Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  voliunsge0lem Structured version   Visualization version   GIF version

Theorem voliunsge0lem 42191
Description: The Lebesgue measure function is countably additive. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
voliunsge0lem.s 𝑆 = seq1( + , 𝐺)
voliunsge0lem.g 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))
voliunsge0lem.e (𝜑𝐸:ℕ⟶dom vol)
voliunsge0lem.d (𝜑Disj 𝑛 ∈ ℕ (𝐸𝑛))
Assertion
Ref Expression
voliunsge0lem (𝜑 → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))))
Distinct variable groups:   𝑛,𝐸   𝜑,𝑛
Allowed substitution hints:   𝑆(𝑛)   𝐺(𝑛)

Proof of Theorem voliunsge0lem
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 nfv 1873 . . . . 5 𝑛𝜑
2 nfcv 2932 . . . . . . 7 𝑛vol
3 nfiu1 4823 . . . . . . 7 𝑛 𝑛 ∈ ℕ (𝐸𝑛)
42, 3nffv 6509 . . . . . 6 𝑛(vol‘ 𝑛 ∈ ℕ (𝐸𝑛))
54nfeq1 2945 . . . . 5 𝑛(vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = +∞
6 iccssxr 12635 . . . . . . . . . 10 (0[,]+∞) ⊆ ℝ*
7 volf 23833 . . . . . . . . . . . 12 vol:dom vol⟶(0[,]+∞)
87a1i 11 . . . . . . . . . . 11 (𝜑 → vol:dom vol⟶(0[,]+∞))
9 voliunsge0lem.e . . . . . . . . . . . . . 14 (𝜑𝐸:ℕ⟶dom vol)
109ffvelrnda 6676 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) ∈ dom vol)
1110ralrimiva 3132 . . . . . . . . . . . 12 (𝜑 → ∀𝑛 ∈ ℕ (𝐸𝑛) ∈ dom vol)
12 iunmbl 23857 . . . . . . . . . . . 12 (∀𝑛 ∈ ℕ (𝐸𝑛) ∈ dom vol → 𝑛 ∈ ℕ (𝐸𝑛) ∈ dom vol)
1311, 12syl 17 . . . . . . . . . . 11 (𝜑 𝑛 ∈ ℕ (𝐸𝑛) ∈ dom vol)
148, 13ffvelrnd 6677 . . . . . . . . . 10 (𝜑 → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) ∈ (0[,]+∞))
156, 14sseldi 3856 . . . . . . . . 9 (𝜑 → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) ∈ ℝ*)
1615adantr 473 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) ∈ ℝ*)
17163adant3 1112 . . . . . . 7 ((𝜑𝑛 ∈ ℕ ∧ (vol‘(𝐸𝑛)) = +∞) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) ∈ ℝ*)
18 id 22 . . . . . . . . . 10 ((vol‘(𝐸𝑛)) = +∞ → (vol‘(𝐸𝑛)) = +∞)
1918eqcomd 2784 . . . . . . . . 9 ((vol‘(𝐸𝑛)) = +∞ → +∞ = (vol‘(𝐸𝑛)))
20193ad2ant3 1115 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ ∧ (vol‘(𝐸𝑛)) = +∞) → +∞ = (vol‘(𝐸𝑛)))
2113adantr 473 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ (𝐸𝑛) ∈ dom vol)
22 ssiun2 4837 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝐸𝑛) ⊆ 𝑛 ∈ ℕ (𝐸𝑛))
2322adantl 474 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) ⊆ 𝑛 ∈ ℕ (𝐸𝑛))
24 volss 23837 . . . . . . . . . 10 (((𝐸𝑛) ∈ dom vol ∧ 𝑛 ∈ ℕ (𝐸𝑛) ∈ dom vol ∧ (𝐸𝑛) ⊆ 𝑛 ∈ ℕ (𝐸𝑛)) → (vol‘(𝐸𝑛)) ≤ (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)))
2510, 21, 23, 24syl3anc 1351 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ≤ (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)))
26253adant3 1112 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ ∧ (vol‘(𝐸𝑛)) = +∞) → (vol‘(𝐸𝑛)) ≤ (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)))
2720, 26eqbrtrd 4951 . . . . . . 7 ((𝜑𝑛 ∈ ℕ ∧ (vol‘(𝐸𝑛)) = +∞) → +∞ ≤ (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)))
2817, 27xrgepnfd 41034 . . . . . 6 ((𝜑𝑛 ∈ ℕ ∧ (vol‘(𝐸𝑛)) = +∞) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = +∞)
29283exp 1099 . . . . 5 (𝜑 → (𝑛 ∈ ℕ → ((vol‘(𝐸𝑛)) = +∞ → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = +∞)))
301, 5, 29rexlimd 3260 . . . 4 (𝜑 → (∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞ → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = +∞))
3130imp 398 . . 3 ((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = +∞)
32 nfre1 3251 . . . . 5 𝑛𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞
331, 32nfan 1862 . . . 4 𝑛(𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞)
34 nnex 11446 . . . . 5 ℕ ∈ V
3534a1i 11 . . . 4 ((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → ℕ ∈ V)
367a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → vol:dom vol⟶(0[,]+∞))
3736, 10ffvelrnd 6677 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ∈ (0[,]+∞))
3837adantlr 702 . . . 4 (((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ∈ (0[,]+∞))
39 simpr 477 . . . 4 ((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞)
4033, 35, 38, 39sge0pnfmpt 42164 . . 3 ((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))) = +∞)
4131, 40eqtr4d 2817 . 2 ((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))))
42 ralnex 3183 . . . . . 6 (∀𝑛 ∈ ℕ ¬ (vol‘(𝐸𝑛)) = +∞ ↔ ¬ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞)
4342biimpri 220 . . . . 5 (¬ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞ → ∀𝑛 ∈ ℕ ¬ (vol‘(𝐸𝑛)) = +∞)
4443adantl 474 . . . 4 ((𝜑 ∧ ¬ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → ∀𝑛 ∈ ℕ ¬ (vol‘(𝐸𝑛)) = +∞)
4537adantr 473 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (vol‘(𝐸𝑛)) = +∞) → (vol‘(𝐸𝑛)) ∈ (0[,]+∞))
4618necon3bi 2993 . . . . . . . . . 10 (¬ (vol‘(𝐸𝑛)) = +∞ → (vol‘(𝐸𝑛)) ≠ +∞)
4746adantl 474 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (vol‘(𝐸𝑛)) = +∞) → (vol‘(𝐸𝑛)) ≠ +∞)
48 ge0xrre 41244 . . . . . . . . 9 (((vol‘(𝐸𝑛)) ∈ (0[,]+∞) ∧ (vol‘(𝐸𝑛)) ≠ +∞) → (vol‘(𝐸𝑛)) ∈ ℝ)
4945, 47, 48syl2anc 576 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (vol‘(𝐸𝑛)) = +∞) → (vol‘(𝐸𝑛)) ∈ ℝ)
5049ex 405 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (¬ (vol‘(𝐸𝑛)) = +∞ → (vol‘(𝐸𝑛)) ∈ ℝ))
51 renepnf 10488 . . . . . . . . 9 ((vol‘(𝐸𝑛)) ∈ ℝ → (vol‘(𝐸𝑛)) ≠ +∞)
5251neneqd 2972 . . . . . . . 8 ((vol‘(𝐸𝑛)) ∈ ℝ → ¬ (vol‘(𝐸𝑛)) = +∞)
5352a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((vol‘(𝐸𝑛)) ∈ ℝ → ¬ (vol‘(𝐸𝑛)) = +∞))
5450, 53impbid 204 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (¬ (vol‘(𝐸𝑛)) = +∞ ↔ (vol‘(𝐸𝑛)) ∈ ℝ))
5554ralbidva 3146 . . . . 5 (𝜑 → (∀𝑛 ∈ ℕ ¬ (vol‘(𝐸𝑛)) = +∞ ↔ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ))
5655adantr 473 . . . 4 ((𝜑 ∧ ¬ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → (∀𝑛 ∈ ℕ ¬ (vol‘(𝐸𝑛)) = +∞ ↔ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ))
5744, 56mpbid 224 . . 3 ((𝜑 ∧ ¬ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ)
58 nfra1 3169 . . . . . . 7 𝑛𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ
591, 58nfan 1862 . . . . . 6 𝑛(𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ)
6010adantlr 702 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (𝐸𝑛) ∈ dom vol)
61 rspa 3156 . . . . . . . . 9 ((∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ∈ ℝ)
6261adantll 701 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ∈ ℝ)
6360, 62jca 504 . . . . . . 7 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝐸𝑛) ∈ dom vol ∧ (vol‘(𝐸𝑛)) ∈ ℝ))
6463ex 405 . . . . . 6 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → (𝑛 ∈ ℕ → ((𝐸𝑛) ∈ dom vol ∧ (vol‘(𝐸𝑛)) ∈ ℝ)))
6559, 64ralrimi 3166 . . . . 5 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → ∀𝑛 ∈ ℕ ((𝐸𝑛) ∈ dom vol ∧ (vol‘(𝐸𝑛)) ∈ ℝ))
66 voliunsge0lem.d . . . . . 6 (𝜑Disj 𝑛 ∈ ℕ (𝐸𝑛))
6766adantr 473 . . . . 5 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → Disj 𝑛 ∈ ℕ (𝐸𝑛))
68 voliunsge0lem.s . . . . . 6 𝑆 = seq1( + , 𝐺)
69 voliunsge0lem.g . . . . . 6 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))
7068, 69voliun 23858 . . . . 5 ((∀𝑛 ∈ ℕ ((𝐸𝑛) ∈ dom vol ∧ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ (𝐸𝑛)) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = sup(ran 𝑆, ℝ*, < ))
7165, 67, 70syl2anc 576 . . . 4 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = sup(ran 𝑆, ℝ*, < ))
72 1zzd 11826 . . . . 5 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → 1 ∈ ℤ)
73 nnuz 12095 . . . . 5 ℕ = (ℤ‘1)
74 nfv 1873 . . . . . . . . 9 𝑛 𝑚 ∈ ℕ
7559, 74nfan 1862 . . . . . . . 8 𝑛((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑚 ∈ ℕ)
76 nfv 1873 . . . . . . . 8 𝑛(vol‘(𝐸𝑚)) ∈ (0[,)+∞)
7775, 76nfim 1859 . . . . . . 7 𝑛(((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑚 ∈ ℕ) → (vol‘(𝐸𝑚)) ∈ (0[,)+∞))
78 eleq1w 2848 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑛 ∈ ℕ ↔ 𝑚 ∈ ℕ))
7978anbi2d 619 . . . . . . . 8 (𝑛 = 𝑚 → (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) ↔ ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑚 ∈ ℕ)))
80 2fveq3 6504 . . . . . . . . 9 (𝑛 = 𝑚 → (vol‘(𝐸𝑛)) = (vol‘(𝐸𝑚)))
8180eleq1d 2850 . . . . . . . 8 (𝑛 = 𝑚 → ((vol‘(𝐸𝑛)) ∈ (0[,)+∞) ↔ (vol‘(𝐸𝑚)) ∈ (0[,)+∞)))
8279, 81imbi12d 337 . . . . . . 7 (𝑛 = 𝑚 → ((((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ∈ (0[,)+∞)) ↔ (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑚 ∈ ℕ) → (vol‘(𝐸𝑚)) ∈ (0[,)+∞))))
83 0xr 10487 . . . . . . . . 9 0 ∈ ℝ*
8483a1i 11 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → 0 ∈ ℝ*)
85 pnfxr 10494 . . . . . . . . 9 +∞ ∈ ℝ*
8685a1i 11 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → +∞ ∈ ℝ*)
8762rexrd 10490 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ∈ ℝ*)
88 volge0 41682 . . . . . . . . . 10 ((𝐸𝑛) ∈ dom vol → 0 ≤ (vol‘(𝐸𝑛)))
8910, 88syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (vol‘(𝐸𝑛)))
9089adantlr 702 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → 0 ≤ (vol‘(𝐸𝑛)))
9162ltpnfd 12333 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) < +∞)
9284, 86, 87, 90, 91elicod 12603 . . . . . . 7 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ∈ (0[,)+∞))
9377, 82, 92chvar 2326 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑚 ∈ ℕ) → (vol‘(𝐸𝑚)) ∈ (0[,)+∞))
9480cbvmptv 5028 . . . . . 6 (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛))) = (𝑚 ∈ ℕ ↦ (vol‘(𝐸𝑚)))
9593, 94fmptd 6701 . . . . 5 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛))):ℕ⟶(0[,)+∞))
96 seqeq3 13189 . . . . . . 7 (𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛))) → seq1( + , 𝐺) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))))
9769, 96ax-mp 5 . . . . . 6 seq1( + , 𝐺) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛))))
9868, 97eqtri 2802 . . . . 5 𝑆 = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛))))
9972, 73, 95, 98sge0seq 42165 . . . 4 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))) = sup(ran 𝑆, ℝ*, < ))
10071, 99eqtr4d 2817 . . 3 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))))
10157, 100syldan 582 . 2 ((𝜑 ∧ ¬ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))))
10241, 101pm2.61dan 800 1 (𝜑 → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wne 2967  wral 3088  wrex 3089  Vcvv 3415  wss 3829   ciun 4792  Disj wdisj 4897   class class class wbr 4929  cmpt 5008  dom cdm 5407  ran crn 5408  wf 6184  cfv 6188  (class class class)co 6976  supcsup 8699  cr 10334  0cc0 10335  1c1 10336   + caddc 10338  +∞cpnf 10471  *cxr 10473   < clt 10474  cle 10475  cn 11439  [,)cico 12556  [,]cicc 12557  seqcseq 13184  volcvol 23767  Σ^csumge0 42081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-inf2 8898  ax-cc 9655  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-disj 4898  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-se 5367  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-isom 6197  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-of 7227  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-2o 7906  df-oadd 7909  df-er 8089  df-map 8208  df-pm 8209  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-sup 8701  df-inf 8702  df-oi 8769  df-dju 9124  df-card 9162  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-3 11504  df-n0 11708  df-z 11794  df-uz 12059  df-q 12163  df-rp 12205  df-xadd 12325  df-ioo 12558  df-ico 12560  df-icc 12561  df-fz 12709  df-fzo 12850  df-fl 12977  df-seq 13185  df-exp 13245  df-hash 13506  df-cj 14319  df-re 14320  df-im 14321  df-sqrt 14455  df-abs 14456  df-clim 14706  df-rlim 14707  df-sum 14904  df-xmet 20240  df-met 20241  df-ovol 23768  df-vol 23769  df-sumge0 42082
This theorem is referenced by:  voliunsge0  42192
  Copyright terms: Public domain W3C validator