MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankuni2b Structured version   Visualization version   GIF version

Theorem rankuni2b 8970
Description: The value of the rank function expressed recursively: the rank of a set is the smallest ordinal number containing the ranks of all members of the set. Proposition 9.17 of [TakeutiZaring] p. 79. (Contributed by Mario Carneiro, 8-Jun-2013.)
Assertion
Ref Expression
rankuni2b (𝐴 (𝑅1 “ On) → (rank‘ 𝐴) = 𝑥𝐴 (rank‘𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem rankuni2b
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniwf 8936 . . . 4 (𝐴 (𝑅1 “ On) ↔ 𝐴 (𝑅1 “ On))
2 rankval3b 8943 . . . 4 ( 𝐴 (𝑅1 “ On) → (rank‘ 𝐴) = {𝑧 ∈ On ∣ ∀𝑦 𝐴(rank‘𝑦) ∈ 𝑧})
31, 2sylbi 208 . . 3 (𝐴 (𝑅1 “ On) → (rank‘ 𝐴) = {𝑧 ∈ On ∣ ∀𝑦 𝐴(rank‘𝑦) ∈ 𝑧})
4 iuneq1 4737 . . . . . . 7 (𝑦 = 𝐴 𝑥𝑦 (rank‘𝑥) = 𝑥𝐴 (rank‘𝑥))
54eleq1d 2881 . . . . . 6 (𝑦 = 𝐴 → ( 𝑥𝑦 (rank‘𝑥) ∈ On ↔ 𝑥𝐴 (rank‘𝑥) ∈ On))
6 vex 3405 . . . . . . 7 𝑦 ∈ V
7 rankon 8912 . . . . . . . 8 (rank‘𝑥) ∈ On
87rgenw 3123 . . . . . . 7 𝑥𝑦 (rank‘𝑥) ∈ On
9 iunon 7679 . . . . . . 7 ((𝑦 ∈ V ∧ ∀𝑥𝑦 (rank‘𝑥) ∈ On) → 𝑥𝑦 (rank‘𝑥) ∈ On)
106, 8, 9mp2an 675 . . . . . 6 𝑥𝑦 (rank‘𝑥) ∈ On
115, 10vtoclg 3470 . . . . 5 (𝐴 (𝑅1 “ On) → 𝑥𝐴 (rank‘𝑥) ∈ On)
12 eluni2 4645 . . . . . . 7 (𝑦 𝐴 ↔ ∃𝑥𝐴 𝑦𝑥)
13 nfv 2005 . . . . . . . 8 𝑥 𝐴 (𝑅1 “ On)
14 nfiu1 4753 . . . . . . . . 9 𝑥 𝑥𝐴 (rank‘𝑥)
1514nfel2 2976 . . . . . . . 8 𝑥(rank‘𝑦) ∈ 𝑥𝐴 (rank‘𝑥)
16 r1elssi 8922 . . . . . . . . . . 11 (𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
1716sseld 3808 . . . . . . . . . 10 (𝐴 (𝑅1 “ On) → (𝑥𝐴𝑥 (𝑅1 “ On)))
18 rankelb 8941 . . . . . . . . . 10 (𝑥 (𝑅1 “ On) → (𝑦𝑥 → (rank‘𝑦) ∈ (rank‘𝑥)))
1917, 18syl6 35 . . . . . . . . 9 (𝐴 (𝑅1 “ On) → (𝑥𝐴 → (𝑦𝑥 → (rank‘𝑦) ∈ (rank‘𝑥))))
20 ssiun2 4766 . . . . . . . . . . 11 (𝑥𝐴 → (rank‘𝑥) ⊆ 𝑥𝐴 (rank‘𝑥))
2120sseld 3808 . . . . . . . . . 10 (𝑥𝐴 → ((rank‘𝑦) ∈ (rank‘𝑥) → (rank‘𝑦) ∈ 𝑥𝐴 (rank‘𝑥)))
2221a1i 11 . . . . . . . . 9 (𝐴 (𝑅1 “ On) → (𝑥𝐴 → ((rank‘𝑦) ∈ (rank‘𝑥) → (rank‘𝑦) ∈ 𝑥𝐴 (rank‘𝑥))))
2319, 22syldd 72 . . . . . . . 8 (𝐴 (𝑅1 “ On) → (𝑥𝐴 → (𝑦𝑥 → (rank‘𝑦) ∈ 𝑥𝐴 (rank‘𝑥))))
2413, 15, 23rexlimd 3225 . . . . . . 7 (𝐴 (𝑅1 “ On) → (∃𝑥𝐴 𝑦𝑥 → (rank‘𝑦) ∈ 𝑥𝐴 (rank‘𝑥)))
2512, 24syl5bi 233 . . . . . 6 (𝐴 (𝑅1 “ On) → (𝑦 𝐴 → (rank‘𝑦) ∈ 𝑥𝐴 (rank‘𝑥)))
2625ralrimiv 3164 . . . . 5 (𝐴 (𝑅1 “ On) → ∀𝑦 𝐴(rank‘𝑦) ∈ 𝑥𝐴 (rank‘𝑥))
27 eleq2 2885 . . . . . . 7 (𝑧 = 𝑥𝐴 (rank‘𝑥) → ((rank‘𝑦) ∈ 𝑧 ↔ (rank‘𝑦) ∈ 𝑥𝐴 (rank‘𝑥)))
2827ralbidv 3185 . . . . . 6 (𝑧 = 𝑥𝐴 (rank‘𝑥) → (∀𝑦 𝐴(rank‘𝑦) ∈ 𝑧 ↔ ∀𝑦 𝐴(rank‘𝑦) ∈ 𝑥𝐴 (rank‘𝑥)))
2928elrab 3570 . . . . 5 ( 𝑥𝐴 (rank‘𝑥) ∈ {𝑧 ∈ On ∣ ∀𝑦 𝐴(rank‘𝑦) ∈ 𝑧} ↔ ( 𝑥𝐴 (rank‘𝑥) ∈ On ∧ ∀𝑦 𝐴(rank‘𝑦) ∈ 𝑥𝐴 (rank‘𝑥)))
3011, 26, 29sylanbrc 574 . . . 4 (𝐴 (𝑅1 “ On) → 𝑥𝐴 (rank‘𝑥) ∈ {𝑧 ∈ On ∣ ∀𝑦 𝐴(rank‘𝑦) ∈ 𝑧})
31 intss1 4695 . . . 4 ( 𝑥𝐴 (rank‘𝑥) ∈ {𝑧 ∈ On ∣ ∀𝑦 𝐴(rank‘𝑦) ∈ 𝑧} → {𝑧 ∈ On ∣ ∀𝑦 𝐴(rank‘𝑦) ∈ 𝑧} ⊆ 𝑥𝐴 (rank‘𝑥))
3230, 31syl 17 . . 3 (𝐴 (𝑅1 “ On) → {𝑧 ∈ On ∣ ∀𝑦 𝐴(rank‘𝑦) ∈ 𝑧} ⊆ 𝑥𝐴 (rank‘𝑥))
333, 32eqsstrd 3847 . 2 (𝐴 (𝑅1 “ On) → (rank‘ 𝐴) ⊆ 𝑥𝐴 (rank‘𝑥))
341biimpi 207 . . . . 5 (𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
35 elssuni 4672 . . . . 5 (𝑥𝐴𝑥 𝐴)
36 rankssb 8965 . . . . 5 ( 𝐴 (𝑅1 “ On) → (𝑥 𝐴 → (rank‘𝑥) ⊆ (rank‘ 𝐴)))
3734, 35, 36syl2im 40 . . . 4 (𝐴 (𝑅1 “ On) → (𝑥𝐴 → (rank‘𝑥) ⊆ (rank‘ 𝐴)))
3837ralrimiv 3164 . . 3 (𝐴 (𝑅1 “ On) → ∀𝑥𝐴 (rank‘𝑥) ⊆ (rank‘ 𝐴))
39 iunss 4764 . . 3 ( 𝑥𝐴 (rank‘𝑥) ⊆ (rank‘ 𝐴) ↔ ∀𝑥𝐴 (rank‘𝑥) ⊆ (rank‘ 𝐴))
4038, 39sylibr 225 . 2 (𝐴 (𝑅1 “ On) → 𝑥𝐴 (rank‘𝑥) ⊆ (rank‘ 𝐴))
4133, 40eqssd 3826 1 (𝐴 (𝑅1 “ On) → (rank‘ 𝐴) = 𝑥𝐴 (rank‘𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1637  wcel 2157  wral 3107  wrex 3108  {crab 3111  Vcvv 3402  wss 3780   cuni 4641   cint 4680   ciun 4723  cima 5325  Oncon0 5947  cfv 6108  𝑅1cr1 8879  rankcrnk 8880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-rep 4975  ax-sep 4986  ax-nul 4994  ax-pow 5046  ax-pr 5107  ax-un 7186
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-pss 3796  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-tp 4386  df-op 4388  df-uni 4642  df-int 4681  df-iun 4725  df-br 4856  df-opab 4918  df-mpt 4935  df-tr 4958  df-id 5230  df-eprel 5235  df-po 5243  df-so 5244  df-fr 5281  df-we 5283  df-xp 5328  df-rel 5329  df-cnv 5330  df-co 5331  df-dm 5332  df-rn 5333  df-res 5334  df-ima 5335  df-pred 5904  df-ord 5950  df-on 5951  df-lim 5952  df-suc 5953  df-iota 6071  df-fun 6110  df-fn 6111  df-f 6112  df-f1 6113  df-fo 6114  df-f1o 6115  df-fv 6116  df-om 7303  df-wrecs 7649  df-recs 7711  df-rdg 7749  df-r1 8881  df-rank 8882
This theorem is referenced by:  rankuni2  8972  rankcf  9891
  Copyright terms: Public domain W3C validator