| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chjcom | Structured version Visualization version GIF version | ||
| Description: Commutative law for Hilbert lattice join. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chjcom | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chsh 31210 | . 2 ⊢ (𝐴 ∈ Cℋ → 𝐴 ∈ Sℋ ) | |
| 2 | chsh 31210 | . 2 ⊢ (𝐵 ∈ Cℋ → 𝐵 ∈ Sℋ ) | |
| 3 | shjcom 31344 | . 2 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7410 Sℋ csh 30914 Cℋ cch 30915 ∨ℋ chj 30919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-hilex 30985 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-sh 31193 df-ch 31207 df-chj 31296 |
| This theorem is referenced by: chub2 31494 chlejb2 31499 chj12 31520 mddmd2 32295 dmdsl3 32301 csmdsymi 32320 mdexchi 32321 atordi 32370 atcvatlem 32371 atcvati 32372 chirredlem2 32377 chirredlem4 32379 atcvat3i 32382 atcvat4i 32383 atdmd 32384 mdsymlem3 32391 mdsymlem5 32393 mdsymlem8 32396 sumdmdlem2 32405 dmdbr5ati 32408 |
| Copyright terms: Public domain | W3C validator |