Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > chjcom | Structured version Visualization version GIF version |
Description: Commutative law for Hilbert lattice join. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chjcom | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chsh 29586 | . 2 ⊢ (𝐴 ∈ Cℋ → 𝐴 ∈ Sℋ ) | |
2 | chsh 29586 | . 2 ⊢ (𝐵 ∈ Cℋ → 𝐵 ∈ Sℋ ) | |
3 | shjcom 29720 | . 2 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴)) | |
4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 (class class class)co 7275 Sℋ csh 29290 Cℋ cch 29291 ∨ℋ chj 29295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-hilex 29361 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-sh 29569 df-ch 29583 df-chj 29672 |
This theorem is referenced by: chub2 29870 chlejb2 29875 chj12 29896 mddmd2 30671 dmdsl3 30677 csmdsymi 30696 mdexchi 30697 atordi 30746 atcvatlem 30747 atcvati 30748 chirredlem2 30753 chirredlem4 30755 atcvat3i 30758 atcvat4i 30759 atdmd 30760 mdsymlem3 30767 mdsymlem5 30769 mdsymlem8 30772 sumdmdlem2 30781 dmdbr5ati 30784 |
Copyright terms: Public domain | W3C validator |