Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprsymrelfv Structured version   Visualization version   GIF version

Theorem sprsymrelfv 47525
Description: The value of the function 𝐹 which maps a subset of the set of pairs over a fixed set 𝑉 to the relation relating two elements of the set 𝑉 iff they are in a pair of the subset. (Contributed by AV, 19-Nov-2021.)
Hypotheses
Ref Expression
sprsymrelf.p 𝑃 = 𝒫 (Pairs‘𝑉)
sprsymrelf.r 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
sprsymrelf.f 𝐹 = (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}})
Assertion
Ref Expression
sprsymrelfv (𝑋𝑃 → (𝐹𝑋) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑋 𝑐 = {𝑥, 𝑦}})
Distinct variable groups:   𝑃,𝑝   𝑉,𝑐,𝑥,𝑦   𝑝,𝑐,𝑥,𝑦,𝑋
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑟,𝑐)   𝑅(𝑥,𝑦,𝑟,𝑝,𝑐)   𝐹(𝑥,𝑦,𝑟,𝑝,𝑐)   𝑉(𝑟,𝑝)   𝑋(𝑟)

Proof of Theorem sprsymrelfv
StepHypRef Expression
1 sprsymrelf.f . 2 𝐹 = (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}})
2 rexeq 3288 . . 3 (𝑝 = 𝑋 → (∃𝑐𝑝 𝑐 = {𝑥, 𝑦} ↔ ∃𝑐𝑋 𝑐 = {𝑥, 𝑦}))
32opabbidv 5152 . 2 (𝑝 = 𝑋 → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑋 𝑐 = {𝑥, 𝑦}})
4 id 22 . 2 (𝑋𝑃𝑋𝑃)
5 elpwi 4552 . . . 4 (𝑋 ∈ 𝒫 (Pairs‘𝑉) → 𝑋 ⊆ (Pairs‘𝑉))
6 sprsymrelf.p . . . 4 𝑃 = 𝒫 (Pairs‘𝑉)
75, 6eleq2s 2849 . . 3 (𝑋𝑃𝑋 ⊆ (Pairs‘𝑉))
8 sprsymrelfvlem 47521 . . 3 (𝑋 ⊆ (Pairs‘𝑉) → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑋 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉))
97, 8syl 17 . 2 (𝑋𝑃 → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑋 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉))
101, 3, 4, 9fvmptd3 6947 1 (𝑋𝑃 → (𝐹𝑋) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑋 𝑐 = {𝑥, 𝑦}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {crab 3395  wss 3897  𝒫 cpw 4545  {cpr 4573   class class class wbr 5086  {copab 5148  cmpt 5167   × cxp 5609  cfv 6476  Pairscspr 47508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-iota 6432  df-fun 6478  df-fv 6484  df-spr 47509
This theorem is referenced by:  sprsymrelf1  47527  sprsymrelfo  47528
  Copyright terms: Public domain W3C validator