| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sprsymrelfv | Structured version Visualization version GIF version | ||
| Description: The value of the function 𝐹 which maps a subset of the set of pairs over a fixed set 𝑉 to the relation relating two elements of the set 𝑉 iff they are in a pair of the subset. (Contributed by AV, 19-Nov-2021.) |
| Ref | Expression |
|---|---|
| sprsymrelf.p | ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) |
| sprsymrelf.r | ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} |
| sprsymrelf.f | ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) |
| Ref | Expression |
|---|---|
| sprsymrelfv | ⊢ (𝑋 ∈ 𝑃 → (𝐹‘𝑋) = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑋 𝑐 = {𝑥, 𝑦}}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sprsymrelf.f | . 2 ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) | |
| 2 | rexeq 3297 | . . 3 ⊢ (𝑝 = 𝑋 → (∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦} ↔ ∃𝑐 ∈ 𝑋 𝑐 = {𝑥, 𝑦})) | |
| 3 | 2 | opabbidv 5176 | . 2 ⊢ (𝑝 = 𝑋 → {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑋 𝑐 = {𝑥, 𝑦}}) |
| 4 | id 22 | . 2 ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ 𝑃) | |
| 5 | elpwi 4573 | . . . 4 ⊢ (𝑋 ∈ 𝒫 (Pairs‘𝑉) → 𝑋 ⊆ (Pairs‘𝑉)) | |
| 6 | sprsymrelf.p | . . . 4 ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) | |
| 7 | 5, 6 | eleq2s 2847 | . . 3 ⊢ (𝑋 ∈ 𝑃 → 𝑋 ⊆ (Pairs‘𝑉)) |
| 8 | sprsymrelfvlem 47495 | . . 3 ⊢ (𝑋 ⊆ (Pairs‘𝑉) → {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑋 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉)) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (𝑋 ∈ 𝑃 → {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑋 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉)) |
| 10 | 1, 3, 4, 9 | fvmptd3 6994 | 1 ⊢ (𝑋 ∈ 𝑃 → (𝐹‘𝑋) = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑋 𝑐 = {𝑥, 𝑦}}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 {crab 3408 ⊆ wss 3917 𝒫 cpw 4566 {cpr 4594 class class class wbr 5110 {copab 5172 ↦ cmpt 5191 × cxp 5639 ‘cfv 6514 Pairscspr 47482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-spr 47483 |
| This theorem is referenced by: sprsymrelf1 47501 sprsymrelfo 47502 |
| Copyright terms: Public domain | W3C validator |