| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chjcom | Structured version Visualization version GIF version | ||
| Description: Commutative law for Hilbert lattice join. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chjcom | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chsh 31190 | . 2 ⊢ (𝐴 ∈ Cℋ → 𝐴 ∈ Sℋ ) | |
| 2 | chsh 31190 | . 2 ⊢ (𝐵 ∈ Cℋ → 𝐵 ∈ Sℋ ) | |
| 3 | shjcom 31324 | . 2 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 (class class class)co 7414 Sℋ csh 30894 Cℋ cch 30895 ∨ℋ chj 30899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 ax-hilex 30965 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-sh 31173 df-ch 31187 df-chj 31276 |
| This theorem is referenced by: chub2 31474 chlejb2 31479 chj12 31500 mddmd2 32275 dmdsl3 32281 csmdsymi 32300 mdexchi 32301 atordi 32350 atcvatlem 32351 atcvati 32352 chirredlem2 32357 chirredlem4 32359 atcvat3i 32362 atcvat4i 32363 atdmd 32364 mdsymlem3 32371 mdsymlem5 32373 mdsymlem8 32376 sumdmdlem2 32385 dmdbr5ati 32388 |
| Copyright terms: Public domain | W3C validator |