Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprsymrelfv Structured version   Visualization version   GIF version

Theorem sprsymrelfv 47495
Description: The value of the function 𝐹 which maps a subset of the set of pairs over a fixed set 𝑉 to the relation relating two elements of the set 𝑉 iff they are in a pair of the subset. (Contributed by AV, 19-Nov-2021.)
Hypotheses
Ref Expression
sprsymrelf.p 𝑃 = 𝒫 (Pairs‘𝑉)
sprsymrelf.r 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
sprsymrelf.f 𝐹 = (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}})
Assertion
Ref Expression
sprsymrelfv (𝑋𝑃 → (𝐹𝑋) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑋 𝑐 = {𝑥, 𝑦}})
Distinct variable groups:   𝑃,𝑝   𝑉,𝑐,𝑥,𝑦   𝑝,𝑐,𝑥,𝑦,𝑋
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑟,𝑐)   𝑅(𝑥,𝑦,𝑟,𝑝,𝑐)   𝐹(𝑥,𝑦,𝑟,𝑝,𝑐)   𝑉(𝑟,𝑝)   𝑋(𝑟)

Proof of Theorem sprsymrelfv
StepHypRef Expression
1 sprsymrelf.f . 2 𝐹 = (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}})
2 rexeq 3295 . . 3 (𝑝 = 𝑋 → (∃𝑐𝑝 𝑐 = {𝑥, 𝑦} ↔ ∃𝑐𝑋 𝑐 = {𝑥, 𝑦}))
32opabbidv 5173 . 2 (𝑝 = 𝑋 → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑋 𝑐 = {𝑥, 𝑦}})
4 id 22 . 2 (𝑋𝑃𝑋𝑃)
5 elpwi 4570 . . . 4 (𝑋 ∈ 𝒫 (Pairs‘𝑉) → 𝑋 ⊆ (Pairs‘𝑉))
6 sprsymrelf.p . . . 4 𝑃 = 𝒫 (Pairs‘𝑉)
75, 6eleq2s 2846 . . 3 (𝑋𝑃𝑋 ⊆ (Pairs‘𝑉))
8 sprsymrelfvlem 47491 . . 3 (𝑋 ⊆ (Pairs‘𝑉) → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑋 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉))
97, 8syl 17 . 2 (𝑋𝑃 → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑋 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉))
101, 3, 4, 9fvmptd3 6991 1 (𝑋𝑃 → (𝐹𝑋) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑋 𝑐 = {𝑥, 𝑦}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3405  wss 3914  𝒫 cpw 4563  {cpr 4591   class class class wbr 5107  {copab 5169  cmpt 5188   × cxp 5636  cfv 6511  Pairscspr 47478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-spr 47479
This theorem is referenced by:  sprsymrelf1  47497  sprsymrelfo  47498
  Copyright terms: Public domain W3C validator