![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shless | Structured version Visualization version GIF version |
Description: Subset implies subset of subspace sum. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shless | ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 +ℋ 𝐶) ⊆ (𝐵 +ℋ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrexv 4065 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐶 𝑥 = (𝑦 +ℎ 𝑧) → ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝑥 = (𝑦 +ℎ 𝑧))) | |
2 | 1 | adantl 481 | . . 3 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐶 𝑥 = (𝑦 +ℎ 𝑧) → ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝑥 = (𝑦 +ℎ 𝑧))) |
3 | simpl1 1190 | . . . 4 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐴 ∈ Sℋ ) | |
4 | simpl3 1192 | . . . 4 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐶 ∈ Sℋ ) | |
5 | shsel 31343 | . . . 4 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) → (𝑥 ∈ (𝐴 +ℋ 𝐶) ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐶 𝑥 = (𝑦 +ℎ 𝑧))) | |
6 | 3, 4, 5 | syl2anc 584 | . . 3 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝑥 ∈ (𝐴 +ℋ 𝐶) ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐶 𝑥 = (𝑦 +ℎ 𝑧))) |
7 | simpl2 1191 | . . . 4 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → 𝐵 ∈ Sℋ ) | |
8 | shsel 31343 | . . . 4 ⊢ ((𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) → (𝑥 ∈ (𝐵 +ℋ 𝐶) ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝑥 = (𝑦 +ℎ 𝑧))) | |
9 | 7, 4, 8 | syl2anc 584 | . . 3 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝑥 ∈ (𝐵 +ℋ 𝐶) ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝑥 = (𝑦 +ℎ 𝑧))) |
10 | 2, 6, 9 | 3imtr4d 294 | . 2 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝑥 ∈ (𝐴 +ℋ 𝐶) → 𝑥 ∈ (𝐵 +ℋ 𝐶))) |
11 | 10 | ssrdv 4001 | 1 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵) → (𝐴 +ℋ 𝐶) ⊆ (𝐵 +ℋ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 ⊆ wss 3963 (class class class)co 7431 +ℎ cva 30949 Sℋ csh 30957 +ℋ cph 30960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-hilex 31028 ax-hfvadd 31029 ax-hvcom 31030 ax-hvass 31031 ax-hv0cl 31032 ax-hvaddid 31033 ax-hfvmul 31034 ax-hvmulid 31035 ax-hvdistr2 31038 ax-hvmul0 31039 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 df-sub 11492 df-neg 11493 df-grpo 30522 df-ablo 30574 df-hvsub 31000 df-sh 31236 df-shs 31337 |
This theorem is referenced by: shlessi 31406 pjpjpre 31448 chscllem1 31666 chscllem2 31667 chscllem3 31668 |
Copyright terms: Public domain | W3C validator |