MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgencmp2 Structured version   Visualization version   GIF version

Theorem kgencmp2 22697
Description: The compact generator topology has the same compact sets as the original topology. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
kgencmp2 (𝐽 ∈ Top → ((𝐽t 𝐾) ∈ Comp ↔ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp))

Proof of Theorem kgencmp2
StepHypRef Expression
1 kgencmp 22696 . . 3 ((𝐽 ∈ Top ∧ (𝐽t 𝐾) ∈ Comp) → (𝐽t 𝐾) = ((𝑘Gen‘𝐽) ↾t 𝐾))
2 simpr 485 . . 3 ((𝐽 ∈ Top ∧ (𝐽t 𝐾) ∈ Comp) → (𝐽t 𝐾) ∈ Comp)
31, 2eqeltrrd 2840 . 2 ((𝐽 ∈ Top ∧ (𝐽t 𝐾) ∈ Comp) → ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp)
4 cmptop 22546 . . . . . . 7 (((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp → ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Top)
5 restrcl 22308 . . . . . . . 8 (((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Top → ((𝑘Gen‘𝐽) ∈ V ∧ 𝐾 ∈ V))
65simprd 496 . . . . . . 7 (((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Top → 𝐾 ∈ V)
74, 6syl 17 . . . . . 6 (((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp → 𝐾 ∈ V)
8 resttop 22311 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐾 ∈ V) → (𝐽t 𝐾) ∈ Top)
97, 8sylan2 593 . . . . 5 ((𝐽 ∈ Top ∧ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp) → (𝐽t 𝐾) ∈ Top)
10 toptopon2 22067 . . . . 5 ((𝐽t 𝐾) ∈ Top ↔ (𝐽t 𝐾) ∈ (TopOn‘ (𝐽t 𝐾)))
119, 10sylib 217 . . . 4 ((𝐽 ∈ Top ∧ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp) → (𝐽t 𝐾) ∈ (TopOn‘ (𝐽t 𝐾)))
12 eqid 2738 . . . . . . . . 9 𝐽 = 𝐽
1312kgenuni 22690 . . . . . . . 8 (𝐽 ∈ Top → 𝐽 = (𝑘Gen‘𝐽))
1413adantr 481 . . . . . . 7 ((𝐽 ∈ Top ∧ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp) → 𝐽 = (𝑘Gen‘𝐽))
1514ineq2d 4146 . . . . . 6 ((𝐽 ∈ Top ∧ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp) → (𝐾 𝐽) = (𝐾 (𝑘Gen‘𝐽)))
1612restuni2 22318 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐾 ∈ V) → (𝐾 𝐽) = (𝐽t 𝐾))
177, 16sylan2 593 . . . . . 6 ((𝐽 ∈ Top ∧ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp) → (𝐾 𝐽) = (𝐽t 𝐾))
18 kgenftop 22691 . . . . . . 7 (𝐽 ∈ Top → (𝑘Gen‘𝐽) ∈ Top)
19 eqid 2738 . . . . . . . 8 (𝑘Gen‘𝐽) = (𝑘Gen‘𝐽)
2019restuni2 22318 . . . . . . 7 (((𝑘Gen‘𝐽) ∈ Top ∧ 𝐾 ∈ V) → (𝐾 (𝑘Gen‘𝐽)) = ((𝑘Gen‘𝐽) ↾t 𝐾))
2118, 7, 20syl2an 596 . . . . . 6 ((𝐽 ∈ Top ∧ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp) → (𝐾 (𝑘Gen‘𝐽)) = ((𝑘Gen‘𝐽) ↾t 𝐾))
2215, 17, 213eqtr3d 2786 . . . . 5 ((𝐽 ∈ Top ∧ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp) → (𝐽t 𝐾) = ((𝑘Gen‘𝐽) ↾t 𝐾))
2322fveq2d 6778 . . . 4 ((𝐽 ∈ Top ∧ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp) → (TopOn‘ (𝐽t 𝐾)) = (TopOn‘ ((𝑘Gen‘𝐽) ↾t 𝐾)))
2411, 23eleqtrd 2841 . . 3 ((𝐽 ∈ Top ∧ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp) → (𝐽t 𝐾) ∈ (TopOn‘ ((𝑘Gen‘𝐽) ↾t 𝐾)))
25 simpr 485 . . 3 ((𝐽 ∈ Top ∧ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp) → ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp)
26 kgenss 22694 . . . . 5 (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽))
2726adantr 481 . . . 4 ((𝐽 ∈ Top ∧ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp) → 𝐽 ⊆ (𝑘Gen‘𝐽))
28 ssrest 22327 . . . 4 (((𝑘Gen‘𝐽) ∈ Top ∧ 𝐽 ⊆ (𝑘Gen‘𝐽)) → (𝐽t 𝐾) ⊆ ((𝑘Gen‘𝐽) ↾t 𝐾))
2918, 27, 28syl2an2r 682 . . 3 ((𝐽 ∈ Top ∧ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp) → (𝐽t 𝐾) ⊆ ((𝑘Gen‘𝐽) ↾t 𝐾))
30 eqid 2738 . . . 4 ((𝑘Gen‘𝐽) ↾t 𝐾) = ((𝑘Gen‘𝐽) ↾t 𝐾)
3130sscmp 22556 . . 3 (((𝐽t 𝐾) ∈ (TopOn‘ ((𝑘Gen‘𝐽) ↾t 𝐾)) ∧ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp ∧ (𝐽t 𝐾) ⊆ ((𝑘Gen‘𝐽) ↾t 𝐾)) → (𝐽t 𝐾) ∈ Comp)
3224, 25, 29, 31syl3anc 1370 . 2 ((𝐽 ∈ Top ∧ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp) → (𝐽t 𝐾) ∈ Comp)
333, 32impbida 798 1 (𝐽 ∈ Top → ((𝐽t 𝐾) ∈ Comp ↔ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cin 3886  wss 3887   cuni 4839  cfv 6433  (class class class)co 7275  t crest 17131  Topctop 22042  TopOnctopon 22059  Compccmp 22537  𝑘Genckgen 22684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-en 8734  df-fin 8737  df-fi 9170  df-rest 17133  df-topgen 17154  df-top 22043  df-topon 22060  df-bases 22096  df-cmp 22538  df-kgen 22685
This theorem is referenced by:  kgenidm  22698
  Copyright terms: Public domain W3C validator