![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigagenss2 | Structured version Visualization version GIF version |
Description: Sufficient condition for inclusion of sigma-algebras. This is used to prove equality of sigma-algebras. (Contributed by Thierry Arnoux, 10-Oct-2017.) |
Ref | Expression |
---|---|
sigagenss2 | ⊢ ((∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵 ∈ 𝑉) → (sigaGen‘𝐴) ⊆ (sigaGen‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sigagensiga 32804 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (sigaGen‘𝐵) ∈ (sigAlgebra‘∪ 𝐵)) | |
2 | 1 | 3ad2ant3 1136 | . . 3 ⊢ ((∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵 ∈ 𝑉) → (sigaGen‘𝐵) ∈ (sigAlgebra‘∪ 𝐵)) |
3 | simp1 1137 | . . . 4 ⊢ ((∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵 ∈ 𝑉) → ∪ 𝐴 = ∪ 𝐵) | |
4 | 3 | fveq2d 6850 | . . 3 ⊢ ((∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵 ∈ 𝑉) → (sigAlgebra‘∪ 𝐴) = (sigAlgebra‘∪ 𝐵)) |
5 | 2, 4 | eleqtrrd 2837 | . 2 ⊢ ((∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵 ∈ 𝑉) → (sigaGen‘𝐵) ∈ (sigAlgebra‘∪ 𝐴)) |
6 | simp2 1138 | . 2 ⊢ ((∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵 ∈ 𝑉) → 𝐴 ⊆ (sigaGen‘𝐵)) | |
7 | sigagenss 32812 | . 2 ⊢ (((sigaGen‘𝐵) ∈ (sigAlgebra‘∪ 𝐴) ∧ 𝐴 ⊆ (sigaGen‘𝐵)) → (sigaGen‘𝐴) ⊆ (sigaGen‘𝐵)) | |
8 | 5, 6, 7 | syl2anc 585 | 1 ⊢ ((∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵 ∈ 𝑉) → (sigaGen‘𝐴) ⊆ (sigaGen‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ⊆ wss 3914 ∪ cuni 4869 ‘cfv 6500 sigAlgebracsiga 32771 sigaGencsigagen 32801 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-int 4912 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-iota 6452 df-fun 6502 df-fv 6508 df-siga 32772 df-sigagen 32802 |
This theorem is referenced by: sxbrsigalem3 32936 sxbrsigalem1 32949 sxbrsigalem2 32950 sxbrsigalem4 32951 sxbrsigalem5 32952 sxbrsiga 32954 |
Copyright terms: Public domain | W3C validator |