HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chjcom Structured version   Visualization version   GIF version

Theorem chjcom 31486
Description: Commutative law for Hilbert lattice join. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
chjcom ((𝐴C𝐵C ) → (𝐴 𝐵) = (𝐵 𝐴))

Proof of Theorem chjcom
StepHypRef Expression
1 chsh 31204 . 2 (𝐴C𝐴S )
2 chsh 31204 . 2 (𝐵C𝐵S )
3 shjcom 31338 . 2 ((𝐴S𝐵S ) → (𝐴 𝐵) = (𝐵 𝐴))
41, 2, 3syl2an 596 1 ((𝐴C𝐵C ) → (𝐴 𝐵) = (𝐵 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  (class class class)co 7346   S csh 30908   C cch 30909   chj 30913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-hilex 30979
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-sh 31187  df-ch 31201  df-chj 31290
This theorem is referenced by:  chub2  31488  chlejb2  31493  chj12  31514  mddmd2  32289  dmdsl3  32295  csmdsymi  32314  mdexchi  32315  atordi  32364  atcvatlem  32365  atcvati  32366  chirredlem2  32371  chirredlem4  32373  atcvat3i  32376  atcvat4i  32377  atdmd  32378  mdsymlem3  32385  mdsymlem5  32387  mdsymlem8  32390  sumdmdlem2  32399  dmdbr5ati  32402
  Copyright terms: Public domain W3C validator