HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chjcom Structured version   Visualization version   GIF version

Theorem chjcom 30759
Description: Commutative law for Hilbert lattice join. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
chjcom ((𝐴C𝐵C ) → (𝐴 𝐵) = (𝐵 𝐴))

Proof of Theorem chjcom
StepHypRef Expression
1 chsh 30477 . 2 (𝐴C𝐴S )
2 chsh 30477 . 2 (𝐵C𝐵S )
3 shjcom 30611 . 2 ((𝐴S𝐵S ) → (𝐴 𝐵) = (𝐵 𝐴))
41, 2, 3syl2an 597 1 ((𝐴C𝐵C ) → (𝐴 𝐵) = (𝐵 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  (class class class)co 7409   S csh 30181   C cch 30182   chj 30186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-hilex 30252
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-sh 30460  df-ch 30474  df-chj 30563
This theorem is referenced by:  chub2  30761  chlejb2  30766  chj12  30787  mddmd2  31562  dmdsl3  31568  csmdsymi  31587  mdexchi  31588  atordi  31637  atcvatlem  31638  atcvati  31639  chirredlem2  31644  chirredlem4  31646  atcvat3i  31649  atcvat4i  31650  atdmd  31651  mdsymlem3  31658  mdsymlem5  31660  mdsymlem8  31663  sumdmdlem2  31672  dmdbr5ati  31675
  Copyright terms: Public domain W3C validator