Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprsymrelf1 Structured version   Visualization version   GIF version

Theorem sprsymrelf1 47483
Description: The mapping 𝐹 is a one-to-one function from the subsets of the set of pairs over a fixed set 𝑉 into the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 19-Nov-2021.)
Hypotheses
Ref Expression
sprsymrelf.p 𝑃 = 𝒫 (Pairs‘𝑉)
sprsymrelf.r 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
sprsymrelf.f 𝐹 = (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}})
Assertion
Ref Expression
sprsymrelf1 𝐹:𝑃1-1𝑅
Distinct variable groups:   𝑃,𝑝   𝑉,𝑐,𝑥,𝑦   𝑝,𝑐,𝑥,𝑦,𝑟   𝑅,𝑝   𝑉,𝑟,𝑐,𝑥,𝑦
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑟,𝑐)   𝑅(𝑥,𝑦,𝑟,𝑐)   𝐹(𝑥,𝑦,𝑟,𝑝,𝑐)   𝑉(𝑝)

Proof of Theorem sprsymrelf1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sprsymrelf.p . . 3 𝑃 = 𝒫 (Pairs‘𝑉)
2 sprsymrelf.r . . 3 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
3 sprsymrelf.f . . 3 𝐹 = (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}})
41, 2, 3sprsymrelf 47482 . 2 𝐹:𝑃𝑅
51, 2, 3sprsymrelfv 47481 . . . . 5 (𝑎𝑃 → (𝐹𝑎) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}})
61, 2, 3sprsymrelfv 47481 . . . . 5 (𝑏𝑃 → (𝐹𝑏) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}})
75, 6eqeqan12d 2751 . . . 4 ((𝑎𝑃𝑏𝑃) → ((𝐹𝑎) = (𝐹𝑏) ↔ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}}))
81eleq2i 2833 . . . . . 6 (𝑎𝑃𝑎 ∈ 𝒫 (Pairs‘𝑉))
9 vex 3484 . . . . . . 7 𝑎 ∈ V
109elpw 4604 . . . . . 6 (𝑎 ∈ 𝒫 (Pairs‘𝑉) ↔ 𝑎 ⊆ (Pairs‘𝑉))
118, 10bitri 275 . . . . 5 (𝑎𝑃𝑎 ⊆ (Pairs‘𝑉))
121eleq2i 2833 . . . . . 6 (𝑏𝑃𝑏 ∈ 𝒫 (Pairs‘𝑉))
13 vex 3484 . . . . . . 7 𝑏 ∈ V
1413elpw 4604 . . . . . 6 (𝑏 ∈ 𝒫 (Pairs‘𝑉) ↔ 𝑏 ⊆ (Pairs‘𝑉))
1512, 14bitri 275 . . . . 5 (𝑏𝑃𝑏 ⊆ (Pairs‘𝑉))
16 sprsymrelf1lem 47478 . . . . . . . 8 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}} → 𝑎𝑏))
1716imp 406 . . . . . . 7 (((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}}) → 𝑎𝑏)
18 eqcom 2744 . . . . . . . . . 10 ({⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}} ↔ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}})
19 sprsymrelf1lem 47478 . . . . . . . . . 10 ((𝑏 ⊆ (Pairs‘𝑉) ∧ 𝑎 ⊆ (Pairs‘𝑉)) → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} → 𝑏𝑎))
2018, 19biimtrid 242 . . . . . . . . 9 ((𝑏 ⊆ (Pairs‘𝑉) ∧ 𝑎 ⊆ (Pairs‘𝑉)) → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}} → 𝑏𝑎))
2120ancoms 458 . . . . . . . 8 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}} → 𝑏𝑎))
2221imp 406 . . . . . . 7 (((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}}) → 𝑏𝑎)
2317, 22eqssd 4001 . . . . . 6 (((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}}) → 𝑎 = 𝑏)
2423ex 412 . . . . 5 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}} → 𝑎 = 𝑏))
2511, 15, 24syl2anb 598 . . . 4 ((𝑎𝑃𝑏𝑃) → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}} → 𝑎 = 𝑏))
267, 25sylbid 240 . . 3 ((𝑎𝑃𝑏𝑃) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
2726rgen2 3199 . 2 𝑎𝑃𝑏𝑃 ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)
28 dff13 7275 . 2 (𝐹:𝑃1-1𝑅 ↔ (𝐹:𝑃𝑅 ∧ ∀𝑎𝑃𝑏𝑃 ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
294, 27, 28mpbir2an 711 1 𝐹:𝑃1-1𝑅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  {crab 3436  wss 3951  𝒫 cpw 4600  {cpr 4628   class class class wbr 5143  {copab 5205  cmpt 5225   × cxp 5683  wf 6557  1-1wf1 6558  cfv 6561  Pairscspr 47464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fv 6569  df-spr 47465
This theorem is referenced by:  sprsymrelf1o  47485
  Copyright terms: Public domain W3C validator