Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigagenss2 Structured version   Visualization version   GIF version

Theorem sigagenss2 34235
Description: Sufficient condition for inclusion of sigma-algebras. This is used to prove equality of sigma-algebras. (Contributed by Thierry Arnoux, 10-Oct-2017.)
Assertion
Ref Expression
sigagenss2 (( 𝐴 = 𝐵𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵𝑉) → (sigaGen‘𝐴) ⊆ (sigaGen‘𝐵))

Proof of Theorem sigagenss2
StepHypRef Expression
1 sigagensiga 34226 . . . 4 (𝐵𝑉 → (sigaGen‘𝐵) ∈ (sigAlgebra‘ 𝐵))
213ad2ant3 1135 . . 3 (( 𝐴 = 𝐵𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵𝑉) → (sigaGen‘𝐵) ∈ (sigAlgebra‘ 𝐵))
3 simp1 1136 . . . 4 (( 𝐴 = 𝐵𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵𝑉) → 𝐴 = 𝐵)
43fveq2d 6835 . . 3 (( 𝐴 = 𝐵𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵𝑉) → (sigAlgebra‘ 𝐴) = (sigAlgebra‘ 𝐵))
52, 4eleqtrrd 2836 . 2 (( 𝐴 = 𝐵𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵𝑉) → (sigaGen‘𝐵) ∈ (sigAlgebra‘ 𝐴))
6 simp2 1137 . 2 (( 𝐴 = 𝐵𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵𝑉) → 𝐴 ⊆ (sigaGen‘𝐵))
7 sigagenss 34234 . 2 (((sigaGen‘𝐵) ∈ (sigAlgebra‘ 𝐴) ∧ 𝐴 ⊆ (sigaGen‘𝐵)) → (sigaGen‘𝐴) ⊆ (sigaGen‘𝐵))
85, 6, 7syl2anc 584 1 (( 𝐴 = 𝐵𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵𝑉) → (sigaGen‘𝐴) ⊆ (sigaGen‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2113  wss 3898   cuni 4860  cfv 6489  sigAlgebracsiga 34193  sigaGencsigagen 34223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6445  df-fun 6491  df-fv 6497  df-siga 34194  df-sigagen 34224
This theorem is referenced by:  sxbrsigalem3  34357  sxbrsigalem1  34370  sxbrsigalem2  34371  sxbrsigalem4  34372  sxbrsigalem5  34373  sxbrsiga  34375
  Copyright terms: Public domain W3C validator