![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shless | Structured version Visualization version GIF version |
Description: Subset implies subset of subspace sum. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shless | ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 +ℋ 𝐶) ⊆ (𝐵 +ℋ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrexv 4051 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐶 𝑥 = (𝑦 +ℎ 𝑧) → ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝑥 = (𝑦 +ℎ 𝑧))) | |
2 | 1 | adantl 481 | . . 3 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐶 𝑥 = (𝑦 +ℎ 𝑧) → ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝑥 = (𝑦 +ℎ 𝑧))) |
3 | simpl1 1190 | . . . 4 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐴 ∈ Sℋ ) | |
4 | simpl3 1192 | . . . 4 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐶 ∈ Sℋ ) | |
5 | shsel 31001 | . . . 4 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) → (𝑥 ∈ (𝐴 +ℋ 𝐶) ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐶 𝑥 = (𝑦 +ℎ 𝑧))) | |
6 | 3, 4, 5 | syl2anc 583 | . . 3 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝑥 ∈ (𝐴 +ℋ 𝐶) ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐶 𝑥 = (𝑦 +ℎ 𝑧))) |
7 | simpl2 1191 | . . . 4 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐵 ∈ Sℋ ) | |
8 | shsel 31001 | . . . 4 ⊢ ((𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) → (𝑥 ∈ (𝐵 +ℋ 𝐶) ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝑥 = (𝑦 +ℎ 𝑧))) | |
9 | 7, 4, 8 | syl2anc 583 | . . 3 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝑥 ∈ (𝐵 +ℋ 𝐶) ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝑥 = (𝑦 +ℎ 𝑧))) |
10 | 2, 6, 9 | 3imtr4d 294 | . 2 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝑥 ∈ (𝐴 +ℋ 𝐶) → 𝑥 ∈ (𝐵 +ℋ 𝐶))) |
11 | 10 | ssrdv 3988 | 1 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 +ℋ 𝐶) ⊆ (𝐵 +ℋ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∃wrex 3069 ⊆ wss 3948 (class class class)co 7412 +ℎ cva 30607 Sℋ csh 30615 +ℋ cph 30618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-hilex 30686 ax-hfvadd 30687 ax-hvcom 30688 ax-hvass 30689 ax-hv0cl 30690 ax-hvaddid 30691 ax-hfvmul 30692 ax-hvmulid 30693 ax-hvdistr2 30696 ax-hvmul0 30697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-ltxr 11260 df-sub 11453 df-neg 11454 df-grpo 30180 df-ablo 30232 df-hvsub 30658 df-sh 30894 df-shs 30995 |
This theorem is referenced by: shlessi 31064 pjpjpre 31106 chscllem1 31324 chscllem2 31325 chscllem3 31326 |
Copyright terms: Public domain | W3C validator |