MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulmarep1gsum2 Structured version   Visualization version   GIF version

Theorem mulmarep1gsum2 21118
Description: The sum of element by element multiplications of a matrix with an identity matrix with a column replaced by a vector. (Contributed by AV, 18-Feb-2019.) (Revised by AV, 26-Feb-2019.)
Hypotheses
Ref Expression
marepvcl.a 𝐴 = (𝑁 Mat 𝑅)
marepvcl.b 𝐵 = (Base‘𝐴)
marepvcl.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
ma1repvcl.1 1 = (1r𝐴)
mulmarep1el.0 0 = (0g𝑅)
mulmarep1el.e 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)
mulmarep1gsum2.x × = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
Assertion
Ref Expression
mulmarep1gsum2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
Distinct variable groups:   𝐵,𝑙   𝐶,𝑙   𝐼,𝑙   𝐽,𝑙   𝐾,𝑙   𝑁,𝑙   𝑅,𝑙   𝑉,𝑙   𝑋,𝑙   0 ,𝑙   𝐴,𝑙   𝑍,𝑙   × ,𝑙
Allowed substitution hints:   1 (𝑙)   𝐸(𝑙)

Proof of Theorem mulmarep1gsum2
StepHypRef Expression
1 simp1 1130 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → 𝑅 ∈ Ring)
21adantr 481 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝑙𝑁) → 𝑅 ∈ Ring)
3 simpl2 1186 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝑙𝑁) → (𝑋𝐵𝐶𝑉𝐾𝑁))
4 simp1 1130 . . . . . . . . . . . . 13 ((𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍) → 𝐼𝑁)
543ad2ant3 1129 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → 𝐼𝑁)
65adantr 481 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝑙𝑁) → 𝐼𝑁)
7 simpl32 1249 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝑙𝑁) → 𝐽𝑁)
8 simpr 485 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝑙𝑁) → 𝑙𝑁)
96, 7, 83jca 1122 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝑙𝑁) → (𝐼𝑁𝐽𝑁𝑙𝑁))
102, 3, 93jca 1122 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝑙𝑁) → (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝑙𝑁)))
1110adantll 710 . . . . . . . 8 (((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) ∧ 𝑙𝑁) → (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝑙𝑁)))
12 marepvcl.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
13 marepvcl.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
14 marepvcl.v . . . . . . . . 9 𝑉 = ((Base‘𝑅) ↑m 𝑁)
15 ma1repvcl.1 . . . . . . . . 9 1 = (1r𝐴)
16 mulmarep1el.0 . . . . . . . . 9 0 = (0g𝑅)
17 mulmarep1el.e . . . . . . . . 9 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)
1812, 13, 14, 15, 16, 17mulmarep1el 21116 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝑙𝑁)) → ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)) = if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 )))
1911, 18syl 17 . . . . . . 7 (((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) ∧ 𝑙𝑁) → ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)) = if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 )))
20 iftrue 4476 . . . . . . . . 9 (𝐽 = 𝐾 → if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 )) = ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)))
2120adantr 481 . . . . . . . 8 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 )) = ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)))
2221adantr 481 . . . . . . 7 (((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) ∧ 𝑙𝑁) → if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 )) = ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)))
2319, 22eqtrd 2861 . . . . . 6 (((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) ∧ 𝑙𝑁) → ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)) = ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)))
2423mpteq2dva 5158 . . . . 5 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽))) = (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙))))
2524oveq2d 7166 . . . 4 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)))))
26 fveq1 6668 . . . . . . . . 9 ((𝑋 × 𝐶) = 𝑍 → ((𝑋 × 𝐶)‘𝐼) = (𝑍𝐼))
2726eqcomd 2832 . . . . . . . 8 ((𝑋 × 𝐶) = 𝑍 → (𝑍𝐼) = ((𝑋 × 𝐶)‘𝐼))
28273ad2ant3 1129 . . . . . . 7 ((𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍) → (𝑍𝐼) = ((𝑋 × 𝐶)‘𝐼))
29283ad2ant3 1129 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → (𝑍𝐼) = ((𝑋 × 𝐶)‘𝐼))
3029adantl 482 . . . . 5 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → (𝑍𝐼) = ((𝑋 × 𝐶)‘𝐼))
31 mulmarep1gsum2.x . . . . . 6 × = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
32 eqid 2826 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
33 eqid 2826 . . . . . 6 (.r𝑅) = (.r𝑅)
341adantl 482 . . . . . 6 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → 𝑅 ∈ Ring)
3512, 13matrcl 20956 . . . . . . . . . 10 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
3635simpld 495 . . . . . . . . 9 (𝑋𝐵𝑁 ∈ Fin)
37363ad2ant1 1127 . . . . . . . 8 ((𝑋𝐵𝐶𝑉𝐾𝑁) → 𝑁 ∈ Fin)
38373ad2ant2 1128 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → 𝑁 ∈ Fin)
3938adantl 482 . . . . . 6 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → 𝑁 ∈ Fin)
4013eleq2i 2909 . . . . . . . . . 10 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
4140biimpi 217 . . . . . . . . 9 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
42413ad2ant1 1127 . . . . . . . 8 ((𝑋𝐵𝐶𝑉𝐾𝑁) → 𝑋 ∈ (Base‘𝐴))
43423ad2ant2 1128 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → 𝑋 ∈ (Base‘𝐴))
4443adantl 482 . . . . . 6 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → 𝑋 ∈ (Base‘𝐴))
4514eleq2i 2909 . . . . . . . . . 10 (𝐶𝑉𝐶 ∈ ((Base‘𝑅) ↑m 𝑁))
4645biimpi 217 . . . . . . . . 9 (𝐶𝑉𝐶 ∈ ((Base‘𝑅) ↑m 𝑁))
47463ad2ant2 1128 . . . . . . . 8 ((𝑋𝐵𝐶𝑉𝐾𝑁) → 𝐶 ∈ ((Base‘𝑅) ↑m 𝑁))
48473ad2ant2 1128 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → 𝐶 ∈ ((Base‘𝑅) ↑m 𝑁))
4948adantl 482 . . . . . 6 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → 𝐶 ∈ ((Base‘𝑅) ↑m 𝑁))
505adantl 482 . . . . . 6 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → 𝐼𝑁)
5112, 31, 32, 33, 34, 39, 44, 49, 50mavmulfv 21090 . . . . 5 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → ((𝑋 × 𝐶)‘𝐼) = (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)))))
5230, 51eqtrd 2861 . . . 4 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → (𝑍𝐼) = (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)))))
53 iftrue 4476 . . . . . 6 (𝐽 = 𝐾 → if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)) = (𝑍𝐼))
5453eqcomd 2832 . . . . 5 (𝐽 = 𝐾 → (𝑍𝐼) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
5554adantr 481 . . . 4 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → (𝑍𝐼) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
5625, 52, 553eqtr2d 2867 . . 3 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
5756ex 413 . 2 (𝐽 = 𝐾 → ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽))))
581adantr 481 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽𝐾) → 𝑅 ∈ Ring)
59 simpl2 1186 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽𝐾) → (𝑋𝐵𝐶𝑉𝐾𝑁))
605adantr 481 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽𝐾) → 𝐼𝑁)
61 simpl32 1249 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽𝐾) → 𝐽𝑁)
62 simpr 485 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽𝐾) → 𝐽𝐾)
6312, 13, 14, 15, 16, 17mulmarep1gsum1 21117 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐽𝐾)) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = (𝐼𝑋𝐽))
6458, 59, 60, 61, 62, 63syl113anc 1376 . . . 4 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽𝐾) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = (𝐼𝑋𝐽))
65 df-ne 3022 . . . . . 6 (𝐽𝐾 ↔ ¬ 𝐽 = 𝐾)
66 iffalse 4479 . . . . . . 7 𝐽 = 𝐾 → if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)) = (𝐼𝑋𝐽))
6766eqcomd 2832 . . . . . 6 𝐽 = 𝐾 → (𝐼𝑋𝐽) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
6865, 67sylbi 218 . . . . 5 (𝐽𝐾 → (𝐼𝑋𝐽) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
6968adantl 482 . . . 4 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽𝐾) → (𝐼𝑋𝐽) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
7064, 69eqtrd 2861 . . 3 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽𝐾) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
7170expcom 414 . 2 (𝐽𝐾 → ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽))))
7257, 71pm2.61ine 3105 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3021  Vcvv 3500  ifcif 4470  cop 4570  cmpt 5143  cfv 6354  (class class class)co 7150  m cmap 8401  Fincfn 8503  Basecbs 16478  .rcmulr 16561  0gc0g 16708   Σg cgsu 16709  1rcur 19187  Ringcrg 19233   Mat cmat 20951   maVecMul cmvmul 21084   matRepV cmatrepV 21101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-ot 4573  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7574  df-1st 7685  df-2nd 7686  df-supp 7827  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8284  df-map 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12888  df-fzo 13029  df-seq 13365  df-hash 13686  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-hom 16584  df-cco 16585  df-0g 16710  df-gsum 16711  df-prds 16716  df-pws 16718  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-mhm 17951  df-submnd 17952  df-grp 18051  df-minusg 18052  df-sbg 18053  df-mulg 18170  df-subg 18221  df-ghm 18301  df-cntz 18392  df-cmn 18844  df-abl 18845  df-mgp 19176  df-ur 19188  df-ring 19235  df-subrg 19469  df-lmod 19572  df-lss 19640  df-sra 19880  df-rgmod 19881  df-dsmm 20811  df-frlm 20826  df-mamu 20930  df-mat 20952  df-mvmul 21085  df-marepv 21103
This theorem is referenced by:  cramerimplem2  21228
  Copyright terms: Public domain W3C validator