Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprsymrelfv Structured version   Visualization version   GIF version

Theorem sprsymrelfv 46149
Description: The value of the function 𝐹 which maps a subset of the set of pairs over a fixed set 𝑉 to the relation relating two elements of the set 𝑉 iff they are in a pair of the subset. (Contributed by AV, 19-Nov-2021.)
Hypotheses
Ref Expression
sprsymrelf.p 𝑃 = 𝒫 (Pairs‘𝑉)
sprsymrelf.r 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
sprsymrelf.f 𝐹 = (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}})
Assertion
Ref Expression
sprsymrelfv (𝑋𝑃 → (𝐹𝑋) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑋 𝑐 = {𝑥, 𝑦}})
Distinct variable groups:   𝑃,𝑝   𝑉,𝑐,𝑥,𝑦   𝑝,𝑐,𝑥,𝑦,𝑋
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑟,𝑐)   𝑅(𝑥,𝑦,𝑟,𝑝,𝑐)   𝐹(𝑥,𝑦,𝑟,𝑝,𝑐)   𝑉(𝑟,𝑝)   𝑋(𝑟)

Proof of Theorem sprsymrelfv
StepHypRef Expression
1 sprsymrelf.f . 2 𝐹 = (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}})
2 rexeq 3322 . . 3 (𝑝 = 𝑋 → (∃𝑐𝑝 𝑐 = {𝑥, 𝑦} ↔ ∃𝑐𝑋 𝑐 = {𝑥, 𝑦}))
32opabbidv 5214 . 2 (𝑝 = 𝑋 → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑋 𝑐 = {𝑥, 𝑦}})
4 id 22 . 2 (𝑋𝑃𝑋𝑃)
5 elpwi 4609 . . . 4 (𝑋 ∈ 𝒫 (Pairs‘𝑉) → 𝑋 ⊆ (Pairs‘𝑉))
6 sprsymrelf.p . . . 4 𝑃 = 𝒫 (Pairs‘𝑉)
75, 6eleq2s 2852 . . 3 (𝑋𝑃𝑋 ⊆ (Pairs‘𝑉))
8 sprsymrelfvlem 46145 . . 3 (𝑋 ⊆ (Pairs‘𝑉) → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑋 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉))
97, 8syl 17 . 2 (𝑋𝑃 → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑋 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉))
101, 3, 4, 9fvmptd3 7019 1 (𝑋𝑃 → (𝐹𝑋) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑋 𝑐 = {𝑥, 𝑦}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  wcel 2107  wral 3062  wrex 3071  {crab 3433  wss 3948  𝒫 cpw 4602  {cpr 4630   class class class wbr 5148  {copab 5210  cmpt 5231   × cxp 5674  cfv 6541  Pairscspr 46132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6493  df-fun 6543  df-fv 6549  df-spr 46133
This theorem is referenced by:  sprsymrelf1  46151  sprsymrelfo  46152
  Copyright terms: Public domain W3C validator