MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulmarep1gsum2 Structured version   Visualization version   GIF version

Theorem mulmarep1gsum2 22512
Description: The sum of element by element multiplications of a matrix with an identity matrix with a column replaced by a vector. (Contributed by AV, 18-Feb-2019.) (Revised by AV, 26-Feb-2019.)
Hypotheses
Ref Expression
marepvcl.a 𝐴 = (𝑁 Mat 𝑅)
marepvcl.b 𝐵 = (Base‘𝐴)
marepvcl.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
ma1repvcl.1 1 = (1r𝐴)
mulmarep1el.0 0 = (0g𝑅)
mulmarep1el.e 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)
mulmarep1gsum2.x × = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
Assertion
Ref Expression
mulmarep1gsum2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
Distinct variable groups:   𝐵,𝑙   𝐶,𝑙   𝐼,𝑙   𝐽,𝑙   𝐾,𝑙   𝑁,𝑙   𝑅,𝑙   𝑉,𝑙   𝑋,𝑙   0 ,𝑙   𝐴,𝑙   𝑍,𝑙   × ,𝑙
Allowed substitution hints:   1 (𝑙)   𝐸(𝑙)

Proof of Theorem mulmarep1gsum2
StepHypRef Expression
1 simp1 1136 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → 𝑅 ∈ Ring)
21adantr 480 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝑙𝑁) → 𝑅 ∈ Ring)
3 simpl2 1193 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝑙𝑁) → (𝑋𝐵𝐶𝑉𝐾𝑁))
4 simp1 1136 . . . . . . . . . . . . 13 ((𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍) → 𝐼𝑁)
543ad2ant3 1135 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → 𝐼𝑁)
65adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝑙𝑁) → 𝐼𝑁)
7 simpl32 1256 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝑙𝑁) → 𝐽𝑁)
8 simpr 484 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝑙𝑁) → 𝑙𝑁)
96, 7, 83jca 1128 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝑙𝑁) → (𝐼𝑁𝐽𝑁𝑙𝑁))
102, 3, 93jca 1128 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝑙𝑁) → (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝑙𝑁)))
1110adantll 714 . . . . . . . 8 (((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) ∧ 𝑙𝑁) → (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝑙𝑁)))
12 marepvcl.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
13 marepvcl.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
14 marepvcl.v . . . . . . . . 9 𝑉 = ((Base‘𝑅) ↑m 𝑁)
15 ma1repvcl.1 . . . . . . . . 9 1 = (1r𝐴)
16 mulmarep1el.0 . . . . . . . . 9 0 = (0g𝑅)
17 mulmarep1el.e . . . . . . . . 9 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)
1812, 13, 14, 15, 16, 17mulmarep1el 22510 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝑙𝑁)) → ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)) = if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 )))
1911, 18syl 17 . . . . . . 7 (((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) ∧ 𝑙𝑁) → ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)) = if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 )))
20 iftrue 4506 . . . . . . . . 9 (𝐽 = 𝐾 → if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 )) = ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)))
2120adantr 480 . . . . . . . 8 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 )) = ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)))
2221adantr 480 . . . . . . 7 (((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) ∧ 𝑙𝑁) → if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 )) = ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)))
2319, 22eqtrd 2770 . . . . . 6 (((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) ∧ 𝑙𝑁) → ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)) = ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)))
2423mpteq2dva 5214 . . . . 5 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽))) = (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙))))
2524oveq2d 7421 . . . 4 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)))))
26 fveq1 6875 . . . . . . . . 9 ((𝑋 × 𝐶) = 𝑍 → ((𝑋 × 𝐶)‘𝐼) = (𝑍𝐼))
2726eqcomd 2741 . . . . . . . 8 ((𝑋 × 𝐶) = 𝑍 → (𝑍𝐼) = ((𝑋 × 𝐶)‘𝐼))
28273ad2ant3 1135 . . . . . . 7 ((𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍) → (𝑍𝐼) = ((𝑋 × 𝐶)‘𝐼))
29283ad2ant3 1135 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → (𝑍𝐼) = ((𝑋 × 𝐶)‘𝐼))
3029adantl 481 . . . . 5 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → (𝑍𝐼) = ((𝑋 × 𝐶)‘𝐼))
31 mulmarep1gsum2.x . . . . . 6 × = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
32 eqid 2735 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
33 eqid 2735 . . . . . 6 (.r𝑅) = (.r𝑅)
341adantl 481 . . . . . 6 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → 𝑅 ∈ Ring)
3512, 13matrcl 22350 . . . . . . . . . 10 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
3635simpld 494 . . . . . . . . 9 (𝑋𝐵𝑁 ∈ Fin)
37363ad2ant1 1133 . . . . . . . 8 ((𝑋𝐵𝐶𝑉𝐾𝑁) → 𝑁 ∈ Fin)
38373ad2ant2 1134 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → 𝑁 ∈ Fin)
3938adantl 481 . . . . . 6 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → 𝑁 ∈ Fin)
4013eleq2i 2826 . . . . . . . . . 10 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
4140biimpi 216 . . . . . . . . 9 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
42413ad2ant1 1133 . . . . . . . 8 ((𝑋𝐵𝐶𝑉𝐾𝑁) → 𝑋 ∈ (Base‘𝐴))
43423ad2ant2 1134 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → 𝑋 ∈ (Base‘𝐴))
4443adantl 481 . . . . . 6 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → 𝑋 ∈ (Base‘𝐴))
4514eleq2i 2826 . . . . . . . . . 10 (𝐶𝑉𝐶 ∈ ((Base‘𝑅) ↑m 𝑁))
4645biimpi 216 . . . . . . . . 9 (𝐶𝑉𝐶 ∈ ((Base‘𝑅) ↑m 𝑁))
47463ad2ant2 1134 . . . . . . . 8 ((𝑋𝐵𝐶𝑉𝐾𝑁) → 𝐶 ∈ ((Base‘𝑅) ↑m 𝑁))
48473ad2ant2 1134 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → 𝐶 ∈ ((Base‘𝑅) ↑m 𝑁))
4948adantl 481 . . . . . 6 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → 𝐶 ∈ ((Base‘𝑅) ↑m 𝑁))
505adantl 481 . . . . . 6 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → 𝐼𝑁)
5112, 31, 32, 33, 34, 39, 44, 49, 50mavmulfv 22484 . . . . 5 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → ((𝑋 × 𝐶)‘𝐼) = (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)))))
5230, 51eqtrd 2770 . . . 4 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → (𝑍𝐼) = (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)))))
53 iftrue 4506 . . . . . 6 (𝐽 = 𝐾 → if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)) = (𝑍𝐼))
5453eqcomd 2741 . . . . 5 (𝐽 = 𝐾 → (𝑍𝐼) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
5554adantr 480 . . . 4 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → (𝑍𝐼) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
5625, 52, 553eqtr2d 2776 . . 3 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
5756ex 412 . 2 (𝐽 = 𝐾 → ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽))))
581adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽𝐾) → 𝑅 ∈ Ring)
59 simpl2 1193 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽𝐾) → (𝑋𝐵𝐶𝑉𝐾𝑁))
605adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽𝐾) → 𝐼𝑁)
61 simpl32 1256 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽𝐾) → 𝐽𝑁)
62 simpr 484 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽𝐾) → 𝐽𝐾)
6312, 13, 14, 15, 16, 17mulmarep1gsum1 22511 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐽𝐾)) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = (𝐼𝑋𝐽))
6458, 59, 60, 61, 62, 63syl113anc 1384 . . . 4 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽𝐾) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = (𝐼𝑋𝐽))
65 df-ne 2933 . . . . . 6 (𝐽𝐾 ↔ ¬ 𝐽 = 𝐾)
66 iffalse 4509 . . . . . . 7 𝐽 = 𝐾 → if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)) = (𝐼𝑋𝐽))
6766eqcomd 2741 . . . . . 6 𝐽 = 𝐾 → (𝐼𝑋𝐽) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
6865, 67sylbi 217 . . . . 5 (𝐽𝐾 → (𝐼𝑋𝐽) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
6968adantl 481 . . . 4 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽𝐾) → (𝐼𝑋𝐽) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
7064, 69eqtrd 2770 . . 3 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽𝐾) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
7170expcom 413 . 2 (𝐽𝐾 → ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽))))
7257, 71pm2.61ine 3015 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  Vcvv 3459  ifcif 4500  cop 4607  cmpt 5201  cfv 6531  (class class class)co 7405  m cmap 8840  Fincfn 8959  Basecbs 17228  .rcmulr 17272  0gc0g 17453   Σg cgsu 17454  1rcur 20141  Ringcrg 20193   Mat cmat 22345   maVecMul cmvmul 22478   matRepV cmatrepV 22495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-subrg 20530  df-lmod 20819  df-lss 20889  df-sra 21131  df-rgmod 21132  df-dsmm 21692  df-frlm 21707  df-mamu 22329  df-mat 22346  df-mvmul 22479  df-marepv 22497
This theorem is referenced by:  cramerimplem2  22622
  Copyright terms: Public domain W3C validator