![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > chjcom | Structured version Visualization version GIF version |
Description: Commutative law for Hilbert lattice join. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chjcom | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chsh 31256 | . 2 ⊢ (𝐴 ∈ Cℋ → 𝐴 ∈ Sℋ ) | |
2 | chsh 31256 | . 2 ⊢ (𝐵 ∈ Cℋ → 𝐵 ∈ Sℋ ) | |
3 | shjcom 31390 | . 2 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴)) | |
4 | 1, 2, 3 | syl2an 595 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 (class class class)co 7448 Sℋ csh 30960 Cℋ cch 30961 ∨ℋ chj 30965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-hilex 31031 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-sh 31239 df-ch 31253 df-chj 31342 |
This theorem is referenced by: chub2 31540 chlejb2 31545 chj12 31566 mddmd2 32341 dmdsl3 32347 csmdsymi 32366 mdexchi 32367 atordi 32416 atcvatlem 32417 atcvati 32418 chirredlem2 32423 chirredlem4 32425 atcvat3i 32428 atcvat4i 32429 atdmd 32430 mdsymlem3 32437 mdsymlem5 32439 mdsymlem8 32442 sumdmdlem2 32451 dmdbr5ati 32454 |
Copyright terms: Public domain | W3C validator |