| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sigaclcu | Structured version Visualization version GIF version | ||
| Description: A sigma-algebra is closed under countable union. (Contributed by Thierry Arnoux, 26-Dec-2016.) |
| Ref | Expression |
|---|---|
| sigaclcu | ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ∧ 𝐴 ≼ ω) → ∪ 𝐴 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ∧ 𝐴 ≼ ω) → 𝐴 ∈ 𝒫 𝑆) | |
| 2 | isrnsiga 34121 | . . . . 5 ⊢ (𝑆 ∈ ∪ ran sigAlgebra ↔ (𝑆 ∈ V ∧ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))))) | |
| 3 | 2 | simprbi 496 | . . . 4 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)))) |
| 4 | simpr3 1197 | . . . . 5 ⊢ ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))) → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)) | |
| 5 | 4 | exlimiv 1931 | . . . 4 ⊢ (∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))) → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)) |
| 6 | 3, 5 | syl 17 | . . 3 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)) |
| 7 | 6 | 3ad2ant1 1133 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ∧ 𝐴 ≼ ω) → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)) |
| 8 | simp3 1138 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ∧ 𝐴 ≼ ω) → 𝐴 ≼ ω) | |
| 9 | breq1 5094 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ≼ ω ↔ 𝐴 ≼ ω)) | |
| 10 | unieq 4870 | . . . . 5 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
| 11 | 10 | eleq1d 2816 | . . . 4 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ 𝑆 ↔ ∪ 𝐴 ∈ 𝑆)) |
| 12 | 9, 11 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆) ↔ (𝐴 ≼ ω → ∪ 𝐴 ∈ 𝑆))) |
| 13 | 12 | rspcv 3573 | . 2 ⊢ (𝐴 ∈ 𝒫 𝑆 → (∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆) → (𝐴 ≼ ω → ∪ 𝐴 ∈ 𝑆))) |
| 14 | 1, 7, 8, 13 | syl3c 66 | 1 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ∧ 𝐴 ≼ ω) → ∪ 𝐴 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ∖ cdif 3899 ⊆ wss 3902 𝒫 cpw 4550 ∪ cuni 4859 class class class wbr 5091 ran crn 5617 ωcom 7796 ≼ cdom 8867 sigAlgebracsiga 34116 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 df-siga 34117 |
| This theorem is referenced by: sigaclcuni 34126 sigaclfu 34127 sigaclcu2 34128 sigainb 34144 elsigagen2 34156 sigaldsys 34167 measinb 34229 measres 34230 measdivcst 34232 measdivcstALTV 34233 imambfm 34270 totprobd 34434 dstrvprob 34480 |
| Copyright terms: Public domain | W3C validator |