Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprsymrelf1 Structured version   Visualization version   GIF version

Theorem sprsymrelf1 44948
Description: The mapping 𝐹 is a one-to-one function from the subsets of the set of pairs over a fixed set 𝑉 into the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 19-Nov-2021.)
Hypotheses
Ref Expression
sprsymrelf.p 𝑃 = 𝒫 (Pairs‘𝑉)
sprsymrelf.r 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
sprsymrelf.f 𝐹 = (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}})
Assertion
Ref Expression
sprsymrelf1 𝐹:𝑃1-1𝑅
Distinct variable groups:   𝑃,𝑝   𝑉,𝑐,𝑥,𝑦   𝑝,𝑐,𝑥,𝑦,𝑟   𝑅,𝑝   𝑉,𝑟,𝑐,𝑥,𝑦
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑟,𝑐)   𝑅(𝑥,𝑦,𝑟,𝑐)   𝐹(𝑥,𝑦,𝑟,𝑝,𝑐)   𝑉(𝑝)

Proof of Theorem sprsymrelf1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sprsymrelf.p . . 3 𝑃 = 𝒫 (Pairs‘𝑉)
2 sprsymrelf.r . . 3 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
3 sprsymrelf.f . . 3 𝐹 = (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}})
41, 2, 3sprsymrelf 44947 . 2 𝐹:𝑃𝑅
51, 2, 3sprsymrelfv 44946 . . . . 5 (𝑎𝑃 → (𝐹𝑎) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}})
61, 2, 3sprsymrelfv 44946 . . . . 5 (𝑏𝑃 → (𝐹𝑏) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}})
75, 6eqeqan12d 2752 . . . 4 ((𝑎𝑃𝑏𝑃) → ((𝐹𝑎) = (𝐹𝑏) ↔ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}}))
81eleq2i 2830 . . . . . 6 (𝑎𝑃𝑎 ∈ 𝒫 (Pairs‘𝑉))
9 vex 3436 . . . . . . 7 𝑎 ∈ V
109elpw 4537 . . . . . 6 (𝑎 ∈ 𝒫 (Pairs‘𝑉) ↔ 𝑎 ⊆ (Pairs‘𝑉))
118, 10bitri 274 . . . . 5 (𝑎𝑃𝑎 ⊆ (Pairs‘𝑉))
121eleq2i 2830 . . . . . 6 (𝑏𝑃𝑏 ∈ 𝒫 (Pairs‘𝑉))
13 vex 3436 . . . . . . 7 𝑏 ∈ V
1413elpw 4537 . . . . . 6 (𝑏 ∈ 𝒫 (Pairs‘𝑉) ↔ 𝑏 ⊆ (Pairs‘𝑉))
1512, 14bitri 274 . . . . 5 (𝑏𝑃𝑏 ⊆ (Pairs‘𝑉))
16 sprsymrelf1lem 44943 . . . . . . . 8 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}} → 𝑎𝑏))
1716imp 407 . . . . . . 7 (((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}}) → 𝑎𝑏)
18 eqcom 2745 . . . . . . . . . 10 ({⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}} ↔ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}})
19 sprsymrelf1lem 44943 . . . . . . . . . 10 ((𝑏 ⊆ (Pairs‘𝑉) ∧ 𝑎 ⊆ (Pairs‘𝑉)) → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} → 𝑏𝑎))
2018, 19syl5bi 241 . . . . . . . . 9 ((𝑏 ⊆ (Pairs‘𝑉) ∧ 𝑎 ⊆ (Pairs‘𝑉)) → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}} → 𝑏𝑎))
2120ancoms 459 . . . . . . . 8 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}} → 𝑏𝑎))
2221imp 407 . . . . . . 7 (((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}}) → 𝑏𝑎)
2317, 22eqssd 3938 . . . . . 6 (((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}}) → 𝑎 = 𝑏)
2423ex 413 . . . . 5 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}} → 𝑎 = 𝑏))
2511, 15, 24syl2anb 598 . . . 4 ((𝑎𝑃𝑏𝑃) → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}} → 𝑎 = 𝑏))
267, 25sylbid 239 . . 3 ((𝑎𝑃𝑏𝑃) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
2726rgen2 3120 . 2 𝑎𝑃𝑏𝑃 ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)
28 dff13 7128 . 2 (𝐹:𝑃1-1𝑅 ↔ (𝐹:𝑃𝑅 ∧ ∀𝑎𝑃𝑏𝑃 ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
294, 27, 28mpbir2an 708 1 𝐹:𝑃1-1𝑅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  wss 3887  𝒫 cpw 4533  {cpr 4563   class class class wbr 5074  {copab 5136  cmpt 5157   × cxp 5587  wf 6429  1-1wf1 6430  cfv 6433  Pairscspr 44929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fv 6441  df-spr 44930
This theorem is referenced by:  sprsymrelf1o  44950
  Copyright terms: Public domain W3C validator