Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigagenss2 Structured version   Visualization version   GIF version

Theorem sigagenss2 32118
Description: Sufficient condition for inclusion of sigma-algebras. This is used to prove equality of sigma-algebras. (Contributed by Thierry Arnoux, 10-Oct-2017.)
Assertion
Ref Expression
sigagenss2 (( 𝐴 = 𝐵𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵𝑉) → (sigaGen‘𝐴) ⊆ (sigaGen‘𝐵))

Proof of Theorem sigagenss2
StepHypRef Expression
1 sigagensiga 32109 . . . 4 (𝐵𝑉 → (sigaGen‘𝐵) ∈ (sigAlgebra‘ 𝐵))
213ad2ant3 1134 . . 3 (( 𝐴 = 𝐵𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵𝑉) → (sigaGen‘𝐵) ∈ (sigAlgebra‘ 𝐵))
3 simp1 1135 . . . 4 (( 𝐴 = 𝐵𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵𝑉) → 𝐴 = 𝐵)
43fveq2d 6778 . . 3 (( 𝐴 = 𝐵𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵𝑉) → (sigAlgebra‘ 𝐴) = (sigAlgebra‘ 𝐵))
52, 4eleqtrrd 2842 . 2 (( 𝐴 = 𝐵𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵𝑉) → (sigaGen‘𝐵) ∈ (sigAlgebra‘ 𝐴))
6 simp2 1136 . 2 (( 𝐴 = 𝐵𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵𝑉) → 𝐴 ⊆ (sigaGen‘𝐵))
7 sigagenss 32117 . 2 (((sigaGen‘𝐵) ∈ (sigAlgebra‘ 𝐴) ∧ 𝐴 ⊆ (sigaGen‘𝐵)) → (sigaGen‘𝐴) ⊆ (sigaGen‘𝐵))
85, 6, 7syl2anc 584 1 (( 𝐴 = 𝐵𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵𝑉) → (sigaGen‘𝐴) ⊆ (sigaGen‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  wss 3887   cuni 4839  cfv 6433  sigAlgebracsiga 32076  sigaGencsigagen 32106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-siga 32077  df-sigagen 32107
This theorem is referenced by:  sxbrsigalem3  32239  sxbrsigalem1  32252  sxbrsigalem2  32253  sxbrsigalem4  32254  sxbrsigalem5  32255  sxbrsiga  32257
  Copyright terms: Public domain W3C validator