Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brsigasspwrn Structured version   Visualization version   GIF version

Theorem brsigasspwrn 31889
Description: The Borel Algebra is a set of subsets of the real numbers. (Contributed by Thierry Arnoux, 19-Jan-2017.)
Assertion
Ref Expression
brsigasspwrn 𝔅 ⊆ 𝒫 ℝ

Proof of Theorem brsigasspwrn
StepHypRef Expression
1 brsigarn 31888 . 2 𝔅 ∈ (sigAlgebra‘ℝ)
2 sigasspw 31820 . 2 (𝔅 ∈ (sigAlgebra‘ℝ) → 𝔅 ⊆ 𝒫 ℝ)
31, 2ax-mp 5 1 𝔅 ⊆ 𝒫 ℝ
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  wss 3881  𝒫 cpw 4528  cfv 6398  cr 10753  sigAlgebracsiga 31812  𝔅cbrsiga 31885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542  ax-cnex 10810  ax-resscn 10811  ax-pre-lttri 10828  ax-pre-lttrn 10829
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-op 4563  df-uni 4835  df-int 4875  df-iun 4921  df-br 5069  df-opab 5131  df-mpt 5151  df-id 5470  df-po 5483  df-so 5484  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-ov 7235  df-oprab 7236  df-mpo 7237  df-1st 7780  df-2nd 7781  df-er 8412  df-en 8648  df-dom 8649  df-sdom 8650  df-pnf 10894  df-mnf 10895  df-xr 10896  df-ltxr 10897  df-le 10898  df-ioo 12964  df-topgen 16973  df-bases 21867  df-siga 31813  df-sigagen 31843  df-brsiga 31886
This theorem is referenced by:  br2base  31972  sxbrsigalem2  31989  sxbrsiga  31993
  Copyright terms: Public domain W3C validator