Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  voliunsge0lem Structured version   Visualization version   GIF version

Theorem voliunsge0lem 46470
Description: The Lebesgue measure function is countably additive. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
voliunsge0lem.s 𝑆 = seq1( + , 𝐺)
voliunsge0lem.g 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))
voliunsge0lem.e (𝜑𝐸:ℕ⟶dom vol)
voliunsge0lem.d (𝜑Disj 𝑛 ∈ ℕ (𝐸𝑛))
Assertion
Ref Expression
voliunsge0lem (𝜑 → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))))
Distinct variable groups:   𝑛,𝐸   𝜑,𝑛
Allowed substitution hints:   𝑆(𝑛)   𝐺(𝑛)

Proof of Theorem voliunsge0lem
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . . 5 𝑛𝜑
2 nfcv 2891 . . . . . . 7 𝑛vol
3 nfiu1 4991 . . . . . . 7 𝑛 𝑛 ∈ ℕ (𝐸𝑛)
42, 3nffv 6868 . . . . . 6 𝑛(vol‘ 𝑛 ∈ ℕ (𝐸𝑛))
54nfeq1 2907 . . . . 5 𝑛(vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = +∞
6 iccssxr 13391 . . . . . . . . . 10 (0[,]+∞) ⊆ ℝ*
7 volf 25430 . . . . . . . . . . . 12 vol:dom vol⟶(0[,]+∞)
87a1i 11 . . . . . . . . . . 11 (𝜑 → vol:dom vol⟶(0[,]+∞))
9 voliunsge0lem.e . . . . . . . . . . . . . 14 (𝜑𝐸:ℕ⟶dom vol)
109ffvelcdmda 7056 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) ∈ dom vol)
1110ralrimiva 3125 . . . . . . . . . . . 12 (𝜑 → ∀𝑛 ∈ ℕ (𝐸𝑛) ∈ dom vol)
12 iunmbl 25454 . . . . . . . . . . . 12 (∀𝑛 ∈ ℕ (𝐸𝑛) ∈ dom vol → 𝑛 ∈ ℕ (𝐸𝑛) ∈ dom vol)
1311, 12syl 17 . . . . . . . . . . 11 (𝜑 𝑛 ∈ ℕ (𝐸𝑛) ∈ dom vol)
148, 13ffvelcdmd 7057 . . . . . . . . . 10 (𝜑 → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) ∈ (0[,]+∞))
156, 14sselid 3944 . . . . . . . . 9 (𝜑 → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) ∈ ℝ*)
1615adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) ∈ ℝ*)
17163adant3 1132 . . . . . . 7 ((𝜑𝑛 ∈ ℕ ∧ (vol‘(𝐸𝑛)) = +∞) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) ∈ ℝ*)
18 id 22 . . . . . . . . . 10 ((vol‘(𝐸𝑛)) = +∞ → (vol‘(𝐸𝑛)) = +∞)
1918eqcomd 2735 . . . . . . . . 9 ((vol‘(𝐸𝑛)) = +∞ → +∞ = (vol‘(𝐸𝑛)))
20193ad2ant3 1135 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ ∧ (vol‘(𝐸𝑛)) = +∞) → +∞ = (vol‘(𝐸𝑛)))
2113adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ (𝐸𝑛) ∈ dom vol)
22 ssiun2 5011 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝐸𝑛) ⊆ 𝑛 ∈ ℕ (𝐸𝑛))
2322adantl 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) ⊆ 𝑛 ∈ ℕ (𝐸𝑛))
24 volss 25434 . . . . . . . . . 10 (((𝐸𝑛) ∈ dom vol ∧ 𝑛 ∈ ℕ (𝐸𝑛) ∈ dom vol ∧ (𝐸𝑛) ⊆ 𝑛 ∈ ℕ (𝐸𝑛)) → (vol‘(𝐸𝑛)) ≤ (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)))
2510, 21, 23, 24syl3anc 1373 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ≤ (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)))
26253adant3 1132 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ ∧ (vol‘(𝐸𝑛)) = +∞) → (vol‘(𝐸𝑛)) ≤ (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)))
2720, 26eqbrtrd 5129 . . . . . . 7 ((𝜑𝑛 ∈ ℕ ∧ (vol‘(𝐸𝑛)) = +∞) → +∞ ≤ (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)))
2817, 27xrgepnfd 45327 . . . . . 6 ((𝜑𝑛 ∈ ℕ ∧ (vol‘(𝐸𝑛)) = +∞) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = +∞)
29283exp 1119 . . . . 5 (𝜑 → (𝑛 ∈ ℕ → ((vol‘(𝐸𝑛)) = +∞ → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = +∞)))
301, 5, 29rexlimd 3244 . . . 4 (𝜑 → (∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞ → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = +∞))
3130imp 406 . . 3 ((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = +∞)
32 nfre1 3262 . . . . 5 𝑛𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞
331, 32nfan 1899 . . . 4 𝑛(𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞)
34 nnex 12192 . . . . 5 ℕ ∈ V
3534a1i 11 . . . 4 ((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → ℕ ∈ V)
367a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → vol:dom vol⟶(0[,]+∞))
3736, 10ffvelcdmd 7057 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ∈ (0[,]+∞))
3837adantlr 715 . . . 4 (((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ∈ (0[,]+∞))
39 simpr 484 . . . 4 ((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞)
4033, 35, 38, 39sge0pnfmpt 46443 . . 3 ((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))) = +∞)
4131, 40eqtr4d 2767 . 2 ((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))))
42 ralnex 3055 . . . . . 6 (∀𝑛 ∈ ℕ ¬ (vol‘(𝐸𝑛)) = +∞ ↔ ¬ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞)
4342biimpri 228 . . . . 5 (¬ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞ → ∀𝑛 ∈ ℕ ¬ (vol‘(𝐸𝑛)) = +∞)
4443adantl 481 . . . 4 ((𝜑 ∧ ¬ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → ∀𝑛 ∈ ℕ ¬ (vol‘(𝐸𝑛)) = +∞)
4537adantr 480 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (vol‘(𝐸𝑛)) = +∞) → (vol‘(𝐸𝑛)) ∈ (0[,]+∞))
4618necon3bi 2951 . . . . . . . . . 10 (¬ (vol‘(𝐸𝑛)) = +∞ → (vol‘(𝐸𝑛)) ≠ +∞)
4746adantl 481 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (vol‘(𝐸𝑛)) = +∞) → (vol‘(𝐸𝑛)) ≠ +∞)
48 ge0xrre 45529 . . . . . . . . 9 (((vol‘(𝐸𝑛)) ∈ (0[,]+∞) ∧ (vol‘(𝐸𝑛)) ≠ +∞) → (vol‘(𝐸𝑛)) ∈ ℝ)
4945, 47, 48syl2anc 584 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (vol‘(𝐸𝑛)) = +∞) → (vol‘(𝐸𝑛)) ∈ ℝ)
5049ex 412 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (¬ (vol‘(𝐸𝑛)) = +∞ → (vol‘(𝐸𝑛)) ∈ ℝ))
51 renepnf 11222 . . . . . . . . 9 ((vol‘(𝐸𝑛)) ∈ ℝ → (vol‘(𝐸𝑛)) ≠ +∞)
5251neneqd 2930 . . . . . . . 8 ((vol‘(𝐸𝑛)) ∈ ℝ → ¬ (vol‘(𝐸𝑛)) = +∞)
5352a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((vol‘(𝐸𝑛)) ∈ ℝ → ¬ (vol‘(𝐸𝑛)) = +∞))
5450, 53impbid 212 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (¬ (vol‘(𝐸𝑛)) = +∞ ↔ (vol‘(𝐸𝑛)) ∈ ℝ))
5554ralbidva 3154 . . . . 5 (𝜑 → (∀𝑛 ∈ ℕ ¬ (vol‘(𝐸𝑛)) = +∞ ↔ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ))
5655adantr 480 . . . 4 ((𝜑 ∧ ¬ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → (∀𝑛 ∈ ℕ ¬ (vol‘(𝐸𝑛)) = +∞ ↔ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ))
5744, 56mpbid 232 . . 3 ((𝜑 ∧ ¬ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ)
58 nfra1 3261 . . . . . . 7 𝑛𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ
591, 58nfan 1899 . . . . . 6 𝑛(𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ)
6010adantlr 715 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (𝐸𝑛) ∈ dom vol)
61 rspa 3226 . . . . . . . . 9 ((∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ∈ ℝ)
6261adantll 714 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ∈ ℝ)
6360, 62jca 511 . . . . . . 7 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝐸𝑛) ∈ dom vol ∧ (vol‘(𝐸𝑛)) ∈ ℝ))
6463ex 412 . . . . . 6 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → (𝑛 ∈ ℕ → ((𝐸𝑛) ∈ dom vol ∧ (vol‘(𝐸𝑛)) ∈ ℝ)))
6559, 64ralrimi 3235 . . . . 5 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → ∀𝑛 ∈ ℕ ((𝐸𝑛) ∈ dom vol ∧ (vol‘(𝐸𝑛)) ∈ ℝ))
66 voliunsge0lem.d . . . . . 6 (𝜑Disj 𝑛 ∈ ℕ (𝐸𝑛))
6766adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → Disj 𝑛 ∈ ℕ (𝐸𝑛))
68 voliunsge0lem.s . . . . . 6 𝑆 = seq1( + , 𝐺)
69 voliunsge0lem.g . . . . . 6 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))
7068, 69voliun 25455 . . . . 5 ((∀𝑛 ∈ ℕ ((𝐸𝑛) ∈ dom vol ∧ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ (𝐸𝑛)) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = sup(ran 𝑆, ℝ*, < ))
7165, 67, 70syl2anc 584 . . . 4 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = sup(ran 𝑆, ℝ*, < ))
72 1zzd 12564 . . . . 5 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → 1 ∈ ℤ)
73 nnuz 12836 . . . . 5 ℕ = (ℤ‘1)
74 nfv 1914 . . . . . . . . 9 𝑛 𝑚 ∈ ℕ
7559, 74nfan 1899 . . . . . . . 8 𝑛((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑚 ∈ ℕ)
76 nfv 1914 . . . . . . . 8 𝑛(vol‘(𝐸𝑚)) ∈ (0[,)+∞)
7775, 76nfim 1896 . . . . . . 7 𝑛(((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑚 ∈ ℕ) → (vol‘(𝐸𝑚)) ∈ (0[,)+∞))
78 eleq1w 2811 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑛 ∈ ℕ ↔ 𝑚 ∈ ℕ))
7978anbi2d 630 . . . . . . . 8 (𝑛 = 𝑚 → (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) ↔ ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑚 ∈ ℕ)))
80 2fveq3 6863 . . . . . . . . 9 (𝑛 = 𝑚 → (vol‘(𝐸𝑛)) = (vol‘(𝐸𝑚)))
8180eleq1d 2813 . . . . . . . 8 (𝑛 = 𝑚 → ((vol‘(𝐸𝑛)) ∈ (0[,)+∞) ↔ (vol‘(𝐸𝑚)) ∈ (0[,)+∞)))
8279, 81imbi12d 344 . . . . . . 7 (𝑛 = 𝑚 → ((((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ∈ (0[,)+∞)) ↔ (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑚 ∈ ℕ) → (vol‘(𝐸𝑚)) ∈ (0[,)+∞))))
83 0xr 11221 . . . . . . . . 9 0 ∈ ℝ*
8483a1i 11 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → 0 ∈ ℝ*)
85 pnfxr 11228 . . . . . . . . 9 +∞ ∈ ℝ*
8685a1i 11 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → +∞ ∈ ℝ*)
8762rexrd 11224 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ∈ ℝ*)
88 volge0 45959 . . . . . . . . . 10 ((𝐸𝑛) ∈ dom vol → 0 ≤ (vol‘(𝐸𝑛)))
8910, 88syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (vol‘(𝐸𝑛)))
9089adantlr 715 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → 0 ≤ (vol‘(𝐸𝑛)))
9162ltpnfd 13081 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) < +∞)
9284, 86, 87, 90, 91elicod 13356 . . . . . . 7 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ∈ (0[,)+∞))
9377, 82, 92chvarfv 2241 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑚 ∈ ℕ) → (vol‘(𝐸𝑚)) ∈ (0[,)+∞))
9480cbvmptv 5211 . . . . . 6 (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛))) = (𝑚 ∈ ℕ ↦ (vol‘(𝐸𝑚)))
9593, 94fmptd 7086 . . . . 5 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛))):ℕ⟶(0[,)+∞))
96 seqeq3 13971 . . . . . . 7 (𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛))) → seq1( + , 𝐺) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))))
9769, 96ax-mp 5 . . . . . 6 seq1( + , 𝐺) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛))))
9868, 97eqtri 2752 . . . . 5 𝑆 = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛))))
9972, 73, 95, 98sge0seq 46444 . . . 4 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))) = sup(ran 𝑆, ℝ*, < ))
10071, 99eqtr4d 2767 . . 3 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))))
10157, 100syldan 591 . 2 ((𝜑 ∧ ¬ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))))
10241, 101pm2.61dan 812 1 (𝜑 → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3447  wss 3914   ciun 4955  Disj wdisj 5074   class class class wbr 5107  cmpt 5188  dom cdm 5638  ran crn 5639  wf 6507  cfv 6511  (class class class)co 7387  supcsup 9391  cr 11067  0cc0 11068  1c1 11069   + caddc 11071  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209  cn 12186  [,)cico 13308  [,]cicc 13309  seqcseq 13966  volcvol 25364  Σ^csumge0 46360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xadd 13073  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-xmet 21257  df-met 21258  df-ovol 25365  df-vol 25366  df-sumge0 46361
This theorem is referenced by:  voliunsge0  46471
  Copyright terms: Public domain W3C validator