MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasaddvallem Structured version   Visualization version   GIF version

Theorem imasaddvallem 17468
Description: The operation of an image structure is defined to distribute over the mapping function. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
imasaddf.f (𝜑𝐹:𝑉onto𝐵)
imasaddf.e ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
imasaddflem.a (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
Assertion
Ref Expression
imasaddvallem ((𝜑𝑋𝑉𝑌𝑉) → ((𝐹𝑋) (𝐹𝑌)) = (𝐹‘(𝑋 · 𝑌)))
Distinct variable groups:   𝑞,𝑝,𝐵   𝑎,𝑏,𝑝,𝑞,𝑉   · ,𝑝,𝑞   𝑋,𝑝   𝐹,𝑎,𝑏,𝑝,𝑞   𝜑,𝑎,𝑏,𝑝,𝑞   ,𝑎,𝑏,𝑝,𝑞   𝑌,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎,𝑏)   · (𝑎,𝑏)   𝑋(𝑞,𝑎,𝑏)   𝑌(𝑎,𝑏)

Proof of Theorem imasaddvallem
StepHypRef Expression
1 df-ov 7372 . 2 ((𝐹𝑋) (𝐹𝑌)) = ( ‘⟨(𝐹𝑋), (𝐹𝑌)⟩)
2 imasaddf.f . . . . . 6 (𝜑𝐹:𝑉onto𝐵)
3 imasaddf.e . . . . . 6 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
4 imasaddflem.a . . . . . 6 (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
52, 3, 4imasaddfnlem 17467 . . . . 5 (𝜑 Fn (𝐵 × 𝐵))
6 fnfun 6600 . . . . 5 ( Fn (𝐵 × 𝐵) → Fun )
75, 6syl 17 . . . 4 (𝜑 → Fun )
873ad2ant1 1133 . . 3 ((𝜑𝑋𝑉𝑌𝑉) → Fun )
9 fveq2 6840 . . . . . . . . . . 11 (𝑝 = 𝑋 → (𝐹𝑝) = (𝐹𝑋))
109opeq1d 4839 . . . . . . . . . 10 (𝑝 = 𝑋 → ⟨(𝐹𝑝), (𝐹𝑌)⟩ = ⟨(𝐹𝑋), (𝐹𝑌)⟩)
11 fvoveq1 7392 . . . . . . . . . 10 (𝑝 = 𝑋 → (𝐹‘(𝑝 · 𝑌)) = (𝐹‘(𝑋 · 𝑌)))
1210, 11opeq12d 4841 . . . . . . . . 9 (𝑝 = 𝑋 → ⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩ = ⟨⟨(𝐹𝑋), (𝐹𝑌)⟩, (𝐹‘(𝑋 · 𝑌))⟩)
1312sneqd 4597 . . . . . . . 8 (𝑝 = 𝑋 → {⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩} = {⟨⟨(𝐹𝑋), (𝐹𝑌)⟩, (𝐹‘(𝑋 · 𝑌))⟩})
1413ssiun2s 5007 . . . . . . 7 (𝑋𝑉 → {⟨⟨(𝐹𝑋), (𝐹𝑌)⟩, (𝐹‘(𝑋 · 𝑌))⟩} ⊆ 𝑝𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩})
15143ad2ant2 1134 . . . . . 6 ((𝜑𝑋𝑉𝑌𝑉) → {⟨⟨(𝐹𝑋), (𝐹𝑌)⟩, (𝐹‘(𝑋 · 𝑌))⟩} ⊆ 𝑝𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩})
16 fveq2 6840 . . . . . . . . . . . . 13 (𝑞 = 𝑌 → (𝐹𝑞) = (𝐹𝑌))
1716opeq2d 4840 . . . . . . . . . . . 12 (𝑞 = 𝑌 → ⟨(𝐹𝑝), (𝐹𝑞)⟩ = ⟨(𝐹𝑝), (𝐹𝑌)⟩)
18 oveq2 7377 . . . . . . . . . . . . 13 (𝑞 = 𝑌 → (𝑝 · 𝑞) = (𝑝 · 𝑌))
1918fveq2d 6844 . . . . . . . . . . . 12 (𝑞 = 𝑌 → (𝐹‘(𝑝 · 𝑞)) = (𝐹‘(𝑝 · 𝑌)))
2017, 19opeq12d 4841 . . . . . . . . . . 11 (𝑞 = 𝑌 → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩)
2120sneqd 4597 . . . . . . . . . 10 (𝑞 = 𝑌 → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} = {⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩})
2221ssiun2s 5007 . . . . . . . . 9 (𝑌𝑉 → {⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩} ⊆ 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
2322ralrimivw 3129 . . . . . . . 8 (𝑌𝑉 → ∀𝑝𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩} ⊆ 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
24 ss2iun 4970 . . . . . . . 8 (∀𝑝𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩} ⊆ 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} → 𝑝𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩} ⊆ 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
2523, 24syl 17 . . . . . . 7 (𝑌𝑉 𝑝𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩} ⊆ 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
26253ad2ant3 1135 . . . . . 6 ((𝜑𝑋𝑉𝑌𝑉) → 𝑝𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩} ⊆ 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
2715, 26sstrd 3954 . . . . 5 ((𝜑𝑋𝑉𝑌𝑉) → {⟨⟨(𝐹𝑋), (𝐹𝑌)⟩, (𝐹‘(𝑋 · 𝑌))⟩} ⊆ 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
2843ad2ant1 1133 . . . . 5 ((𝜑𝑋𝑉𝑌𝑉) → = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
2927, 28sseqtrrd 3981 . . . 4 ((𝜑𝑋𝑉𝑌𝑉) → {⟨⟨(𝐹𝑋), (𝐹𝑌)⟩, (𝐹‘(𝑋 · 𝑌))⟩} ⊆ )
30 opex 5419 . . . . 5 ⟨⟨(𝐹𝑋), (𝐹𝑌)⟩, (𝐹‘(𝑋 · 𝑌))⟩ ∈ V
3130snss 4745 . . . 4 (⟨⟨(𝐹𝑋), (𝐹𝑌)⟩, (𝐹‘(𝑋 · 𝑌))⟩ ∈ ↔ {⟨⟨(𝐹𝑋), (𝐹𝑌)⟩, (𝐹‘(𝑋 · 𝑌))⟩} ⊆ )
3229, 31sylibr 234 . . 3 ((𝜑𝑋𝑉𝑌𝑉) → ⟨⟨(𝐹𝑋), (𝐹𝑌)⟩, (𝐹‘(𝑋 · 𝑌))⟩ ∈ )
33 funopfv 6892 . . 3 (Fun → (⟨⟨(𝐹𝑋), (𝐹𝑌)⟩, (𝐹‘(𝑋 · 𝑌))⟩ ∈ → ( ‘⟨(𝐹𝑋), (𝐹𝑌)⟩) = (𝐹‘(𝑋 · 𝑌))))
348, 32, 33sylc 65 . 2 ((𝜑𝑋𝑉𝑌𝑉) → ( ‘⟨(𝐹𝑋), (𝐹𝑌)⟩) = (𝐹‘(𝑋 · 𝑌)))
351, 34eqtrid 2776 1 ((𝜑𝑋𝑉𝑌𝑉) → ((𝐹𝑋) (𝐹𝑌)) = (𝐹‘(𝑋 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wss 3911  {csn 4585  cop 4591   ciun 4951   × cxp 5629  Fun wfun 6493   Fn wfn 6494  ontowfo 6497  cfv 6499  (class class class)co 7369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fo 6505  df-fv 6507  df-ov 7372
This theorem is referenced by:  imasaddval  17471  imasmulval  17474  qusaddvallem  17490
  Copyright terms: Public domain W3C validator