MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasaddvallem Structured version   Visualization version   GIF version

Theorem imasaddvallem 17006
Description: The operation of an image structure is defined to distribute over the mapping function. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
imasaddf.f (𝜑𝐹:𝑉onto𝐵)
imasaddf.e ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
imasaddflem.a (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
Assertion
Ref Expression
imasaddvallem ((𝜑𝑋𝑉𝑌𝑉) → ((𝐹𝑋) (𝐹𝑌)) = (𝐹‘(𝑋 · 𝑌)))
Distinct variable groups:   𝑞,𝑝,𝐵   𝑎,𝑏,𝑝,𝑞,𝑉   · ,𝑝,𝑞   𝑋,𝑝   𝐹,𝑎,𝑏,𝑝,𝑞   𝜑,𝑎,𝑏,𝑝,𝑞   ,𝑎,𝑏,𝑝,𝑞   𝑌,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎,𝑏)   · (𝑎,𝑏)   𝑋(𝑞,𝑎,𝑏)   𝑌(𝑎,𝑏)

Proof of Theorem imasaddvallem
StepHypRef Expression
1 df-ov 7205 . 2 ((𝐹𝑋) (𝐹𝑌)) = ( ‘⟨(𝐹𝑋), (𝐹𝑌)⟩)
2 imasaddf.f . . . . . 6 (𝜑𝐹:𝑉onto𝐵)
3 imasaddf.e . . . . . 6 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
4 imasaddflem.a . . . . . 6 (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
52, 3, 4imasaddfnlem 17005 . . . . 5 (𝜑 Fn (𝐵 × 𝐵))
6 fnfun 6468 . . . . 5 ( Fn (𝐵 × 𝐵) → Fun )
75, 6syl 17 . . . 4 (𝜑 → Fun )
873ad2ant1 1135 . . 3 ((𝜑𝑋𝑉𝑌𝑉) → Fun )
9 fveq2 6706 . . . . . . . . . . 11 (𝑝 = 𝑋 → (𝐹𝑝) = (𝐹𝑋))
109opeq1d 4780 . . . . . . . . . 10 (𝑝 = 𝑋 → ⟨(𝐹𝑝), (𝐹𝑌)⟩ = ⟨(𝐹𝑋), (𝐹𝑌)⟩)
11 fvoveq1 7225 . . . . . . . . . 10 (𝑝 = 𝑋 → (𝐹‘(𝑝 · 𝑌)) = (𝐹‘(𝑋 · 𝑌)))
1210, 11opeq12d 4782 . . . . . . . . 9 (𝑝 = 𝑋 → ⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩ = ⟨⟨(𝐹𝑋), (𝐹𝑌)⟩, (𝐹‘(𝑋 · 𝑌))⟩)
1312sneqd 4543 . . . . . . . 8 (𝑝 = 𝑋 → {⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩} = {⟨⟨(𝐹𝑋), (𝐹𝑌)⟩, (𝐹‘(𝑋 · 𝑌))⟩})
1413ssiun2s 4947 . . . . . . 7 (𝑋𝑉 → {⟨⟨(𝐹𝑋), (𝐹𝑌)⟩, (𝐹‘(𝑋 · 𝑌))⟩} ⊆ 𝑝𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩})
15143ad2ant2 1136 . . . . . 6 ((𝜑𝑋𝑉𝑌𝑉) → {⟨⟨(𝐹𝑋), (𝐹𝑌)⟩, (𝐹‘(𝑋 · 𝑌))⟩} ⊆ 𝑝𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩})
16 fveq2 6706 . . . . . . . . . . . . 13 (𝑞 = 𝑌 → (𝐹𝑞) = (𝐹𝑌))
1716opeq2d 4781 . . . . . . . . . . . 12 (𝑞 = 𝑌 → ⟨(𝐹𝑝), (𝐹𝑞)⟩ = ⟨(𝐹𝑝), (𝐹𝑌)⟩)
18 oveq2 7210 . . . . . . . . . . . . 13 (𝑞 = 𝑌 → (𝑝 · 𝑞) = (𝑝 · 𝑌))
1918fveq2d 6710 . . . . . . . . . . . 12 (𝑞 = 𝑌 → (𝐹‘(𝑝 · 𝑞)) = (𝐹‘(𝑝 · 𝑌)))
2017, 19opeq12d 4782 . . . . . . . . . . 11 (𝑞 = 𝑌 → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩)
2120sneqd 4543 . . . . . . . . . 10 (𝑞 = 𝑌 → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} = {⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩})
2221ssiun2s 4947 . . . . . . . . 9 (𝑌𝑉 → {⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩} ⊆ 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
2322ralrimivw 3099 . . . . . . . 8 (𝑌𝑉 → ∀𝑝𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩} ⊆ 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
24 ss2iun 4912 . . . . . . . 8 (∀𝑝𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩} ⊆ 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} → 𝑝𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩} ⊆ 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
2523, 24syl 17 . . . . . . 7 (𝑌𝑉 𝑝𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩} ⊆ 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
26253ad2ant3 1137 . . . . . 6 ((𝜑𝑋𝑉𝑌𝑉) → 𝑝𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩} ⊆ 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
2715, 26sstrd 3901 . . . . 5 ((𝜑𝑋𝑉𝑌𝑉) → {⟨⟨(𝐹𝑋), (𝐹𝑌)⟩, (𝐹‘(𝑋 · 𝑌))⟩} ⊆ 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
2843ad2ant1 1135 . . . . 5 ((𝜑𝑋𝑉𝑌𝑉) → = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
2927, 28sseqtrrd 3932 . . . 4 ((𝜑𝑋𝑉𝑌𝑉) → {⟨⟨(𝐹𝑋), (𝐹𝑌)⟩, (𝐹‘(𝑋 · 𝑌))⟩} ⊆ )
30 opex 5337 . . . . 5 ⟨⟨(𝐹𝑋), (𝐹𝑌)⟩, (𝐹‘(𝑋 · 𝑌))⟩ ∈ V
3130snss 4689 . . . 4 (⟨⟨(𝐹𝑋), (𝐹𝑌)⟩, (𝐹‘(𝑋 · 𝑌))⟩ ∈ ↔ {⟨⟨(𝐹𝑋), (𝐹𝑌)⟩, (𝐹‘(𝑋 · 𝑌))⟩} ⊆ )
3229, 31sylibr 237 . . 3 ((𝜑𝑋𝑉𝑌𝑉) → ⟨⟨(𝐹𝑋), (𝐹𝑌)⟩, (𝐹‘(𝑋 · 𝑌))⟩ ∈ )
33 funopfv 6753 . . 3 (Fun → (⟨⟨(𝐹𝑋), (𝐹𝑌)⟩, (𝐹‘(𝑋 · 𝑌))⟩ ∈ → ( ‘⟨(𝐹𝑋), (𝐹𝑌)⟩) = (𝐹‘(𝑋 · 𝑌))))
348, 32, 33sylc 65 . 2 ((𝜑𝑋𝑉𝑌𝑉) → ( ‘⟨(𝐹𝑋), (𝐹𝑌)⟩) = (𝐹‘(𝑋 · 𝑌)))
351, 34syl5eq 2786 1 ((𝜑𝑋𝑉𝑌𝑉) → ((𝐹𝑋) (𝐹𝑌)) = (𝐹‘(𝑋 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3054  wss 3857  {csn 4531  cop 4537   ciun 4894   × cxp 5538  Fun wfun 6363   Fn wfn 6364  ontowfo 6367  cfv 6369  (class class class)co 7202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pr 5311
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-nul 4228  df-if 4430  df-sn 4532  df-pr 4534  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-id 5444  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-fo 6375  df-fv 6377  df-ov 7205
This theorem is referenced by:  imasaddval  17009  imasmulval  17012  qusaddvallem  17028
  Copyright terms: Public domain W3C validator