Proof of Theorem imasaddvallem
Step | Hyp | Ref
| Expression |
1 | | df-ov 7278 |
. 2
⊢ ((𝐹‘𝑋) ∙ (𝐹‘𝑌)) = ( ∙ ‘〈(𝐹‘𝑋), (𝐹‘𝑌)〉) |
2 | | imasaddf.f |
. . . . . 6
⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
3 | | imasaddf.e |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) |
4 | | imasaddflem.a |
. . . . . 6
⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) |
5 | 2, 3, 4 | imasaddfnlem 17239 |
. . . . 5
⊢ (𝜑 → ∙ Fn (𝐵 × 𝐵)) |
6 | | fnfun 6533 |
. . . . 5
⊢ ( ∙ Fn
(𝐵 × 𝐵) → Fun ∙ ) |
7 | 5, 6 | syl 17 |
. . . 4
⊢ (𝜑 → Fun ∙ ) |
8 | 7 | 3ad2ant1 1132 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → Fun ∙ ) |
9 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝑋 → (𝐹‘𝑝) = (𝐹‘𝑋)) |
10 | 9 | opeq1d 4810 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑋 → 〈(𝐹‘𝑝), (𝐹‘𝑌)〉 = 〈(𝐹‘𝑋), (𝐹‘𝑌)〉) |
11 | | fvoveq1 7298 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑋 → (𝐹‘(𝑝 · 𝑌)) = (𝐹‘(𝑋 · 𝑌))) |
12 | 10, 11 | opeq12d 4812 |
. . . . . . . . 9
⊢ (𝑝 = 𝑋 → 〈〈(𝐹‘𝑝), (𝐹‘𝑌)〉, (𝐹‘(𝑝 · 𝑌))〉 = 〈〈(𝐹‘𝑋), (𝐹‘𝑌)〉, (𝐹‘(𝑋 · 𝑌))〉) |
13 | 12 | sneqd 4573 |
. . . . . . . 8
⊢ (𝑝 = 𝑋 → {〈〈(𝐹‘𝑝), (𝐹‘𝑌)〉, (𝐹‘(𝑝 · 𝑌))〉} = {〈〈(𝐹‘𝑋), (𝐹‘𝑌)〉, (𝐹‘(𝑋 · 𝑌))〉}) |
14 | 13 | ssiun2s 4978 |
. . . . . . 7
⊢ (𝑋 ∈ 𝑉 → {〈〈(𝐹‘𝑋), (𝐹‘𝑌)〉, (𝐹‘(𝑋 · 𝑌))〉} ⊆ ∪ 𝑝 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑌)〉, (𝐹‘(𝑝 · 𝑌))〉}) |
15 | 14 | 3ad2ant2 1133 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {〈〈(𝐹‘𝑋), (𝐹‘𝑌)〉, (𝐹‘(𝑋 · 𝑌))〉} ⊆ ∪ 𝑝 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑌)〉, (𝐹‘(𝑝 · 𝑌))〉}) |
16 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑞 = 𝑌 → (𝐹‘𝑞) = (𝐹‘𝑌)) |
17 | 16 | opeq2d 4811 |
. . . . . . . . . . . 12
⊢ (𝑞 = 𝑌 → 〈(𝐹‘𝑝), (𝐹‘𝑞)〉 = 〈(𝐹‘𝑝), (𝐹‘𝑌)〉) |
18 | | oveq2 7283 |
. . . . . . . . . . . . 13
⊢ (𝑞 = 𝑌 → (𝑝 · 𝑞) = (𝑝 · 𝑌)) |
19 | 18 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ (𝑞 = 𝑌 → (𝐹‘(𝑝 · 𝑞)) = (𝐹‘(𝑝 · 𝑌))) |
20 | 17, 19 | opeq12d 4812 |
. . . . . . . . . . 11
⊢ (𝑞 = 𝑌 → 〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉 = 〈〈(𝐹‘𝑝), (𝐹‘𝑌)〉, (𝐹‘(𝑝 · 𝑌))〉) |
21 | 20 | sneqd 4573 |
. . . . . . . . . 10
⊢ (𝑞 = 𝑌 → {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} = {〈〈(𝐹‘𝑝), (𝐹‘𝑌)〉, (𝐹‘(𝑝 · 𝑌))〉}) |
22 | 21 | ssiun2s 4978 |
. . . . . . . . 9
⊢ (𝑌 ∈ 𝑉 → {〈〈(𝐹‘𝑝), (𝐹‘𝑌)〉, (𝐹‘(𝑝 · 𝑌))〉} ⊆ ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) |
23 | 22 | ralrimivw 3104 |
. . . . . . . 8
⊢ (𝑌 ∈ 𝑉 → ∀𝑝 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑌)〉, (𝐹‘(𝑝 · 𝑌))〉} ⊆ ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) |
24 | | ss2iun 4942 |
. . . . . . . 8
⊢
(∀𝑝 ∈
𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑌)〉, (𝐹‘(𝑝 · 𝑌))〉} ⊆ ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} → ∪ 𝑝 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑌)〉, (𝐹‘(𝑝 · 𝑌))〉} ⊆ ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) |
25 | 23, 24 | syl 17 |
. . . . . . 7
⊢ (𝑌 ∈ 𝑉 → ∪
𝑝 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑌)〉, (𝐹‘(𝑝 · 𝑌))〉} ⊆ ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) |
26 | 25 | 3ad2ant3 1134 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ∪
𝑝 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑌)〉, (𝐹‘(𝑝 · 𝑌))〉} ⊆ ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) |
27 | 15, 26 | sstrd 3931 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {〈〈(𝐹‘𝑋), (𝐹‘𝑌)〉, (𝐹‘(𝑋 · 𝑌))〉} ⊆ ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) |
28 | 4 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) |
29 | 27, 28 | sseqtrrd 3962 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {〈〈(𝐹‘𝑋), (𝐹‘𝑌)〉, (𝐹‘(𝑋 · 𝑌))〉} ⊆ ∙ ) |
30 | | opex 5379 |
. . . . 5
⊢
〈〈(𝐹‘𝑋), (𝐹‘𝑌)〉, (𝐹‘(𝑋 · 𝑌))〉 ∈ V |
31 | 30 | snss 4719 |
. . . 4
⊢
(〈〈(𝐹‘𝑋), (𝐹‘𝑌)〉, (𝐹‘(𝑋 · 𝑌))〉 ∈ ∙ ↔
{〈〈(𝐹‘𝑋), (𝐹‘𝑌)〉, (𝐹‘(𝑋 · 𝑌))〉} ⊆ ∙ ) |
32 | 29, 31 | sylibr 233 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 〈〈(𝐹‘𝑋), (𝐹‘𝑌)〉, (𝐹‘(𝑋 · 𝑌))〉 ∈ ∙ ) |
33 | | funopfv 6821 |
. . 3
⊢ (Fun
∙
→ (〈〈(𝐹‘𝑋), (𝐹‘𝑌)〉, (𝐹‘(𝑋 · 𝑌))〉 ∈ ∙ → ( ∙
‘〈(𝐹‘𝑋), (𝐹‘𝑌)〉) = (𝐹‘(𝑋 · 𝑌)))) |
34 | 8, 32, 33 | sylc 65 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ( ∙ ‘〈(𝐹‘𝑋), (𝐹‘𝑌)〉) = (𝐹‘(𝑋 · 𝑌))) |
35 | 1, 34 | eqtrid 2790 |
1
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝐹‘𝑋) ∙ (𝐹‘𝑌)) = (𝐹‘(𝑋 · 𝑌))) |