![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigagenss2 | Structured version Visualization version GIF version |
Description: Sufficient condition for inclusion of sigma-algebras. This is used to prove equality of sigma-algebras. (Contributed by Thierry Arnoux, 10-Oct-2017.) |
Ref | Expression |
---|---|
sigagenss2 | ⊢ ((∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵 ∈ 𝑉) → (sigaGen‘𝐴) ⊆ (sigaGen‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sigagensiga 33985 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (sigaGen‘𝐵) ∈ (sigAlgebra‘∪ 𝐵)) | |
2 | 1 | 3ad2ant3 1132 | . . 3 ⊢ ((∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵 ∈ 𝑉) → (sigaGen‘𝐵) ∈ (sigAlgebra‘∪ 𝐵)) |
3 | simp1 1133 | . . . 4 ⊢ ((∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵 ∈ 𝑉) → ∪ 𝐴 = ∪ 𝐵) | |
4 | 3 | fveq2d 6895 | . . 3 ⊢ ((∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵 ∈ 𝑉) → (sigAlgebra‘∪ 𝐴) = (sigAlgebra‘∪ 𝐵)) |
5 | 2, 4 | eleqtrrd 2829 | . 2 ⊢ ((∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵 ∈ 𝑉) → (sigaGen‘𝐵) ∈ (sigAlgebra‘∪ 𝐴)) |
6 | simp2 1134 | . 2 ⊢ ((∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵 ∈ 𝑉) → 𝐴 ⊆ (sigaGen‘𝐵)) | |
7 | sigagenss 33993 | . 2 ⊢ (((sigaGen‘𝐵) ∈ (sigAlgebra‘∪ 𝐴) ∧ 𝐴 ⊆ (sigaGen‘𝐵)) → (sigaGen‘𝐴) ⊆ (sigaGen‘𝐵)) | |
8 | 5, 6, 7 | syl2anc 582 | 1 ⊢ ((∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵 ∈ 𝑉) → (sigaGen‘𝐴) ⊆ (sigaGen‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ⊆ wss 3947 ∪ cuni 4906 ‘cfv 6544 sigAlgebracsiga 33952 sigaGencsigagen 33982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-int 4948 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-iota 6496 df-fun 6546 df-fv 6552 df-siga 33953 df-sigagen 33983 |
This theorem is referenced by: sxbrsigalem3 34117 sxbrsigalem1 34130 sxbrsigalem2 34131 sxbrsigalem4 34132 sxbrsigalem5 34133 sxbrsiga 34135 |
Copyright terms: Public domain | W3C validator |