MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulmarep1gsum2 Structured version   Visualization version   GIF version

Theorem mulmarep1gsum2 22450
Description: The sum of element by element multiplications of a matrix with an identity matrix with a column replaced by a vector. (Contributed by AV, 18-Feb-2019.) (Revised by AV, 26-Feb-2019.)
Hypotheses
Ref Expression
marepvcl.a 𝐴 = (𝑁 Mat 𝑅)
marepvcl.b 𝐵 = (Base‘𝐴)
marepvcl.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
ma1repvcl.1 1 = (1r𝐴)
mulmarep1el.0 0 = (0g𝑅)
mulmarep1el.e 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)
mulmarep1gsum2.x × = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
Assertion
Ref Expression
mulmarep1gsum2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
Distinct variable groups:   𝐵,𝑙   𝐶,𝑙   𝐼,𝑙   𝐽,𝑙   𝐾,𝑙   𝑁,𝑙   𝑅,𝑙   𝑉,𝑙   𝑋,𝑙   0 ,𝑙   𝐴,𝑙   𝑍,𝑙   × ,𝑙
Allowed substitution hints:   1 (𝑙)   𝐸(𝑙)

Proof of Theorem mulmarep1gsum2
StepHypRef Expression
1 simp1 1134 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → 𝑅 ∈ Ring)
21adantr 480 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝑙𝑁) → 𝑅 ∈ Ring)
3 simpl2 1190 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝑙𝑁) → (𝑋𝐵𝐶𝑉𝐾𝑁))
4 simp1 1134 . . . . . . . . . . . . 13 ((𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍) → 𝐼𝑁)
543ad2ant3 1133 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → 𝐼𝑁)
65adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝑙𝑁) → 𝐼𝑁)
7 simpl32 1253 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝑙𝑁) → 𝐽𝑁)
8 simpr 484 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝑙𝑁) → 𝑙𝑁)
96, 7, 83jca 1126 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝑙𝑁) → (𝐼𝑁𝐽𝑁𝑙𝑁))
102, 3, 93jca 1126 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝑙𝑁) → (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝑙𝑁)))
1110adantll 713 . . . . . . . 8 (((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) ∧ 𝑙𝑁) → (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝑙𝑁)))
12 marepvcl.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
13 marepvcl.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
14 marepvcl.v . . . . . . . . 9 𝑉 = ((Base‘𝑅) ↑m 𝑁)
15 ma1repvcl.1 . . . . . . . . 9 1 = (1r𝐴)
16 mulmarep1el.0 . . . . . . . . 9 0 = (0g𝑅)
17 mulmarep1el.e . . . . . . . . 9 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)
1812, 13, 14, 15, 16, 17mulmarep1el 22448 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝑙𝑁)) → ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)) = if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 )))
1911, 18syl 17 . . . . . . 7 (((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) ∧ 𝑙𝑁) → ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)) = if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 )))
20 iftrue 4530 . . . . . . . . 9 (𝐽 = 𝐾 → if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 )) = ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)))
2120adantr 480 . . . . . . . 8 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 )) = ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)))
2221adantr 480 . . . . . . 7 (((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) ∧ 𝑙𝑁) → if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 )) = ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)))
2319, 22eqtrd 2767 . . . . . 6 (((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) ∧ 𝑙𝑁) → ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)) = ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)))
2423mpteq2dva 5242 . . . . 5 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽))) = (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙))))
2524oveq2d 7430 . . . 4 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)))))
26 fveq1 6890 . . . . . . . . 9 ((𝑋 × 𝐶) = 𝑍 → ((𝑋 × 𝐶)‘𝐼) = (𝑍𝐼))
2726eqcomd 2733 . . . . . . . 8 ((𝑋 × 𝐶) = 𝑍 → (𝑍𝐼) = ((𝑋 × 𝐶)‘𝐼))
28273ad2ant3 1133 . . . . . . 7 ((𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍) → (𝑍𝐼) = ((𝑋 × 𝐶)‘𝐼))
29283ad2ant3 1133 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → (𝑍𝐼) = ((𝑋 × 𝐶)‘𝐼))
3029adantl 481 . . . . 5 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → (𝑍𝐼) = ((𝑋 × 𝐶)‘𝐼))
31 mulmarep1gsum2.x . . . . . 6 × = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
32 eqid 2727 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
33 eqid 2727 . . . . . 6 (.r𝑅) = (.r𝑅)
341adantl 481 . . . . . 6 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → 𝑅 ∈ Ring)
3512, 13matrcl 22286 . . . . . . . . . 10 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
3635simpld 494 . . . . . . . . 9 (𝑋𝐵𝑁 ∈ Fin)
37363ad2ant1 1131 . . . . . . . 8 ((𝑋𝐵𝐶𝑉𝐾𝑁) → 𝑁 ∈ Fin)
38373ad2ant2 1132 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → 𝑁 ∈ Fin)
3938adantl 481 . . . . . 6 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → 𝑁 ∈ Fin)
4013eleq2i 2820 . . . . . . . . . 10 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
4140biimpi 215 . . . . . . . . 9 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
42413ad2ant1 1131 . . . . . . . 8 ((𝑋𝐵𝐶𝑉𝐾𝑁) → 𝑋 ∈ (Base‘𝐴))
43423ad2ant2 1132 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → 𝑋 ∈ (Base‘𝐴))
4443adantl 481 . . . . . 6 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → 𝑋 ∈ (Base‘𝐴))
4514eleq2i 2820 . . . . . . . . . 10 (𝐶𝑉𝐶 ∈ ((Base‘𝑅) ↑m 𝑁))
4645biimpi 215 . . . . . . . . 9 (𝐶𝑉𝐶 ∈ ((Base‘𝑅) ↑m 𝑁))
47463ad2ant2 1132 . . . . . . . 8 ((𝑋𝐵𝐶𝑉𝐾𝑁) → 𝐶 ∈ ((Base‘𝑅) ↑m 𝑁))
48473ad2ant2 1132 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → 𝐶 ∈ ((Base‘𝑅) ↑m 𝑁))
4948adantl 481 . . . . . 6 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → 𝐶 ∈ ((Base‘𝑅) ↑m 𝑁))
505adantl 481 . . . . . 6 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → 𝐼𝑁)
5112, 31, 32, 33, 34, 39, 44, 49, 50mavmulfv 22422 . . . . 5 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → ((𝑋 × 𝐶)‘𝐼) = (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)))))
5230, 51eqtrd 2767 . . . 4 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → (𝑍𝐼) = (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)))))
53 iftrue 4530 . . . . . 6 (𝐽 = 𝐾 → if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)) = (𝑍𝐼))
5453eqcomd 2733 . . . . 5 (𝐽 = 𝐾 → (𝑍𝐼) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
5554adantr 480 . . . 4 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → (𝑍𝐼) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
5625, 52, 553eqtr2d 2773 . . 3 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
5756ex 412 . 2 (𝐽 = 𝐾 → ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽))))
581adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽𝐾) → 𝑅 ∈ Ring)
59 simpl2 1190 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽𝐾) → (𝑋𝐵𝐶𝑉𝐾𝑁))
605adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽𝐾) → 𝐼𝑁)
61 simpl32 1253 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽𝐾) → 𝐽𝑁)
62 simpr 484 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽𝐾) → 𝐽𝐾)
6312, 13, 14, 15, 16, 17mulmarep1gsum1 22449 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐽𝐾)) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = (𝐼𝑋𝐽))
6458, 59, 60, 61, 62, 63syl113anc 1380 . . . 4 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽𝐾) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = (𝐼𝑋𝐽))
65 df-ne 2936 . . . . . 6 (𝐽𝐾 ↔ ¬ 𝐽 = 𝐾)
66 iffalse 4533 . . . . . . 7 𝐽 = 𝐾 → if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)) = (𝐼𝑋𝐽))
6766eqcomd 2733 . . . . . 6 𝐽 = 𝐾 → (𝐼𝑋𝐽) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
6865, 67sylbi 216 . . . . 5 (𝐽𝐾 → (𝐼𝑋𝐽) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
6968adantl 481 . . . 4 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽𝐾) → (𝐼𝑋𝐽) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
7064, 69eqtrd 2767 . . 3 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽𝐾) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
7170expcom 413 . 2 (𝐽𝐾 → ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽))))
7257, 71pm2.61ine 3020 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2935  Vcvv 3469  ifcif 4524  cop 4630  cmpt 5225  cfv 6542  (class class class)co 7414  m cmap 8834  Fincfn 8953  Basecbs 17165  .rcmulr 17219  0gc0g 17406   Σg cgsu 17407  1rcur 20105  Ringcrg 20157   Mat cmat 22281   maVecMul cmvmul 22416   matRepV cmatrepV 22433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-ot 4633  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7677  df-om 7863  df-1st 7985  df-2nd 7986  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8716  df-map 8836  df-ixp 8906  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-fsupp 9376  df-sup 9451  df-oi 9519  df-card 9948  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-nn 12229  df-2 12291  df-3 12292  df-4 12293  df-5 12294  df-6 12295  df-7 12296  df-8 12297  df-9 12298  df-n0 12489  df-z 12575  df-dec 12694  df-uz 12839  df-fz 13503  df-fzo 13646  df-seq 13985  df-hash 14308  df-struct 17101  df-sets 17118  df-slot 17136  df-ndx 17148  df-base 17166  df-ress 17195  df-plusg 17231  df-mulr 17232  df-sca 17234  df-vsca 17235  df-ip 17236  df-tset 17237  df-ple 17238  df-ds 17240  df-hom 17242  df-cco 17243  df-0g 17408  df-gsum 17409  df-prds 17414  df-pws 17416  df-mre 17551  df-mrc 17552  df-acs 17554  df-mgm 18585  df-sgrp 18664  df-mnd 18680  df-mhm 18725  df-submnd 18726  df-grp 18878  df-minusg 18879  df-sbg 18880  df-mulg 19008  df-subg 19062  df-ghm 19152  df-cntz 19252  df-cmn 19721  df-abl 19722  df-mgp 20059  df-rng 20077  df-ur 20106  df-ring 20159  df-subrg 20490  df-lmod 20727  df-lss 20798  df-sra 21040  df-rgmod 21041  df-dsmm 21646  df-frlm 21661  df-mamu 22260  df-mat 22282  df-mvmul 22417  df-marepv 22435
This theorem is referenced by:  cramerimplem2  22560
  Copyright terms: Public domain W3C validator