Proof of Theorem mulmarep1gsum2
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp1 1137 | . . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → 𝑅 ∈ Ring) | 
| 2 | 1 | adantr 480 | . . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝑙 ∈ 𝑁) → 𝑅 ∈ Ring) | 
| 3 |  | simpl2 1193 | . . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝑙 ∈ 𝑁) → (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) | 
| 4 |  | simp1 1137 | . . . . . . . . . . . . 13
⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍) → 𝐼 ∈ 𝑁) | 
| 5 | 4 | 3ad2ant3 1136 | . . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → 𝐼 ∈ 𝑁) | 
| 6 | 5 | adantr 480 | . . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝑙 ∈ 𝑁) → 𝐼 ∈ 𝑁) | 
| 7 |  | simpl32 1256 | . . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝑙 ∈ 𝑁) → 𝐽 ∈ 𝑁) | 
| 8 |  | simpr 484 | . . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝑙 ∈ 𝑁) → 𝑙 ∈ 𝑁) | 
| 9 | 6, 7, 8 | 3jca 1129 | . . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝑙 ∈ 𝑁) → (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁)) | 
| 10 | 2, 3, 9 | 3jca 1129 | . . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝑙 ∈ 𝑁) → (𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁))) | 
| 11 | 10 | adantll 714 | . . . . . . . 8
⊢ (((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) ∧ 𝑙 ∈ 𝑁) → (𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁))) | 
| 12 |  | marepvcl.a | . . . . . . . . 9
⊢ 𝐴 = (𝑁 Mat 𝑅) | 
| 13 |  | marepvcl.b | . . . . . . . . 9
⊢ 𝐵 = (Base‘𝐴) | 
| 14 |  | marepvcl.v | . . . . . . . . 9
⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) | 
| 15 |  | ma1repvcl.1 | . . . . . . . . 9
⊢  1 =
(1r‘𝐴) | 
| 16 |  | mulmarep1el.0 | . . . . . . . . 9
⊢  0 =
(0g‘𝑅) | 
| 17 |  | mulmarep1el.e | . . . . . . . . 9
⊢ 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾) | 
| 18 | 12, 13, 14, 15, 16, 17 | mulmarep1el 22578 | . . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁)) → ((𝐼𝑋𝑙)(.r‘𝑅)(𝑙𝐸𝐽)) = if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r‘𝑅)(𝐶‘𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 ))) | 
| 19 | 11, 18 | syl 17 | . . . . . . 7
⊢ (((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) ∧ 𝑙 ∈ 𝑁) → ((𝐼𝑋𝑙)(.r‘𝑅)(𝑙𝐸𝐽)) = if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r‘𝑅)(𝐶‘𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 ))) | 
| 20 |  | iftrue 4531 | . . . . . . . . 9
⊢ (𝐽 = 𝐾 → if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r‘𝑅)(𝐶‘𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 )) = ((𝐼𝑋𝑙)(.r‘𝑅)(𝐶‘𝑙))) | 
| 21 | 20 | adantr 480 | . . . . . . . 8
⊢ ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r‘𝑅)(𝐶‘𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 )) = ((𝐼𝑋𝑙)(.r‘𝑅)(𝐶‘𝑙))) | 
| 22 | 21 | adantr 480 | . . . . . . 7
⊢ (((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) ∧ 𝑙 ∈ 𝑁) → if(𝐽 = 𝐾, ((𝐼𝑋𝑙)(.r‘𝑅)(𝐶‘𝑙)), if(𝐽 = 𝑙, (𝐼𝑋𝑙), 0 )) = ((𝐼𝑋𝑙)(.r‘𝑅)(𝐶‘𝑙))) | 
| 23 | 19, 22 | eqtrd 2777 | . . . . . 6
⊢ (((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) ∧ 𝑙 ∈ 𝑁) → ((𝐼𝑋𝑙)(.r‘𝑅)(𝑙𝐸𝐽)) = ((𝐼𝑋𝑙)(.r‘𝑅)(𝐶‘𝑙))) | 
| 24 | 23 | mpteq2dva 5242 | . . . . 5
⊢ ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → (𝑙 ∈ 𝑁 ↦ ((𝐼𝑋𝑙)(.r‘𝑅)(𝑙𝐸𝐽))) = (𝑙 ∈ 𝑁 ↦ ((𝐼𝑋𝑙)(.r‘𝑅)(𝐶‘𝑙)))) | 
| 25 | 24 | oveq2d 7447 | . . . 4
⊢ ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝐼𝑋𝑙)(.r‘𝑅)(𝑙𝐸𝐽)))) = (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝐼𝑋𝑙)(.r‘𝑅)(𝐶‘𝑙))))) | 
| 26 |  | fveq1 6905 | . . . . . . . . 9
⊢ ((𝑋 × 𝐶) = 𝑍 → ((𝑋 × 𝐶)‘𝐼) = (𝑍‘𝐼)) | 
| 27 | 26 | eqcomd 2743 | . . . . . . . 8
⊢ ((𝑋 × 𝐶) = 𝑍 → (𝑍‘𝐼) = ((𝑋 × 𝐶)‘𝐼)) | 
| 28 | 27 | 3ad2ant3 1136 | . . . . . . 7
⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍) → (𝑍‘𝐼) = ((𝑋 × 𝐶)‘𝐼)) | 
| 29 | 28 | 3ad2ant3 1136 | . . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → (𝑍‘𝐼) = ((𝑋 × 𝐶)‘𝐼)) | 
| 30 | 29 | adantl 481 | . . . . 5
⊢ ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → (𝑍‘𝐼) = ((𝑋 × 𝐶)‘𝐼)) | 
| 31 |  | mulmarep1gsum2.x | . . . . . 6
⊢  × =
(𝑅 maVecMul 〈𝑁, 𝑁〉) | 
| 32 |  | eqid 2737 | . . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 33 |  | eqid 2737 | . . . . . 6
⊢
(.r‘𝑅) = (.r‘𝑅) | 
| 34 | 1 | adantl 481 | . . . . . 6
⊢ ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → 𝑅 ∈ Ring) | 
| 35 | 12, 13 | matrcl 22416 | . . . . . . . . . 10
⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) | 
| 36 | 35 | simpld 494 | . . . . . . . . 9
⊢ (𝑋 ∈ 𝐵 → 𝑁 ∈ Fin) | 
| 37 | 36 | 3ad2ant1 1134 | . . . . . . . 8
⊢ ((𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → 𝑁 ∈ Fin) | 
| 38 | 37 | 3ad2ant2 1135 | . . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → 𝑁 ∈ Fin) | 
| 39 | 38 | adantl 481 | . . . . . 6
⊢ ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → 𝑁 ∈ Fin) | 
| 40 | 13 | eleq2i 2833 | . . . . . . . . . 10
⊢ (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ (Base‘𝐴)) | 
| 41 | 40 | biimpi 216 | . . . . . . . . 9
⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘𝐴)) | 
| 42 | 41 | 3ad2ant1 1134 | . . . . . . . 8
⊢ ((𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → 𝑋 ∈ (Base‘𝐴)) | 
| 43 | 42 | 3ad2ant2 1135 | . . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → 𝑋 ∈ (Base‘𝐴)) | 
| 44 | 43 | adantl 481 | . . . . . 6
⊢ ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → 𝑋 ∈ (Base‘𝐴)) | 
| 45 | 14 | eleq2i 2833 | . . . . . . . . . 10
⊢ (𝐶 ∈ 𝑉 ↔ 𝐶 ∈ ((Base‘𝑅) ↑m 𝑁)) | 
| 46 | 45 | biimpi 216 | . . . . . . . . 9
⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ ((Base‘𝑅) ↑m 𝑁)) | 
| 47 | 46 | 3ad2ant2 1135 | . . . . . . . 8
⊢ ((𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → 𝐶 ∈ ((Base‘𝑅) ↑m 𝑁)) | 
| 48 | 47 | 3ad2ant2 1135 | . . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → 𝐶 ∈ ((Base‘𝑅) ↑m 𝑁)) | 
| 49 | 48 | adantl 481 | . . . . . 6
⊢ ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → 𝐶 ∈ ((Base‘𝑅) ↑m 𝑁)) | 
| 50 | 5 | adantl 481 | . . . . . 6
⊢ ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → 𝐼 ∈ 𝑁) | 
| 51 | 12, 31, 32, 33, 34, 39, 44, 49, 50 | mavmulfv 22552 | . . . . 5
⊢ ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → ((𝑋 × 𝐶)‘𝐼) = (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝐼𝑋𝑙)(.r‘𝑅)(𝐶‘𝑙))))) | 
| 52 | 30, 51 | eqtrd 2777 | . . . 4
⊢ ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → (𝑍‘𝐼) = (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝐼𝑋𝑙)(.r‘𝑅)(𝐶‘𝑙))))) | 
| 53 |  | iftrue 4531 | . . . . . 6
⊢ (𝐽 = 𝐾 → if(𝐽 = 𝐾, (𝑍‘𝐼), (𝐼𝑋𝐽)) = (𝑍‘𝐼)) | 
| 54 | 53 | eqcomd 2743 | . . . . 5
⊢ (𝐽 = 𝐾 → (𝑍‘𝐼) = if(𝐽 = 𝐾, (𝑍‘𝐼), (𝐼𝑋𝐽))) | 
| 55 | 54 | adantr 480 | . . . 4
⊢ ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → (𝑍‘𝐼) = if(𝐽 = 𝐾, (𝑍‘𝐼), (𝐼𝑋𝐽))) | 
| 56 | 25, 52, 55 | 3eqtr2d 2783 | . . 3
⊢ ((𝐽 = 𝐾 ∧ (𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍))) → (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝐼𝑋𝑙)(.r‘𝑅)(𝑙𝐸𝐽)))) = if(𝐽 = 𝐾, (𝑍‘𝐼), (𝐼𝑋𝐽))) | 
| 57 | 56 | ex 412 | . 2
⊢ (𝐽 = 𝐾 → ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝐼𝑋𝑙)(.r‘𝑅)(𝑙𝐸𝐽)))) = if(𝐽 = 𝐾, (𝑍‘𝐼), (𝐼𝑋𝐽)))) | 
| 58 | 1 | adantr 480 | . . . . 5
⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽 ≠ 𝐾) → 𝑅 ∈ Ring) | 
| 59 |  | simpl2 1193 | . . . . 5
⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽 ≠ 𝐾) → (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) | 
| 60 | 5 | adantr 480 | . . . . 5
⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽 ≠ 𝐾) → 𝐼 ∈ 𝑁) | 
| 61 |  | simpl32 1256 | . . . . 5
⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽 ≠ 𝐾) → 𝐽 ∈ 𝑁) | 
| 62 |  | simpr 484 | . . . . 5
⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽 ≠ 𝐾) → 𝐽 ≠ 𝐾) | 
| 63 | 12, 13, 14, 15, 16, 17 | mulmarep1gsum1 22579 | . . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐽 ≠ 𝐾)) → (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝐼𝑋𝑙)(.r‘𝑅)(𝑙𝐸𝐽)))) = (𝐼𝑋𝐽)) | 
| 64 | 58, 59, 60, 61, 62, 63 | syl113anc 1384 | . . . 4
⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽 ≠ 𝐾) → (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝐼𝑋𝑙)(.r‘𝑅)(𝑙𝐸𝐽)))) = (𝐼𝑋𝐽)) | 
| 65 |  | df-ne 2941 | . . . . . 6
⊢ (𝐽 ≠ 𝐾 ↔ ¬ 𝐽 = 𝐾) | 
| 66 |  | iffalse 4534 | . . . . . . 7
⊢ (¬
𝐽 = 𝐾 → if(𝐽 = 𝐾, (𝑍‘𝐼), (𝐼𝑋𝐽)) = (𝐼𝑋𝐽)) | 
| 67 | 66 | eqcomd 2743 | . . . . . 6
⊢ (¬
𝐽 = 𝐾 → (𝐼𝑋𝐽) = if(𝐽 = 𝐾, (𝑍‘𝐼), (𝐼𝑋𝐽))) | 
| 68 | 65, 67 | sylbi 217 | . . . . 5
⊢ (𝐽 ≠ 𝐾 → (𝐼𝑋𝐽) = if(𝐽 = 𝐾, (𝑍‘𝐼), (𝐼𝑋𝐽))) | 
| 69 | 68 | adantl 481 | . . . 4
⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽 ≠ 𝐾) → (𝐼𝑋𝐽) = if(𝐽 = 𝐾, (𝑍‘𝐼), (𝐼𝑋𝐽))) | 
| 70 | 64, 69 | eqtrd 2777 | . . 3
⊢ (((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) ∧ 𝐽 ≠ 𝐾) → (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝐼𝑋𝑙)(.r‘𝑅)(𝑙𝐸𝐽)))) = if(𝐽 = 𝐾, (𝑍‘𝐼), (𝐼𝑋𝐽))) | 
| 71 | 70 | expcom 413 | . 2
⊢ (𝐽 ≠ 𝐾 → ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝐼𝑋𝑙)(.r‘𝑅)(𝑙𝐸𝐽)))) = if(𝐽 = 𝐾, (𝑍‘𝐼), (𝐼𝑋𝐽)))) | 
| 72 | 57, 71 | pm2.61ine 3025 | 1
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ (𝑋 × 𝐶) = 𝑍)) → (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝐼𝑋𝑙)(.r‘𝑅)(𝑙𝐸𝐽)))) = if(𝐽 = 𝐾, (𝑍‘𝐼), (𝐼𝑋𝐽))) |