HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shless Structured version   Visualization version   GIF version

Theorem shless 31334
Description: Subset implies subset of subspace sum. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
shless (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝐴 + 𝐶) ⊆ (𝐵 + 𝐶))

Proof of Theorem shless
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrexv 4004 . . . 4 (𝐴𝐵 → (∃𝑦𝐴𝑧𝐶 𝑥 = (𝑦 + 𝑧) → ∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦 + 𝑧)))
21adantl 481 . . 3 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (∃𝑦𝐴𝑧𝐶 𝑥 = (𝑦 + 𝑧) → ∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦 + 𝑧)))
3 simpl1 1192 . . . 4 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → 𝐴S )
4 simpl3 1194 . . . 4 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → 𝐶S )
5 shsel 31289 . . . 4 ((𝐴S𝐶S ) → (𝑥 ∈ (𝐴 + 𝐶) ↔ ∃𝑦𝐴𝑧𝐶 𝑥 = (𝑦 + 𝑧)))
63, 4, 5syl2anc 584 . . 3 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝑥 ∈ (𝐴 + 𝐶) ↔ ∃𝑦𝐴𝑧𝐶 𝑥 = (𝑦 + 𝑧)))
7 simpl2 1193 . . . 4 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → 𝐵S )
8 shsel 31289 . . . 4 ((𝐵S𝐶S ) → (𝑥 ∈ (𝐵 + 𝐶) ↔ ∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦 + 𝑧)))
97, 4, 8syl2anc 584 . . 3 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝑥 ∈ (𝐵 + 𝐶) ↔ ∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦 + 𝑧)))
102, 6, 93imtr4d 294 . 2 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝑥 ∈ (𝐴 + 𝐶) → 𝑥 ∈ (𝐵 + 𝐶)))
1110ssrdv 3940 1 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝐴 + 𝐶) ⊆ (𝐵 + 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  wss 3902  (class class class)co 7346   + cva 30895   S csh 30903   + cph 30906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-hilex 30974  ax-hfvadd 30975  ax-hvcom 30976  ax-hvass 30977  ax-hv0cl 30978  ax-hvaddid 30979  ax-hfvmul 30980  ax-hvmulid 30981  ax-hvdistr2 30984  ax-hvmul0 30985
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-ltxr 11148  df-sub 11343  df-neg 11344  df-grpo 30468  df-ablo 30520  df-hvsub 30946  df-sh 31182  df-shs 31283
This theorem is referenced by:  shlessi  31352  pjpjpre  31394  chscllem1  31612  chscllem2  31613  chscllem3  31614
  Copyright terms: Public domain W3C validator