Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprsymrelfv Structured version   Visualization version   GIF version

Theorem sprsymrelfv 42543
Description: The value of the function 𝐹 which maps a subset of the set of pairs over a fixed set 𝑉 to the relation relating two elements of the set 𝑉 iff they are in a pair of the subset. (Contributed by AV, 19-Nov-2021.)
Hypotheses
Ref Expression
sprsymrelf.p 𝑃 = 𝒫 (Pairs‘𝑉)
sprsymrelf.r 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
sprsymrelf.f 𝐹 = (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}})
Assertion
Ref Expression
sprsymrelfv (𝑋𝑃 → (𝐹𝑋) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑋 𝑐 = {𝑥, 𝑦}})
Distinct variable groups:   𝑃,𝑝   𝑉,𝑐,𝑥,𝑦   𝑝,𝑐,𝑥,𝑦,𝑋
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑟,𝑐)   𝑅(𝑥,𝑦,𝑟,𝑝,𝑐)   𝐹(𝑥,𝑦,𝑟,𝑝,𝑐)   𝑉(𝑟,𝑝)   𝑋(𝑟)

Proof of Theorem sprsymrelfv
StepHypRef Expression
1 sprsymrelf.f . . 3 𝐹 = (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}})
21a1i 11 . 2 (𝑋𝑃𝐹 = (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}))
3 rexeq 3322 . . . 4 (𝑝 = 𝑋 → (∃𝑐𝑝 𝑐 = {𝑥, 𝑦} ↔ ∃𝑐𝑋 𝑐 = {𝑥, 𝑦}))
43opabbidv 4909 . . 3 (𝑝 = 𝑋 → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑋 𝑐 = {𝑥, 𝑦}})
54adantl 474 . 2 ((𝑋𝑃𝑝 = 𝑋) → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑋 𝑐 = {𝑥, 𝑦}})
6 id 22 . 2 (𝑋𝑃𝑋𝑃)
7 elpwi 4359 . . . 4 (𝑋 ∈ 𝒫 (Pairs‘𝑉) → 𝑋 ⊆ (Pairs‘𝑉))
8 sprsymrelf.p . . . 4 𝑃 = 𝒫 (Pairs‘𝑉)
97, 8eleq2s 2896 . . 3 (𝑋𝑃𝑋 ⊆ (Pairs‘𝑉))
10 sprsymrelfvlem 42539 . . 3 (𝑋 ⊆ (Pairs‘𝑉) → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑋 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉))
119, 10syl 17 . 2 (𝑋𝑃 → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑋 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉))
122, 5, 6, 11fvmptd 6513 1 (𝑋𝑃 → (𝐹𝑋) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑋 𝑐 = {𝑥, 𝑦}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1653  wcel 2157  wral 3089  wrex 3090  {crab 3093  wss 3769  𝒫 cpw 4349  {cpr 4370   class class class wbr 4843  {copab 4905  cmpt 4922   × cxp 5310  cfv 6101  Pairscspr 42526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-spr 42527
This theorem is referenced by:  sprsymrelf1  42545  sprsymrelfo  42546
  Copyright terms: Public domain W3C validator