![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sprsymrelfv | Structured version Visualization version GIF version |
Description: The value of the function 𝐹 which maps a subset of the set of pairs over a fixed set 𝑉 to the relation relating two elements of the set 𝑉 iff they are in a pair of the subset. (Contributed by AV, 19-Nov-2021.) |
Ref | Expression |
---|---|
sprsymrelf.p | ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) |
sprsymrelf.r | ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} |
sprsymrelf.f | ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) |
Ref | Expression |
---|---|
sprsymrelfv | ⊢ (𝑋 ∈ 𝑃 → (𝐹‘𝑋) = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑋 𝑐 = {𝑥, 𝑦}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sprsymrelf.f | . 2 ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) | |
2 | rexeq 3330 | . . 3 ⊢ (𝑝 = 𝑋 → (∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦} ↔ ∃𝑐 ∈ 𝑋 𝑐 = {𝑥, 𝑦})) | |
3 | 2 | opabbidv 5232 | . 2 ⊢ (𝑝 = 𝑋 → {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑋 𝑐 = {𝑥, 𝑦}}) |
4 | id 22 | . 2 ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ 𝑃) | |
5 | elpwi 4629 | . . . 4 ⊢ (𝑋 ∈ 𝒫 (Pairs‘𝑉) → 𝑋 ⊆ (Pairs‘𝑉)) | |
6 | sprsymrelf.p | . . . 4 ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) | |
7 | 5, 6 | eleq2s 2862 | . . 3 ⊢ (𝑋 ∈ 𝑃 → 𝑋 ⊆ (Pairs‘𝑉)) |
8 | sprsymrelfvlem 47364 | . . 3 ⊢ (𝑋 ⊆ (Pairs‘𝑉) → {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑋 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉)) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝑋 ∈ 𝑃 → {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑋 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉)) |
10 | 1, 3, 4, 9 | fvmptd3 7052 | 1 ⊢ (𝑋 ∈ 𝑃 → (𝐹‘𝑋) = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑋 𝑐 = {𝑥, 𝑦}}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 {crab 3443 ⊆ wss 3976 𝒫 cpw 4622 {cpr 4650 class class class wbr 5166 {copab 5228 ↦ cmpt 5249 × cxp 5698 ‘cfv 6573 Pairscspr 47351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-spr 47352 |
This theorem is referenced by: sprsymrelf1 47370 sprsymrelfo 47371 |
Copyright terms: Public domain | W3C validator |