Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigaclcu Structured version   Visualization version   GIF version

Theorem sigaclcu 34114
Description: A sigma-algebra is closed under countable union. (Contributed by Thierry Arnoux, 26-Dec-2016.)
Assertion
Ref Expression
sigaclcu ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆𝐴 ≼ ω) → 𝐴𝑆)

Proof of Theorem sigaclcu
Dummy variables 𝑜 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . 2 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆𝐴 ≼ ω) → 𝐴 ∈ 𝒫 𝑆)
2 isrnsiga 34110 . . . . 5 (𝑆 ran sigAlgebra ↔ (𝑆 ∈ V ∧ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
32simprbi 496 . . . 4 (𝑆 ran sigAlgebra → ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
4 simpr3 1197 . . . . 5 ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))
54exlimiv 1930 . . . 4 (∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))
63, 5syl 17 . . 3 (𝑆 ran sigAlgebra → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))
763ad2ant1 1133 . 2 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆𝐴 ≼ ω) → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))
8 simp3 1138 . 2 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆𝐴 ≼ ω) → 𝐴 ≼ ω)
9 breq1 5113 . . . 4 (𝑥 = 𝐴 → (𝑥 ≼ ω ↔ 𝐴 ≼ ω))
10 unieq 4885 . . . . 5 (𝑥 = 𝐴 𝑥 = 𝐴)
1110eleq1d 2814 . . . 4 (𝑥 = 𝐴 → ( 𝑥𝑆 𝐴𝑆))
129, 11imbi12d 344 . . 3 (𝑥 = 𝐴 → ((𝑥 ≼ ω → 𝑥𝑆) ↔ (𝐴 ≼ ω → 𝐴𝑆)))
1312rspcv 3587 . 2 (𝐴 ∈ 𝒫 𝑆 → (∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆) → (𝐴 ≼ ω → 𝐴𝑆)))
141, 7, 8, 13syl3c 66 1 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆𝐴 ≼ ω) → 𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3045  Vcvv 3450  cdif 3914  wss 3917  𝒫 cpw 4566   cuni 4874   class class class wbr 5110  ran crn 5642  ωcom 7845  cdom 8919  sigAlgebracsiga 34105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522  df-siga 34106
This theorem is referenced by:  sigaclcuni  34115  sigaclfu  34116  sigaclcu2  34117  sigainb  34133  elsigagen2  34145  sigaldsys  34156  measinb  34218  measres  34219  measdivcst  34221  measdivcstALTV  34222  imambfm  34260  totprobd  34424  dstrvprob  34470
  Copyright terms: Public domain W3C validator