MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulmarep1gsum2 Structured version   Visualization version   GIF version

Theorem mulmarep1gsum2 22529
Description: The sum of element by element multiplications of a matrix with an identity matrix with a column replaced by a vector. (Contributed by AV, 18-Feb-2019.) (Revised by AV, 26-Feb-2019.)
Hypotheses
Ref Expression
marepvcl.a 𝐴 = (𝑁 Mat 𝑅)
marepvcl.b 𝐵 = (Base‘𝐴)
marepvcl.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
ma1repvcl.1 1 = (1r𝐴)
mulmarep1el.0 0 = (0g𝑅)
mulmarep1el.e 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)
mulmarep1gsum2.x × = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
Assertion
Ref Expression
mulmarep1gsum2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
Distinct variable groups:   𝐵,𝑙   𝐶,𝑙   𝐼,𝑙   𝐽,𝑙   𝐾,𝑙   𝑁,𝑙   𝑅,𝑙   𝑉,𝑙   𝑋,𝑙   0 ,𝑙   𝐴,𝑙   𝑍,𝑙   × ,𝑙
Allowed substitution hints:   1 (𝑙)   𝐸(𝑙)

Proof of Theorem mulmarep1gsum2
StepHypRef Expression
1 simp1 1136 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → 𝑅 ∈ Ring)
21adantr 480 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝑙𝑁) → 𝑅 ∈ Ring)
3 simpl2 1192 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝑙𝑁) → (𝑋𝐵𝐶𝑉𝐾𝑁))
4 simp1 1136 . . . . . . . . . . . . 13 ((𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍) → 𝐼𝑁)
543ad2ant3 1135 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → 𝐼𝑁)
65adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝑙𝑁) → 𝐼𝑁)
7 simpl32 1255 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝑙𝑁) → 𝐽𝑁)
8 simpr 484 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝑙𝑁) → 𝑙𝑁)
96, 7, 83jca 1128 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝑙𝑁) → (𝐼𝑁𝐽𝑁𝑙𝑁))
102, 3, 93jca 1128 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝑙𝑁) → (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝑙𝑁)))
1110adantll 714 . . . . . . . 8 (((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) ∧ 𝑙𝑁) → (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝑙𝑁)))
12 marepvcl.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
13 marepvcl.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
14 marepvcl.v . . . . . . . . 9 𝑉 = ((Base‘𝑅) ↑m 𝑁)
15 ma1repvcl.1 . . . . . . . . 9 1 = (1r𝐴)
16 mulmarep1el.0 . . . . . . . . 9 0 = (0g𝑅)
17 mulmarep1el.e . . . . . . . . 9 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)
1812, 13, 14, 15, 16, 17mulmarep1el 22527 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝑙𝑁)) → ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)) = if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 )))
1911, 18syl 17 . . . . . . 7 (((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) ∧ 𝑙𝑁) → ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)) = if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 )))
20 iftrue 4511 . . . . . . . . 9 (𝐽 = 𝐾 → if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 )) = ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)))
2120adantr 480 . . . . . . . 8 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 )) = ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)))
2221adantr 480 . . . . . . 7 (((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) ∧ 𝑙𝑁) → if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 )) = ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)))
2319, 22eqtrd 2769 . . . . . 6 (((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) ∧ 𝑙𝑁) → ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)) = ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)))
2423mpteq2dva 5222 . . . . 5 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽))) = (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙))))
2524oveq2d 7429 . . . 4 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)))))
26 fveq1 6885 . . . . . . . . 9 ((𝑋 × 𝐶) = 𝑍 → ((𝑋 × 𝐶)‘𝐼) = (𝑍𝐼))
2726eqcomd 2740 . . . . . . . 8 ((𝑋 × 𝐶) = 𝑍 → (𝑍𝐼) = ((𝑋 × 𝐶)‘𝐼))
28273ad2ant3 1135 . . . . . . 7 ((𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍) → (𝑍𝐼) = ((𝑋 × 𝐶)‘𝐼))
29283ad2ant3 1135 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → (𝑍𝐼) = ((𝑋 × 𝐶)‘𝐼))
3029adantl 481 . . . . 5 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → (𝑍𝐼) = ((𝑋 × 𝐶)‘𝐼))
31 mulmarep1gsum2.x . . . . . 6 × = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
32 eqid 2734 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
33 eqid 2734 . . . . . 6 (.r𝑅) = (.r𝑅)
341adantl 481 . . . . . 6 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → 𝑅 ∈ Ring)
3512, 13matrcl 22365 . . . . . . . . . 10 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
3635simpld 494 . . . . . . . . 9 (𝑋𝐵𝑁 ∈ Fin)
37363ad2ant1 1133 . . . . . . . 8 ((𝑋𝐵𝐶𝑉𝐾𝑁) → 𝑁 ∈ Fin)
38373ad2ant2 1134 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → 𝑁 ∈ Fin)
3938adantl 481 . . . . . 6 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → 𝑁 ∈ Fin)
4013eleq2i 2825 . . . . . . . . . 10 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
4140biimpi 216 . . . . . . . . 9 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
42413ad2ant1 1133 . . . . . . . 8 ((𝑋𝐵𝐶𝑉𝐾𝑁) → 𝑋 ∈ (Base‘𝐴))
43423ad2ant2 1134 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → 𝑋 ∈ (Base‘𝐴))
4443adantl 481 . . . . . 6 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → 𝑋 ∈ (Base‘𝐴))
4514eleq2i 2825 . . . . . . . . . 10 (𝐶𝑉𝐶 ∈ ((Base‘𝑅) ↑m 𝑁))
4645biimpi 216 . . . . . . . . 9 (𝐶𝑉𝐶 ∈ ((Base‘𝑅) ↑m 𝑁))
47463ad2ant2 1134 . . . . . . . 8 ((𝑋𝐵𝐶𝑉𝐾𝑁) → 𝐶 ∈ ((Base‘𝑅) ↑m 𝑁))
48473ad2ant2 1134 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → 𝐶 ∈ ((Base‘𝑅) ↑m 𝑁))
4948adantl 481 . . . . . 6 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → 𝐶 ∈ ((Base‘𝑅) ↑m 𝑁))
505adantl 481 . . . . . 6 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → 𝐼𝑁)
5112, 31, 32, 33, 34, 39, 44, 49, 50mavmulfv 22501 . . . . 5 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → ((𝑋 × 𝐶)‘𝐼) = (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)))))
5230, 51eqtrd 2769 . . . 4 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → (𝑍𝐼) = (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝐶𝑙)))))
53 iftrue 4511 . . . . . 6 (𝐽 = 𝐾 → if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)) = (𝑍𝐼))
5453eqcomd 2740 . . . . 5 (𝐽 = 𝐾 → (𝑍𝐼) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
5554adantr 480 . . . 4 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → (𝑍𝐼) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
5625, 52, 553eqtr2d 2775 . . 3 ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
5756ex 412 . 2 (𝐽 = 𝐾 → ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽))))
581adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽𝐾) → 𝑅 ∈ Ring)
59 simpl2 1192 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽𝐾) → (𝑋𝐵𝐶𝑉𝐾𝑁))
605adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽𝐾) → 𝐼𝑁)
61 simpl32 1255 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽𝐾) → 𝐽𝑁)
62 simpr 484 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽𝐾) → 𝐽𝐾)
6312, 13, 14, 15, 16, 17mulmarep1gsum1 22528 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐽𝐾)) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = (𝐼𝑋𝐽))
6458, 59, 60, 61, 62, 63syl113anc 1383 . . . 4 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽𝐾) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = (𝐼𝑋𝐽))
65 df-ne 2932 . . . . . 6 (𝐽𝐾 ↔ ¬ 𝐽 = 𝐾)
66 iffalse 4514 . . . . . . 7 𝐽 = 𝐾 → if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)) = (𝐼𝑋𝐽))
6766eqcomd 2740 . . . . . 6 𝐽 = 𝐾 → (𝐼𝑋𝐽) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
6865, 67sylbi 217 . . . . 5 (𝐽𝐾 → (𝐼𝑋𝐽) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
6968adantl 481 . . . 4 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽𝐾) → (𝐼𝑋𝐽) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
7064, 69eqtrd 2769 . . 3 (((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽𝐾) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
7170expcom 413 . 2 (𝐽𝐾 → ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽))))
7257, 71pm2.61ine 3014 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → (𝑅 Σg (𝑙𝑁 ↦ ((𝐼𝑋𝑙)(.r𝑅)(𝑙𝐸𝐽)))) = if(𝐽 = 𝐾, (𝑍𝐼), (𝐼𝑋𝐽)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  Vcvv 3463  ifcif 4505  cop 4612  cmpt 5205  cfv 6541  (class class class)co 7413  m cmap 8848  Fincfn 8967  Basecbs 17230  .rcmulr 17275  0gc0g 17456   Σg cgsu 17457  1rcur 20147  Ringcrg 20199   Mat cmat 22360   maVecMul cmvmul 22495   matRepV cmatrepV 22512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-sup 9464  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14353  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17254  df-plusg 17287  df-mulr 17288  df-sca 17290  df-vsca 17291  df-ip 17292  df-tset 17293  df-ple 17294  df-ds 17296  df-hom 17298  df-cco 17299  df-0g 17458  df-gsum 17459  df-prds 17464  df-pws 17466  df-mre 17601  df-mrc 17602  df-acs 17604  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-cmn 19769  df-abl 19770  df-mgp 20107  df-rng 20119  df-ur 20148  df-ring 20201  df-subrg 20539  df-lmod 20829  df-lss 20899  df-sra 21141  df-rgmod 21142  df-dsmm 21707  df-frlm 21722  df-mamu 22344  df-mat 22361  df-mvmul 22496  df-marepv 22514
This theorem is referenced by:  cramerimplem2  22639
  Copyright terms: Public domain W3C validator