Step | Hyp | Ref
| Expression |
1 | | uniwf 9508 |
. . . 4
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ ∪ 𝐴
∈ ∪ (𝑅1 “
On)) |
2 | | rankval3b 9515 |
. . . 4
⊢ (∪ 𝐴
∈ ∪ (𝑅1 “ On) →
(rank‘∪ 𝐴) = ∩ {𝑧 ∈ On ∣ ∀𝑦 ∈ ∪ 𝐴(rank‘𝑦) ∈ 𝑧}) |
3 | 1, 2 | sylbi 216 |
. . 3
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) →
(rank‘∪ 𝐴) = ∩ {𝑧 ∈ On ∣ ∀𝑦 ∈ ∪ 𝐴(rank‘𝑦) ∈ 𝑧}) |
4 | | eleq2 2827 |
. . . . . 6
⊢ (𝑧 = ∪ 𝑥 ∈ 𝐴 (rank‘𝑥) → ((rank‘𝑦) ∈ 𝑧 ↔ (rank‘𝑦) ∈ ∪
𝑥 ∈ 𝐴 (rank‘𝑥))) |
5 | 4 | ralbidv 3120 |
. . . . 5
⊢ (𝑧 = ∪ 𝑥 ∈ 𝐴 (rank‘𝑥) → (∀𝑦 ∈ ∪ 𝐴(rank‘𝑦) ∈ 𝑧 ↔ ∀𝑦 ∈ ∪ 𝐴(rank‘𝑦) ∈ ∪
𝑥 ∈ 𝐴 (rank‘𝑥))) |
6 | | iuneq1 4937 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → ∪
𝑥 ∈ 𝑦 (rank‘𝑥) = ∪ 𝑥 ∈ 𝐴 (rank‘𝑥)) |
7 | 6 | eleq1d 2823 |
. . . . . 6
⊢ (𝑦 = 𝐴 → (∪
𝑥 ∈ 𝑦 (rank‘𝑥) ∈ On ↔ ∪ 𝑥 ∈ 𝐴 (rank‘𝑥) ∈ On)) |
8 | | vex 3426 |
. . . . . . 7
⊢ 𝑦 ∈ V |
9 | | rankon 9484 |
. . . . . . . 8
⊢
(rank‘𝑥)
∈ On |
10 | 9 | rgenw 3075 |
. . . . . . 7
⊢
∀𝑥 ∈
𝑦 (rank‘𝑥) ∈ On |
11 | | iunon 8141 |
. . . . . . 7
⊢ ((𝑦 ∈ V ∧ ∀𝑥 ∈ 𝑦 (rank‘𝑥) ∈ On) → ∪ 𝑥 ∈ 𝑦 (rank‘𝑥) ∈ On) |
12 | 8, 10, 11 | mp2an 688 |
. . . . . 6
⊢ ∪ 𝑥 ∈ 𝑦 (rank‘𝑥) ∈ On |
13 | 7, 12 | vtoclg 3495 |
. . . . 5
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∪ 𝑥 ∈ 𝐴 (rank‘𝑥) ∈ On) |
14 | | eluni2 4840 |
. . . . . . 7
⊢ (𝑦 ∈ ∪ 𝐴
↔ ∃𝑥 ∈
𝐴 𝑦 ∈ 𝑥) |
15 | | nfv 1918 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝐴 ∈ ∪ (𝑅1 “ On) |
16 | | nfiu1 4955 |
. . . . . . . . 9
⊢
Ⅎ𝑥∪ 𝑥 ∈ 𝐴 (rank‘𝑥) |
17 | 16 | nfel2 2924 |
. . . . . . . 8
⊢
Ⅎ𝑥(rank‘𝑦) ∈ ∪
𝑥 ∈ 𝐴 (rank‘𝑥) |
18 | | r1elssi 9494 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ ∪ (𝑅1 “ On)) |
19 | 18 | sseld 3916 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (𝑥 ∈ 𝐴 → 𝑥 ∈ ∪
(𝑅1 “ On))) |
20 | | rankelb 9513 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → (𝑦 ∈ 𝑥 → (rank‘𝑦) ∈ (rank‘𝑥))) |
21 | 19, 20 | syl6 35 |
. . . . . . . . 9
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝑥 → (rank‘𝑦) ∈ (rank‘𝑥)))) |
22 | | ssiun2 4973 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → (rank‘𝑥) ⊆ ∪
𝑥 ∈ 𝐴 (rank‘𝑥)) |
23 | 22 | sseld 3916 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 → ((rank‘𝑦) ∈ (rank‘𝑥) → (rank‘𝑦) ∈ ∪
𝑥 ∈ 𝐴 (rank‘𝑥))) |
24 | 23 | a1i 11 |
. . . . . . . . 9
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (𝑥 ∈ 𝐴 → ((rank‘𝑦) ∈ (rank‘𝑥) → (rank‘𝑦) ∈ ∪
𝑥 ∈ 𝐴 (rank‘𝑥)))) |
25 | 21, 24 | syldd 72 |
. . . . . . . 8
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝑥 → (rank‘𝑦) ∈ ∪
𝑥 ∈ 𝐴 (rank‘𝑥)))) |
26 | 15, 17, 25 | rexlimd 3245 |
. . . . . . 7
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 → (rank‘𝑦) ∈ ∪
𝑥 ∈ 𝐴 (rank‘𝑥))) |
27 | 14, 26 | syl5bi 241 |
. . . . . 6
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (𝑦 ∈ ∪ 𝐴
→ (rank‘𝑦)
∈ ∪ 𝑥 ∈ 𝐴 (rank‘𝑥))) |
28 | 27 | ralrimiv 3106 |
. . . . 5
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∀𝑦 ∈ ∪ 𝐴(rank‘𝑦) ∈ ∪
𝑥 ∈ 𝐴 (rank‘𝑥)) |
29 | 5, 13, 28 | elrabd 3619 |
. . . 4
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∪ 𝑥 ∈ 𝐴 (rank‘𝑥) ∈ {𝑧 ∈ On ∣ ∀𝑦 ∈ ∪ 𝐴(rank‘𝑦) ∈ 𝑧}) |
30 | | intss1 4891 |
. . . 4
⊢ (∪ 𝑥 ∈ 𝐴 (rank‘𝑥) ∈ {𝑧 ∈ On ∣ ∀𝑦 ∈ ∪ 𝐴(rank‘𝑦) ∈ 𝑧} → ∩ {𝑧 ∈ On ∣ ∀𝑦 ∈ ∪ 𝐴(rank‘𝑦) ∈ 𝑧} ⊆ ∪
𝑥 ∈ 𝐴 (rank‘𝑥)) |
31 | 29, 30 | syl 17 |
. . 3
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∩ {𝑧
∈ On ∣ ∀𝑦
∈ ∪ 𝐴(rank‘𝑦) ∈ 𝑧} ⊆ ∪
𝑥 ∈ 𝐴 (rank‘𝑥)) |
32 | 3, 31 | eqsstrd 3955 |
. 2
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) →
(rank‘∪ 𝐴) ⊆ ∪ 𝑥 ∈ 𝐴 (rank‘𝑥)) |
33 | 1 | biimpi 215 |
. . . . 5
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∪ 𝐴
∈ ∪ (𝑅1 “
On)) |
34 | | elssuni 4868 |
. . . . 5
⊢ (𝑥 ∈ 𝐴 → 𝑥 ⊆ ∪ 𝐴) |
35 | | rankssb 9537 |
. . . . 5
⊢ (∪ 𝐴
∈ ∪ (𝑅1 “ On) →
(𝑥 ⊆ ∪ 𝐴
→ (rank‘𝑥)
⊆ (rank‘∪ 𝐴))) |
36 | 33, 34, 35 | syl2im 40 |
. . . 4
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (𝑥 ∈ 𝐴 → (rank‘𝑥) ⊆ (rank‘∪ 𝐴))) |
37 | 36 | ralrimiv 3106 |
. . 3
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∀𝑥 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘∪ 𝐴)) |
38 | | iunss 4971 |
. . 3
⊢ (∪ 𝑥 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘∪ 𝐴)
↔ ∀𝑥 ∈
𝐴 (rank‘𝑥) ⊆ (rank‘∪ 𝐴)) |
39 | 37, 38 | sylibr 233 |
. 2
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∪ 𝑥 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘∪ 𝐴)) |
40 | 32, 39 | eqssd 3934 |
1
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) →
(rank‘∪ 𝐴) = ∪
𝑥 ∈ 𝐴 (rank‘𝑥)) |