![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigagenss2 | Structured version Visualization version GIF version |
Description: Sufficient condition for inclusion of sigma-algebras. This is used to prove equality of sigma-algebras. (Contributed by Thierry Arnoux, 10-Oct-2017.) |
Ref | Expression |
---|---|
sigagenss2 | ⊢ ((∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵 ∈ 𝑉) → (sigaGen‘𝐴) ⊆ (sigaGen‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sigagensiga 34105 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (sigaGen‘𝐵) ∈ (sigAlgebra‘∪ 𝐵)) | |
2 | 1 | 3ad2ant3 1135 | . . 3 ⊢ ((∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵 ∈ 𝑉) → (sigaGen‘𝐵) ∈ (sigAlgebra‘∪ 𝐵)) |
3 | simp1 1136 | . . . 4 ⊢ ((∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵 ∈ 𝑉) → ∪ 𝐴 = ∪ 𝐵) | |
4 | 3 | fveq2d 6924 | . . 3 ⊢ ((∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵 ∈ 𝑉) → (sigAlgebra‘∪ 𝐴) = (sigAlgebra‘∪ 𝐵)) |
5 | 2, 4 | eleqtrrd 2847 | . 2 ⊢ ((∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵 ∈ 𝑉) → (sigaGen‘𝐵) ∈ (sigAlgebra‘∪ 𝐴)) |
6 | simp2 1137 | . 2 ⊢ ((∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵 ∈ 𝑉) → 𝐴 ⊆ (sigaGen‘𝐵)) | |
7 | sigagenss 34113 | . 2 ⊢ (((sigaGen‘𝐵) ∈ (sigAlgebra‘∪ 𝐴) ∧ 𝐴 ⊆ (sigaGen‘𝐵)) → (sigaGen‘𝐴) ⊆ (sigaGen‘𝐵)) | |
8 | 5, 6, 7 | syl2anc 583 | 1 ⊢ ((∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵 ∈ 𝑉) → (sigaGen‘𝐴) ⊆ (sigaGen‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ∪ cuni 4931 ‘cfv 6573 sigAlgebracsiga 34072 sigaGencsigagen 34102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-siga 34073 df-sigagen 34103 |
This theorem is referenced by: sxbrsigalem3 34237 sxbrsigalem1 34250 sxbrsigalem2 34251 sxbrsigalem4 34252 sxbrsigalem5 34253 sxbrsiga 34255 |
Copyright terms: Public domain | W3C validator |