| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sigagenss2 | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for inclusion of sigma-algebras. This is used to prove equality of sigma-algebras. (Contributed by Thierry Arnoux, 10-Oct-2017.) |
| Ref | Expression |
|---|---|
| sigagenss2 | ⊢ ((∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵 ∈ 𝑉) → (sigaGen‘𝐴) ⊆ (sigaGen‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sigagensiga 34177 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (sigaGen‘𝐵) ∈ (sigAlgebra‘∪ 𝐵)) | |
| 2 | 1 | 3ad2ant3 1135 | . . 3 ⊢ ((∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵 ∈ 𝑉) → (sigaGen‘𝐵) ∈ (sigAlgebra‘∪ 𝐵)) |
| 3 | simp1 1136 | . . . 4 ⊢ ((∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵 ∈ 𝑉) → ∪ 𝐴 = ∪ 𝐵) | |
| 4 | 3 | fveq2d 6885 | . . 3 ⊢ ((∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵 ∈ 𝑉) → (sigAlgebra‘∪ 𝐴) = (sigAlgebra‘∪ 𝐵)) |
| 5 | 2, 4 | eleqtrrd 2838 | . 2 ⊢ ((∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵 ∈ 𝑉) → (sigaGen‘𝐵) ∈ (sigAlgebra‘∪ 𝐴)) |
| 6 | simp2 1137 | . 2 ⊢ ((∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵 ∈ 𝑉) → 𝐴 ⊆ (sigaGen‘𝐵)) | |
| 7 | sigagenss 34185 | . 2 ⊢ (((sigaGen‘𝐵) ∈ (sigAlgebra‘∪ 𝐴) ∧ 𝐴 ⊆ (sigaGen‘𝐵)) → (sigaGen‘𝐴) ⊆ (sigaGen‘𝐵)) | |
| 8 | 5, 6, 7 | syl2anc 584 | 1 ⊢ ((∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵 ∈ 𝑉) → (sigaGen‘𝐴) ⊆ (sigaGen‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 ∪ cuni 4888 ‘cfv 6536 sigAlgebracsiga 34144 sigaGencsigagen 34174 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-siga 34145 df-sigagen 34175 |
| This theorem is referenced by: sxbrsigalem3 34309 sxbrsigalem1 34322 sxbrsigalem2 34323 sxbrsigalem4 34324 sxbrsigalem5 34325 sxbrsiga 34327 |
| Copyright terms: Public domain | W3C validator |