MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgencmp2 Structured version   Visualization version   GIF version

Theorem kgencmp2 22154
Description: The compact generator topology has the same compact sets as the original topology. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
kgencmp2 (𝐽 ∈ Top → ((𝐽t 𝐾) ∈ Comp ↔ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp))

Proof of Theorem kgencmp2
StepHypRef Expression
1 kgencmp 22153 . . 3 ((𝐽 ∈ Top ∧ (𝐽t 𝐾) ∈ Comp) → (𝐽t 𝐾) = ((𝑘Gen‘𝐽) ↾t 𝐾))
2 simpr 488 . . 3 ((𝐽 ∈ Top ∧ (𝐽t 𝐾) ∈ Comp) → (𝐽t 𝐾) ∈ Comp)
31, 2eqeltrrd 2894 . 2 ((𝐽 ∈ Top ∧ (𝐽t 𝐾) ∈ Comp) → ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp)
4 cmptop 22003 . . . . . . 7 (((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp → ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Top)
5 restrcl 21765 . . . . . . . 8 (((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Top → ((𝑘Gen‘𝐽) ∈ V ∧ 𝐾 ∈ V))
65simprd 499 . . . . . . 7 (((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Top → 𝐾 ∈ V)
74, 6syl 17 . . . . . 6 (((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp → 𝐾 ∈ V)
8 resttop 21768 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐾 ∈ V) → (𝐽t 𝐾) ∈ Top)
97, 8sylan2 595 . . . . 5 ((𝐽 ∈ Top ∧ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp) → (𝐽t 𝐾) ∈ Top)
10 toptopon2 21526 . . . . 5 ((𝐽t 𝐾) ∈ Top ↔ (𝐽t 𝐾) ∈ (TopOn‘ (𝐽t 𝐾)))
119, 10sylib 221 . . . 4 ((𝐽 ∈ Top ∧ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp) → (𝐽t 𝐾) ∈ (TopOn‘ (𝐽t 𝐾)))
12 eqid 2801 . . . . . . . . 9 𝐽 = 𝐽
1312kgenuni 22147 . . . . . . . 8 (𝐽 ∈ Top → 𝐽 = (𝑘Gen‘𝐽))
1413adantr 484 . . . . . . 7 ((𝐽 ∈ Top ∧ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp) → 𝐽 = (𝑘Gen‘𝐽))
1514ineq2d 4142 . . . . . 6 ((𝐽 ∈ Top ∧ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp) → (𝐾 𝐽) = (𝐾 (𝑘Gen‘𝐽)))
1612restuni2 21775 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐾 ∈ V) → (𝐾 𝐽) = (𝐽t 𝐾))
177, 16sylan2 595 . . . . . 6 ((𝐽 ∈ Top ∧ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp) → (𝐾 𝐽) = (𝐽t 𝐾))
18 kgenftop 22148 . . . . . . 7 (𝐽 ∈ Top → (𝑘Gen‘𝐽) ∈ Top)
19 eqid 2801 . . . . . . . 8 (𝑘Gen‘𝐽) = (𝑘Gen‘𝐽)
2019restuni2 21775 . . . . . . 7 (((𝑘Gen‘𝐽) ∈ Top ∧ 𝐾 ∈ V) → (𝐾 (𝑘Gen‘𝐽)) = ((𝑘Gen‘𝐽) ↾t 𝐾))
2118, 7, 20syl2an 598 . . . . . 6 ((𝐽 ∈ Top ∧ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp) → (𝐾 (𝑘Gen‘𝐽)) = ((𝑘Gen‘𝐽) ↾t 𝐾))
2215, 17, 213eqtr3d 2844 . . . . 5 ((𝐽 ∈ Top ∧ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp) → (𝐽t 𝐾) = ((𝑘Gen‘𝐽) ↾t 𝐾))
2322fveq2d 6653 . . . 4 ((𝐽 ∈ Top ∧ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp) → (TopOn‘ (𝐽t 𝐾)) = (TopOn‘ ((𝑘Gen‘𝐽) ↾t 𝐾)))
2411, 23eleqtrd 2895 . . 3 ((𝐽 ∈ Top ∧ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp) → (𝐽t 𝐾) ∈ (TopOn‘ ((𝑘Gen‘𝐽) ↾t 𝐾)))
25 simpr 488 . . 3 ((𝐽 ∈ Top ∧ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp) → ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp)
26 kgenss 22151 . . . . 5 (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽))
2726adantr 484 . . . 4 ((𝐽 ∈ Top ∧ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp) → 𝐽 ⊆ (𝑘Gen‘𝐽))
28 ssrest 21784 . . . 4 (((𝑘Gen‘𝐽) ∈ Top ∧ 𝐽 ⊆ (𝑘Gen‘𝐽)) → (𝐽t 𝐾) ⊆ ((𝑘Gen‘𝐽) ↾t 𝐾))
2918, 27, 28syl2an2r 684 . . 3 ((𝐽 ∈ Top ∧ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp) → (𝐽t 𝐾) ⊆ ((𝑘Gen‘𝐽) ↾t 𝐾))
30 eqid 2801 . . . 4 ((𝑘Gen‘𝐽) ↾t 𝐾) = ((𝑘Gen‘𝐽) ↾t 𝐾)
3130sscmp 22013 . . 3 (((𝐽t 𝐾) ∈ (TopOn‘ ((𝑘Gen‘𝐽) ↾t 𝐾)) ∧ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp ∧ (𝐽t 𝐾) ⊆ ((𝑘Gen‘𝐽) ↾t 𝐾)) → (𝐽t 𝐾) ∈ Comp)
3224, 25, 29, 31syl3anc 1368 . 2 ((𝐽 ∈ Top ∧ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp) → (𝐽t 𝐾) ∈ Comp)
333, 32impbida 800 1 (𝐽 ∈ Top → ((𝐽t 𝐾) ∈ Comp ↔ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  Vcvv 3444  cin 3883  wss 3884   cuni 4803  cfv 6328  (class class class)co 7139  t crest 16689  Topctop 21501  TopOnctopon 21518  Compccmp 21994  𝑘Genckgen 22141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-oadd 8093  df-er 8276  df-en 8497  df-fin 8500  df-fi 8863  df-rest 16691  df-topgen 16712  df-top 21502  df-topon 21519  df-bases 21554  df-cmp 21995  df-kgen 22142
This theorem is referenced by:  kgenidm  22155
  Copyright terms: Public domain W3C validator