MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankuni2b Structured version   Visualization version   GIF version

Theorem rankuni2b 9813
Description: The value of the rank function expressed recursively: the rank of a set is the smallest ordinal number containing the ranks of all members of the set. Proposition 9.17 of [TakeutiZaring] p. 79. (Contributed by Mario Carneiro, 8-Jun-2013.)
Assertion
Ref Expression
rankuni2b (𝐴 (𝑅1 “ On) → (rank‘ 𝐴) = 𝑥𝐴 (rank‘𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem rankuni2b
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniwf 9779 . . . 4 (𝐴 (𝑅1 “ On) ↔ 𝐴 (𝑅1 “ On))
2 rankval3b 9786 . . . 4 ( 𝐴 (𝑅1 “ On) → (rank‘ 𝐴) = {𝑧 ∈ On ∣ ∀𝑦 𝐴(rank‘𝑦) ∈ 𝑧})
31, 2sylbi 217 . . 3 (𝐴 (𝑅1 “ On) → (rank‘ 𝐴) = {𝑧 ∈ On ∣ ∀𝑦 𝐴(rank‘𝑦) ∈ 𝑧})
4 eleq2 2818 . . . . . 6 (𝑧 = 𝑥𝐴 (rank‘𝑥) → ((rank‘𝑦) ∈ 𝑧 ↔ (rank‘𝑦) ∈ 𝑥𝐴 (rank‘𝑥)))
54ralbidv 3157 . . . . 5 (𝑧 = 𝑥𝐴 (rank‘𝑥) → (∀𝑦 𝐴(rank‘𝑦) ∈ 𝑧 ↔ ∀𝑦 𝐴(rank‘𝑦) ∈ 𝑥𝐴 (rank‘𝑥)))
6 iuneq1 4975 . . . . . . 7 (𝑦 = 𝐴 𝑥𝑦 (rank‘𝑥) = 𝑥𝐴 (rank‘𝑥))
76eleq1d 2814 . . . . . 6 (𝑦 = 𝐴 → ( 𝑥𝑦 (rank‘𝑥) ∈ On ↔ 𝑥𝐴 (rank‘𝑥) ∈ On))
8 vex 3454 . . . . . . 7 𝑦 ∈ V
9 rankon 9755 . . . . . . . 8 (rank‘𝑥) ∈ On
109rgenw 3049 . . . . . . 7 𝑥𝑦 (rank‘𝑥) ∈ On
11 iunon 8311 . . . . . . 7 ((𝑦 ∈ V ∧ ∀𝑥𝑦 (rank‘𝑥) ∈ On) → 𝑥𝑦 (rank‘𝑥) ∈ On)
128, 10, 11mp2an 692 . . . . . 6 𝑥𝑦 (rank‘𝑥) ∈ On
137, 12vtoclg 3523 . . . . 5 (𝐴 (𝑅1 “ On) → 𝑥𝐴 (rank‘𝑥) ∈ On)
14 eluni2 4878 . . . . . . 7 (𝑦 𝐴 ↔ ∃𝑥𝐴 𝑦𝑥)
15 nfv 1914 . . . . . . . 8 𝑥 𝐴 (𝑅1 “ On)
16 nfiu1 4994 . . . . . . . . 9 𝑥 𝑥𝐴 (rank‘𝑥)
1716nfel2 2911 . . . . . . . 8 𝑥(rank‘𝑦) ∈ 𝑥𝐴 (rank‘𝑥)
18 r1elssi 9765 . . . . . . . . . . 11 (𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
1918sseld 3948 . . . . . . . . . 10 (𝐴 (𝑅1 “ On) → (𝑥𝐴𝑥 (𝑅1 “ On)))
20 rankelb 9784 . . . . . . . . . 10 (𝑥 (𝑅1 “ On) → (𝑦𝑥 → (rank‘𝑦) ∈ (rank‘𝑥)))
2119, 20syl6 35 . . . . . . . . 9 (𝐴 (𝑅1 “ On) → (𝑥𝐴 → (𝑦𝑥 → (rank‘𝑦) ∈ (rank‘𝑥))))
22 ssiun2 5014 . . . . . . . . . . 11 (𝑥𝐴 → (rank‘𝑥) ⊆ 𝑥𝐴 (rank‘𝑥))
2322sseld 3948 . . . . . . . . . 10 (𝑥𝐴 → ((rank‘𝑦) ∈ (rank‘𝑥) → (rank‘𝑦) ∈ 𝑥𝐴 (rank‘𝑥)))
2423a1i 11 . . . . . . . . 9 (𝐴 (𝑅1 “ On) → (𝑥𝐴 → ((rank‘𝑦) ∈ (rank‘𝑥) → (rank‘𝑦) ∈ 𝑥𝐴 (rank‘𝑥))))
2521, 24syldd 72 . . . . . . . 8 (𝐴 (𝑅1 “ On) → (𝑥𝐴 → (𝑦𝑥 → (rank‘𝑦) ∈ 𝑥𝐴 (rank‘𝑥))))
2615, 17, 25rexlimd 3245 . . . . . . 7 (𝐴 (𝑅1 “ On) → (∃𝑥𝐴 𝑦𝑥 → (rank‘𝑦) ∈ 𝑥𝐴 (rank‘𝑥)))
2714, 26biimtrid 242 . . . . . 6 (𝐴 (𝑅1 “ On) → (𝑦 𝐴 → (rank‘𝑦) ∈ 𝑥𝐴 (rank‘𝑥)))
2827ralrimiv 3125 . . . . 5 (𝐴 (𝑅1 “ On) → ∀𝑦 𝐴(rank‘𝑦) ∈ 𝑥𝐴 (rank‘𝑥))
295, 13, 28elrabd 3664 . . . 4 (𝐴 (𝑅1 “ On) → 𝑥𝐴 (rank‘𝑥) ∈ {𝑧 ∈ On ∣ ∀𝑦 𝐴(rank‘𝑦) ∈ 𝑧})
30 intss1 4930 . . . 4 ( 𝑥𝐴 (rank‘𝑥) ∈ {𝑧 ∈ On ∣ ∀𝑦 𝐴(rank‘𝑦) ∈ 𝑧} → {𝑧 ∈ On ∣ ∀𝑦 𝐴(rank‘𝑦) ∈ 𝑧} ⊆ 𝑥𝐴 (rank‘𝑥))
3129, 30syl 17 . . 3 (𝐴 (𝑅1 “ On) → {𝑧 ∈ On ∣ ∀𝑦 𝐴(rank‘𝑦) ∈ 𝑧} ⊆ 𝑥𝐴 (rank‘𝑥))
323, 31eqsstrd 3984 . 2 (𝐴 (𝑅1 “ On) → (rank‘ 𝐴) ⊆ 𝑥𝐴 (rank‘𝑥))
331biimpi 216 . . . . 5 (𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
34 elssuni 4904 . . . . 5 (𝑥𝐴𝑥 𝐴)
35 rankssb 9808 . . . . 5 ( 𝐴 (𝑅1 “ On) → (𝑥 𝐴 → (rank‘𝑥) ⊆ (rank‘ 𝐴)))
3633, 34, 35syl2im 40 . . . 4 (𝐴 (𝑅1 “ On) → (𝑥𝐴 → (rank‘𝑥) ⊆ (rank‘ 𝐴)))
3736ralrimiv 3125 . . 3 (𝐴 (𝑅1 “ On) → ∀𝑥𝐴 (rank‘𝑥) ⊆ (rank‘ 𝐴))
38 iunss 5012 . . 3 ( 𝑥𝐴 (rank‘𝑥) ⊆ (rank‘ 𝐴) ↔ ∀𝑥𝐴 (rank‘𝑥) ⊆ (rank‘ 𝐴))
3937, 38sylibr 234 . 2 (𝐴 (𝑅1 “ On) → 𝑥𝐴 (rank‘𝑥) ⊆ (rank‘ 𝐴))
4032, 39eqssd 3967 1 (𝐴 (𝑅1 “ On) → (rank‘ 𝐴) = 𝑥𝐴 (rank‘𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  wss 3917   cuni 4874   cint 4913   ciun 4958  cima 5644  Oncon0 6335  cfv 6514  𝑅1cr1 9722  rankcrnk 9723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-r1 9724  df-rank 9725
This theorem is referenced by:  rankuni2  9815  rankcf  10737
  Copyright terms: Public domain W3C validator