Step | Hyp | Ref
| Expression |
1 | | uniwf 9814 |
. . . 4
β’ (π΄ β βͺ (π
1 β On) β βͺ π΄
β βͺ (π
1 β
On)) |
2 | | rankval3b 9821 |
. . . 4
β’ (βͺ π΄
β βͺ (π
1 β On) β
(rankββͺ π΄) = β© {π§ β On β£ βπ¦ β βͺ π΄(rankβπ¦) β π§}) |
3 | 1, 2 | sylbi 216 |
. . 3
β’ (π΄ β βͺ (π
1 β On) β
(rankββͺ π΄) = β© {π§ β On β£ βπ¦ β βͺ π΄(rankβπ¦) β π§}) |
4 | | eleq2 2823 |
. . . . . 6
β’ (π§ = βͺ π₯ β π΄ (rankβπ₯) β ((rankβπ¦) β π§ β (rankβπ¦) β βͺ
π₯ β π΄ (rankβπ₯))) |
5 | 4 | ralbidv 3178 |
. . . . 5
β’ (π§ = βͺ π₯ β π΄ (rankβπ₯) β (βπ¦ β βͺ π΄(rankβπ¦) β π§ β βπ¦ β βͺ π΄(rankβπ¦) β βͺ
π₯ β π΄ (rankβπ₯))) |
6 | | iuneq1 5014 |
. . . . . . 7
β’ (π¦ = π΄ β βͺ
π₯ β π¦ (rankβπ₯) = βͺ π₯ β π΄ (rankβπ₯)) |
7 | 6 | eleq1d 2819 |
. . . . . 6
β’ (π¦ = π΄ β (βͺ
π₯ β π¦ (rankβπ₯) β On β βͺ π₯ β π΄ (rankβπ₯) β On)) |
8 | | vex 3479 |
. . . . . . 7
β’ π¦ β V |
9 | | rankon 9790 |
. . . . . . . 8
β’
(rankβπ₯)
β On |
10 | 9 | rgenw 3066 |
. . . . . . 7
β’
βπ₯ β
π¦ (rankβπ₯) β On |
11 | | iunon 8339 |
. . . . . . 7
β’ ((π¦ β V β§ βπ₯ β π¦ (rankβπ₯) β On) β βͺ π₯ β π¦ (rankβπ₯) β On) |
12 | 8, 10, 11 | mp2an 691 |
. . . . . 6
β’ βͺ π₯ β π¦ (rankβπ₯) β On |
13 | 7, 12 | vtoclg 3557 |
. . . . 5
β’ (π΄ β βͺ (π
1 β On) β βͺ π₯ β π΄ (rankβπ₯) β On) |
14 | | eluni2 4913 |
. . . . . . 7
β’ (π¦ β βͺ π΄
β βπ₯ β
π΄ π¦ β π₯) |
15 | | nfv 1918 |
. . . . . . . 8
β’
β²π₯ π΄ β βͺ (π
1 β On) |
16 | | nfiu1 5032 |
. . . . . . . . 9
β’
β²π₯βͺ π₯ β π΄ (rankβπ₯) |
17 | 16 | nfel2 2922 |
. . . . . . . 8
β’
β²π₯(rankβπ¦) β βͺ
π₯ β π΄ (rankβπ₯) |
18 | | r1elssi 9800 |
. . . . . . . . . . 11
β’ (π΄ β βͺ (π
1 β On) β π΄ β βͺ (π
1 β On)) |
19 | 18 | sseld 3982 |
. . . . . . . . . 10
β’ (π΄ β βͺ (π
1 β On) β (π₯ β π΄ β π₯ β βͺ
(π
1 β On))) |
20 | | rankelb 9819 |
. . . . . . . . . 10
β’ (π₯ β βͺ (π
1 β On) β (π¦ β π₯ β (rankβπ¦) β (rankβπ₯))) |
21 | 19, 20 | syl6 35 |
. . . . . . . . 9
β’ (π΄ β βͺ (π
1 β On) β (π₯ β π΄ β (π¦ β π₯ β (rankβπ¦) β (rankβπ₯)))) |
22 | | ssiun2 5051 |
. . . . . . . . . . 11
β’ (π₯ β π΄ β (rankβπ₯) β βͺ
π₯ β π΄ (rankβπ₯)) |
23 | 22 | sseld 3982 |
. . . . . . . . . 10
β’ (π₯ β π΄ β ((rankβπ¦) β (rankβπ₯) β (rankβπ¦) β βͺ
π₯ β π΄ (rankβπ₯))) |
24 | 23 | a1i 11 |
. . . . . . . . 9
β’ (π΄ β βͺ (π
1 β On) β (π₯ β π΄ β ((rankβπ¦) β (rankβπ₯) β (rankβπ¦) β βͺ
π₯ β π΄ (rankβπ₯)))) |
25 | 21, 24 | syldd 72 |
. . . . . . . 8
β’ (π΄ β βͺ (π
1 β On) β (π₯ β π΄ β (π¦ β π₯ β (rankβπ¦) β βͺ
π₯ β π΄ (rankβπ₯)))) |
26 | 15, 17, 25 | rexlimd 3264 |
. . . . . . 7
β’ (π΄ β βͺ (π
1 β On) β (βπ₯ β π΄ π¦ β π₯ β (rankβπ¦) β βͺ
π₯ β π΄ (rankβπ₯))) |
27 | 14, 26 | biimtrid 241 |
. . . . . 6
β’ (π΄ β βͺ (π
1 β On) β (π¦ β βͺ π΄
β (rankβπ¦)
β βͺ π₯ β π΄ (rankβπ₯))) |
28 | 27 | ralrimiv 3146 |
. . . . 5
β’ (π΄ β βͺ (π
1 β On) β βπ¦ β βͺ π΄(rankβπ¦) β βͺ
π₯ β π΄ (rankβπ₯)) |
29 | 5, 13, 28 | elrabd 3686 |
. . . 4
β’ (π΄ β βͺ (π
1 β On) β βͺ π₯ β π΄ (rankβπ₯) β {π§ β On β£ βπ¦ β βͺ π΄(rankβπ¦) β π§}) |
30 | | intss1 4968 |
. . . 4
β’ (βͺ π₯ β π΄ (rankβπ₯) β {π§ β On β£ βπ¦ β βͺ π΄(rankβπ¦) β π§} β β© {π§ β On β£ βπ¦ β βͺ π΄(rankβπ¦) β π§} β βͺ
π₯ β π΄ (rankβπ₯)) |
31 | 29, 30 | syl 17 |
. . 3
β’ (π΄ β βͺ (π
1 β On) β β© {π§
β On β£ βπ¦
β βͺ π΄(rankβπ¦) β π§} β βͺ
π₯ β π΄ (rankβπ₯)) |
32 | 3, 31 | eqsstrd 4021 |
. 2
β’ (π΄ β βͺ (π
1 β On) β
(rankββͺ π΄) β βͺ π₯ β π΄ (rankβπ₯)) |
33 | 1 | biimpi 215 |
. . . . 5
β’ (π΄ β βͺ (π
1 β On) β βͺ π΄
β βͺ (π
1 β
On)) |
34 | | elssuni 4942 |
. . . . 5
β’ (π₯ β π΄ β π₯ β βͺ π΄) |
35 | | rankssb 9843 |
. . . . 5
β’ (βͺ π΄
β βͺ (π
1 β On) β
(π₯ β βͺ π΄
β (rankβπ₯)
β (rankββͺ π΄))) |
36 | 33, 34, 35 | syl2im 40 |
. . . 4
β’ (π΄ β βͺ (π
1 β On) β (π₯ β π΄ β (rankβπ₯) β (rankββͺ π΄))) |
37 | 36 | ralrimiv 3146 |
. . 3
β’ (π΄ β βͺ (π
1 β On) β βπ₯ β π΄ (rankβπ₯) β (rankββͺ π΄)) |
38 | | iunss 5049 |
. . 3
β’ (βͺ π₯ β π΄ (rankβπ₯) β (rankββͺ π΄)
β βπ₯ β
π΄ (rankβπ₯) β (rankββͺ π΄)) |
39 | 37, 38 | sylibr 233 |
. 2
β’ (π΄ β βͺ (π
1 β On) β βͺ π₯ β π΄ (rankβπ₯) β (rankββͺ π΄)) |
40 | 32, 39 | eqssd 4000 |
1
β’ (π΄ β βͺ (π
1 β On) β
(rankββͺ π΄) = βͺ
π₯ β π΄ (rankβπ₯)) |