Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigaclcu Structured version   Visualization version   GIF version

Theorem sigaclcu 34081
Description: A sigma-algebra is closed under countable union. (Contributed by Thierry Arnoux, 26-Dec-2016.)
Assertion
Ref Expression
sigaclcu ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆𝐴 ≼ ω) → 𝐴𝑆)

Proof of Theorem sigaclcu
Dummy variables 𝑜 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . 2 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆𝐴 ≼ ω) → 𝐴 ∈ 𝒫 𝑆)
2 isrnsiga 34077 . . . . 5 (𝑆 ran sigAlgebra ↔ (𝑆 ∈ V ∧ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
32simprbi 496 . . . 4 (𝑆 ran sigAlgebra → ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
4 simpr3 1196 . . . . 5 ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))
54exlimiv 1929 . . . 4 (∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))
63, 5syl 17 . . 3 (𝑆 ran sigAlgebra → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))
763ad2ant1 1133 . 2 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆𝐴 ≼ ω) → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))
8 simp3 1138 . 2 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆𝐴 ≼ ω) → 𝐴 ≼ ω)
9 breq1 5169 . . . 4 (𝑥 = 𝐴 → (𝑥 ≼ ω ↔ 𝐴 ≼ ω))
10 unieq 4942 . . . . 5 (𝑥 = 𝐴 𝑥 = 𝐴)
1110eleq1d 2829 . . . 4 (𝑥 = 𝐴 → ( 𝑥𝑆 𝐴𝑆))
129, 11imbi12d 344 . . 3 (𝑥 = 𝐴 → ((𝑥 ≼ ω → 𝑥𝑆) ↔ (𝐴 ≼ ω → 𝐴𝑆)))
1312rspcv 3631 . 2 (𝐴 ∈ 𝒫 𝑆 → (∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆) → (𝐴 ≼ ω → 𝐴𝑆)))
141, 7, 8, 13syl3c 66 1 ((𝑆 ran sigAlgebra ∧ 𝐴 ∈ 𝒫 𝑆𝐴 ≼ ω) → 𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wral 3067  Vcvv 3488  cdif 3973  wss 3976  𝒫 cpw 4622   cuni 4931   class class class wbr 5166  ran crn 5701  ωcom 7903  cdom 9001  sigAlgebracsiga 34072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581  df-siga 34073
This theorem is referenced by:  sigaclcuni  34082  sigaclfu  34083  sigaclcu2  34084  sigainb  34100  elsigagen2  34112  sigaldsys  34123  measinb  34185  measres  34186  measdivcst  34188  measdivcstALTV  34189  imambfm  34227  totprobd  34391  dstrvprob  34436
  Copyright terms: Public domain W3C validator