| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sigaclcu | Structured version Visualization version GIF version | ||
| Description: A sigma-algebra is closed under countable union. (Contributed by Thierry Arnoux, 26-Dec-2016.) |
| Ref | Expression |
|---|---|
| sigaclcu | ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ∧ 𝐴 ≼ ω) → ∪ 𝐴 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ∧ 𝐴 ≼ ω) → 𝐴 ∈ 𝒫 𝑆) | |
| 2 | isrnsiga 34079 | . . . . 5 ⊢ (𝑆 ∈ ∪ ran sigAlgebra ↔ (𝑆 ∈ V ∧ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))))) | |
| 3 | 2 | simprbi 496 | . . . 4 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)))) |
| 4 | simpr3 1197 | . . . . 5 ⊢ ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))) → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)) | |
| 5 | 4 | exlimiv 1930 | . . . 4 ⊢ (∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))) → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)) |
| 6 | 3, 5 | syl 17 | . . 3 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)) |
| 7 | 6 | 3ad2ant1 1133 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ∧ 𝐴 ≼ ω) → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)) |
| 8 | simp3 1138 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ∧ 𝐴 ≼ ω) → 𝐴 ≼ ω) | |
| 9 | breq1 5098 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ≼ ω ↔ 𝐴 ≼ ω)) | |
| 10 | unieq 4872 | . . . . 5 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
| 11 | 10 | eleq1d 2813 | . . . 4 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ 𝑆 ↔ ∪ 𝐴 ∈ 𝑆)) |
| 12 | 9, 11 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆) ↔ (𝐴 ≼ ω → ∪ 𝐴 ∈ 𝑆))) |
| 13 | 12 | rspcv 3575 | . 2 ⊢ (𝐴 ∈ 𝒫 𝑆 → (∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆) → (𝐴 ≼ ω → ∪ 𝐴 ∈ 𝑆))) |
| 14 | 1, 7, 8, 13 | syl3c 66 | 1 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆 ∧ 𝐴 ≼ ω) → ∪ 𝐴 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3044 Vcvv 3438 ∖ cdif 3902 ⊆ wss 3905 𝒫 cpw 4553 ∪ cuni 4861 class class class wbr 5095 ran crn 5624 ωcom 7806 ≼ cdom 8877 sigAlgebracsiga 34074 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-fv 6494 df-siga 34075 |
| This theorem is referenced by: sigaclcuni 34084 sigaclfu 34085 sigaclcu2 34086 sigainb 34102 elsigagen2 34114 sigaldsys 34125 measinb 34187 measres 34188 measdivcst 34190 measdivcstALTV 34191 imambfm 34229 totprobd 34393 dstrvprob 34439 |
| Copyright terms: Public domain | W3C validator |