . . . . . . . . . . . . . . . 16 ((((𝑤 ∈ ℝ ∧ 𝑦𝐴) ∧ 𝑧𝐵) ∧ (∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) ∧ (norm𝑦) = 1)) → 1 ≤ (1 + (norm‘(-1 · 𝑧))))
37 shmulcl 28647 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵S ∧ -1 ∈ ℂ ∧ 𝑧𝐵) → (-1 · 𝑧) ∈ 𝐵)
3810, 9, 37mp3an12 1524 . . . . . . . . . . . . . . . . . . . 20 (𝑧𝐵 → (-1 · 𝑧) ∈ 𝐵)
39 fveq2 6446 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 = (-1 · 𝑧) → (norm𝑣) = (norm‘(-1 · 𝑧)))
4039oveq2d 6938 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = (-1 · 𝑧) → ((norm𝑦) + (norm𝑣)) = ((norm𝑦) + (norm‘(-1 · 𝑧))))
41 oveq2 6930 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 = (-1 · 𝑧) → (𝑦 + 𝑣) = (𝑦 + (-1 · 𝑧)))
4241fveq2d 6450 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 = (-1 · 𝑧) → (norm‘(𝑦 + 𝑣)) = (norm‘(𝑦 + (-1 · 𝑧))))
4342oveq2d 6938 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = (-1 · 𝑧) → (𝑤 · (norm‘(𝑦 + 𝑣))) = (𝑤 · (norm‘(𝑦 + (-1 · 𝑧)))))
4440, 43breq12d 4899 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (-1 · 𝑧) → (((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) ↔ ((norm𝑦) + (norm‘(-1 · 𝑧))) ≤ (𝑤 · (norm‘(𝑦 + (-1 · 𝑧))))))
4544rspcv 3507 . . . . . . . . . . . . . . . . . . . 20 ((-1 · 𝑧) ∈ 𝐵 → (∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) → ((norm𝑦) + (norm‘(-1 · 𝑧))) ≤ (𝑤 · (norm‘(𝑦 + (-1 · 𝑧))))))
4638, 45syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑧𝐵 → (∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) → ((norm𝑦) + (norm‘(-1 · 𝑧))) ≤ (𝑤 · (norm‘(𝑦 + (-1 · 𝑧))))))
4746imp 397 . . . . . . . . . . . . . . . . . 18 ((𝑧𝐵 ∧ ∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣)))) → ((norm𝑦) + (norm‘(-1 · 𝑧))) ≤ (𝑤 · (norm‘(𝑦 + (-1 · 𝑧)))))
4847ad2ant2lr 738 . . . . . . . . . . . . . . . . 17 ((((𝑤 ∈ ℝ ∧ 𝑦𝐴) ∧ 𝑧𝐵) ∧ (∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) ∧ (norm𝑦) = 1)) → ((norm𝑦) + (norm‘(-1 · 𝑧))) ≤ (𝑤 · (norm‘(𝑦 + (-1 · 𝑧)))))
49 oveq1 6929 . . . . . . . . . . . . . . . . . . 19 (1 = (norm𝑦) → (1 + (norm‘(-1 · 𝑧))) = ((norm𝑦) + (norm‘(-1 · 𝑧))))
5049eqcoms 2786 . . . . . . . . . . . . . . . . . 18 ((norm𝑦) = 1 → (1 + (norm‘(-1 · 𝑧))) = ((norm𝑦) + (norm‘(-1 · 𝑧))))
5150ad2antll 719 . . . . . . . . . . . . . . . . 17 ((((𝑤 ∈ ℝ ∧ 𝑦𝐴) ∧ 𝑧𝐵) ∧ (∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) ∧ (norm𝑦) = 1)) → (1 + (norm‘(-1 · 𝑧))) = ((norm𝑦) + (norm‘(-1 · 𝑧))))
52 hvsubval 28445 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 𝑧) = (𝑦 + (-1 · 𝑧)))
5321, 11, 52syl2an 589 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝐴𝑧𝐵) → (𝑦 𝑧) = (𝑦 + (-1 · 𝑧)))
5453fveq2d 6450 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝐴𝑧𝐵) → (norm‘(𝑦 𝑧)) = (norm‘(𝑦 + (-1 · 𝑧))))
5554oveq2d 6938 . . . . . . . . . . . . . . . . . . 19 ((𝑦𝐴𝑧𝐵) → (𝑤 · (norm‘(𝑦 𝑧))) = (𝑤 · (norm‘(𝑦 + (-1 · 𝑧)))))
5655adantll 704 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℝ ∧ 𝑦𝐴) ∧ 𝑧𝐵) → (𝑤 · (norm‘(𝑦 𝑧))) = (𝑤 · (norm‘(𝑦 + (-1 · 𝑧)))))
5756adantr 474 . . . . . . . . . . . . . . . . 17 ((((𝑤 ∈ ℝ ∧ 𝑦𝐴) ∧ 𝑧𝐵) ∧ (∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) ∧ (norm𝑦) = 1)) → (𝑤 · (norm‘(𝑦 𝑧))) = (𝑤 · (norm‘(𝑦 + (-1 · 𝑧)))))
5848, 51, 573brtr4d 4918 . . . . . . . . . . . . . . . 16 ((((𝑤 ∈ ℝ ∧ 𝑦𝐴) ∧ 𝑧𝐵) ∧ (∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) ∧ (norm𝑦) = 1)) → (1 + (norm‘(-1 · 𝑧))) ≤ (𝑤 · (norm‘(𝑦 𝑧))))
597, 19, 29, 36, 58letrd 10533 . . . . . . . . . . . . . . 15 ((((𝑤 ∈ ℝ ∧ 𝑦𝐴) ∧ 𝑧𝐵) ∧ (∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) ∧ (norm𝑦) = 1)) → 1 ≤ (𝑤 · (norm‘(𝑦 𝑧))))
6059ex 403 . . . . . . . . . . . . . 14 (((𝑤 ∈ ℝ ∧ 𝑦𝐴) ∧ 𝑧𝐵) → ((∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) ∧ (norm𝑦) = 1) → 1 ≤ (𝑤 · (norm‘(𝑦 𝑧)))))
6160adantllr 709 . . . . . . . . . . . . 13 ((((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) ∧ 𝑧𝐵) → ((∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) ∧ (norm𝑦) = 1) → 1 ≤ (𝑤 · (norm‘(𝑦 𝑧)))))
62 simplll 765 . . . . . . . . . . . . . . 15 ((((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) ∧ 𝑧𝐵) → 𝑤 ∈ ℝ)
6323adantll 704 . . . . . . . . . . . . . . . 16 ((((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) ∧ 𝑧𝐵) → (𝑦 𝑧) ∈ ℋ)
6463, 24syl 17 . . . . . . . . . . . . . . 15 ((((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) ∧ 𝑧𝐵) → (norm‘(𝑦 𝑧)) ∈ ℝ)
6562, 64, 26syl2anc 579 . . . . . . . . . . . . . 14 ((((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) ∧ 𝑧𝐵) → (𝑤 · (norm‘(𝑦 𝑧))) ∈ ℝ)
66 simpllr 766 . . . . . . . . . . . . . 14 ((((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) ∧ 𝑧𝐵) → 0 < 𝑤)
67 lediv1 11242 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ (𝑤 · (norm‘(𝑦 𝑧))) ∈ ℝ ∧ (𝑤 ∈ ℝ ∧ 0 < 𝑤)) → (1 ≤ (𝑤 · (norm‘(𝑦 𝑧))) ↔ (1 / 𝑤) ≤ ((𝑤 · (norm‘(𝑦 𝑧))) / 𝑤)))
688, 67mp3an1 1521 . . . . . . . . . . . . . 14 (((𝑤 · (norm‘(𝑦 𝑧))) ∈ ℝ ∧ (𝑤 ∈ ℝ ∧ 0 < 𝑤)) → (1 ≤ (𝑤 · (norm‘(𝑦 𝑧))) ↔ (1 / 𝑤) ≤ ((𝑤 · (norm‘(𝑦 𝑧))) / 𝑤)))
6965, 62, 66, 68syl12anc 827 . . . . . . . . . . . . 13 ((((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) ∧ 𝑧𝐵) → (1 ≤ (𝑤 · (norm‘(𝑦 𝑧))) ↔ (1 / 𝑤) ≤ ((𝑤 · (norm‘(𝑦 𝑧))) / 𝑤)))
7061, 69sylibd 231 . . . . . . . . . . . 12 ((((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) ∧ 𝑧𝐵) → ((∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) ∧ (norm𝑦) = 1) → (1 / 𝑤) ≤ ((𝑤 · (norm‘(𝑦 𝑧))) / 𝑤)))
7170imp 397 . . . . . . . . . . 11 (((((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) ∧ 𝑧𝐵) ∧ (∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) ∧ (norm𝑦) = 1)) → (1 / 𝑤) ≤ ((𝑤 · (norm‘(𝑦 𝑧))) / 𝑤))
7225recnd 10405 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑧𝐵) → (norm‘(𝑦 𝑧)) ∈ ℂ)
7372adantll 704 . . . . . . . . . . . . 13 ((((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) ∧ 𝑧𝐵) → (norm‘(𝑦 𝑧)) ∈ ℂ)
74 recn 10362 . . . . . . . . . . . . . 14 (𝑤 ∈ ℝ → 𝑤 ∈ ℂ)
7574ad3antrrr 720 . . . . . . . . . . . . 13 ((((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) ∧ 𝑧𝐵) → 𝑤 ∈ ℂ)
761ad2antrr 716 . . . . . . . . . . . . 13 ((((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) ∧ 𝑧𝐵) → 𝑤 ≠ 0)
7773, 75, 76divcan3d 11156 . . . . . . . . . . . 12 ((((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) ∧ 𝑧𝐵) → ((𝑤 · (norm‘(𝑦 𝑧))) / 𝑤) = (norm‘(𝑦 𝑧)))
7877adantr 474 . . . . . . . . . . 11 (((((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) ∧ 𝑧𝐵) ∧ (∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) ∧ (norm𝑦) = 1)) → ((𝑤 · (norm‘(𝑦 𝑧))) / 𝑤) = (norm‘(𝑦 𝑧)))
7971, 78breqtrd 4912 . . . . . . . . . 10 (((((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) ∧ 𝑧𝐵) ∧ (∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) ∧ (norm𝑦) = 1)) → (1 / 𝑤) ≤ (norm‘(𝑦 𝑧)))
8079exp43 429 . . . . . . . . 9 (((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) → (𝑧𝐵 → (∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) → ((norm𝑦) = 1 → (1 / 𝑤) ≤ (norm‘(𝑦 𝑧))))))
8180com23 86 . . . . . . . 8 (((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) → (∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) → (𝑧𝐵 → ((norm𝑦) = 1 → (1 / 𝑤) ≤ (norm‘(𝑦 𝑧))))))
8281ralrimdv 3150 . . . . . . 7 (((𝑤 ∈ ℝ ∧ 0 < 𝑤) ∧ 𝑦𝐴) → (∀𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) → ∀𝑧𝐵 ((norm𝑦) = 1 → (1 / 𝑤) ≤ (norm‘(𝑦 𝑧)))))
8382ralimdva 3144 . . . . . 6 ((𝑤 ∈ ℝ ∧ 0 < 𝑤) → (∀𝑦𝐴𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))) → ∀𝑦𝐴𝑧𝐵 ((norm𝑦) = 1 → (1 / 𝑤) ≤ (norm‘(𝑦 𝑧)))))
8483impr 448 . . . . 5 ((𝑤 ∈ ℝ ∧ (0 < 𝑤 ∧ ∀𝑦𝐴𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))))) → ∀𝑦𝐴𝑧𝐵 ((norm𝑦) = 1 → (1 / 𝑤) ≤ (norm‘(𝑦 𝑧))))
854, 6, 84jca32 511 . . . 4 ((𝑤 ∈ ℝ ∧ (0 < 𝑤 ∧ ∀𝑦𝐴𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣))))) → ((1 / 𝑤) ∈ ℝ ∧ (0 < (1 / 𝑤) ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) = 1 → (1 / 𝑤) ≤ (norm‘(𝑦 𝑧))))))
8685ex 403 . . 3 (𝑤 ∈ ℝ → ((0 < 𝑤 ∧ ∀𝑦𝐴𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣)))) → ((1 / 𝑤) ∈ ℝ ∧ (0 < (1 / 𝑤) ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) = 1 → (1 / 𝑤) ≤ (norm‘(𝑦 𝑧)))))))
87 breq2 4890 . . . . 5 (𝑥 = (1 / 𝑤) → (0 < 𝑥 ↔ 0 < (1 / 𝑤)))
88 breq1 4889 . . . . . . 7 (𝑥 = (1 / 𝑤) → (𝑥 ≤ (norm‘(𝑦 𝑧)) ↔ (1 / 𝑤) ≤ (norm‘(𝑦 𝑧))))
8988imbi2d 332 . . . . . 6 (𝑥 = (1 / 𝑤) → (((norm𝑦) = 1 → 𝑥 ≤ (norm‘(𝑦 𝑧))) ↔ ((norm𝑦) = 1 → (1 / 𝑤) ≤ (norm‘(𝑦 𝑧)))))
90892ralbidv 3171 . . . . 5 (𝑥 = (1 / 𝑤) → (∀𝑦𝐴𝑧𝐵 ((norm𝑦) = 1 → 𝑥 ≤ (norm‘(𝑦 𝑧))) ↔ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) = 1 → (1 / 𝑤) ≤ (norm‘(𝑦 𝑧)))))
9187, 90anbi12d 624 . . . 4 (𝑥 = (1 / 𝑤) → ((0 < 𝑥 ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) = 1 → 𝑥 ≤ (norm‘(𝑦 𝑧)))) ↔ (0 < (1 / 𝑤) ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) = 1 → (1 / 𝑤) ≤ (norm‘(𝑦 𝑧))))))
9291rspcev 3511 . . 3 (((1 / 𝑤) ∈ ℝ ∧ (0 < (1 / 𝑤) ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) = 1 → (1 / 𝑤) ≤ (norm‘(𝑦 𝑧))))) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) = 1 → 𝑥 ≤ (norm‘(𝑦 𝑧)))))
9386, 92syl6 35 . 2 (𝑤 ∈ ℝ → ((0 < 𝑤 ∧ ∀𝑦𝐴𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣)))) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) = 1 → 𝑥 ≤ (norm‘(𝑦 𝑧))))))
9493rexlimiv 3209 1 (∃𝑤 ∈ ℝ (0 < 𝑤 ∧ ∀𝑦𝐴𝑣𝐵 ((norm𝑦) + (norm𝑣)) ≤ (𝑤 · (norm‘(𝑦 + 𝑣)))) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ∀𝑦𝐴𝑧𝐵 ((norm𝑦) = 1 → 𝑥 ≤ (norm‘(𝑦 𝑧)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  wne 2969  wral 3090  wrex 3091   class class class wbr 4886  cfv 6135  (class class class)co 6922  cc 10270  cr 10271  0cc0 10272  1c1 10273   + caddc 10275   · cmul 10277   < clt 10411  cle 10412  -cneg 10607   / cdiv 11032  chba 28348   + cva 28349   · csm 28350  normcno 28352   cmv 28354   S csh 28357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-hilex 28428  ax-hfvadd 28429  ax-hv0cl 28432  ax-hfvmul 28434  ax-hvmul0 28439  ax-hfi 28508  ax-his1 28511  ax-his3 28513  ax-his4 28514
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-sup 8636  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-seq 13120  df-exp 13179  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-hnorm 28397  df-hvsub 28400  df-sh 28636
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator