Step | Hyp | Ref
| Expression |
1 | | nfv 1917 |
. . . . 5
⊢
Ⅎ𝑛𝜑 |
2 | | nfcv 2907 |
. . . . . . 7
⊢
Ⅎ𝑛vol |
3 | | nfiu1 4958 |
. . . . . . 7
⊢
Ⅎ𝑛∪ 𝑛 ∈ ℕ (𝐸‘𝑛) |
4 | 2, 3 | nffv 6784 |
. . . . . 6
⊢
Ⅎ𝑛(vol‘∪ 𝑛 ∈ ℕ (𝐸‘𝑛)) |
5 | 4 | nfeq1 2922 |
. . . . 5
⊢
Ⅎ𝑛(vol‘∪ 𝑛 ∈ ℕ (𝐸‘𝑛)) = +∞ |
6 | | iccssxr 13162 |
. . . . . . . . . 10
⊢
(0[,]+∞) ⊆ ℝ* |
7 | | volf 24693 |
. . . . . . . . . . . 12
⊢ vol:dom
vol⟶(0[,]+∞) |
8 | 7 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → vol:dom
vol⟶(0[,]+∞)) |
9 | | voliunsge0lem.e |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐸:ℕ⟶dom vol) |
10 | 9 | ffvelrnda 6961 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐸‘𝑛) ∈ dom vol) |
11 | 10 | ralrimiva 3103 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝐸‘𝑛) ∈ dom vol) |
12 | | iunmbl 24717 |
. . . . . . . . . . . 12
⊢
(∀𝑛 ∈
ℕ (𝐸‘𝑛) ∈ dom vol → ∪ 𝑛 ∈ ℕ (𝐸‘𝑛) ∈ dom vol) |
13 | 11, 12 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ∪ 𝑛 ∈ ℕ (𝐸‘𝑛) ∈ dom vol) |
14 | 8, 13 | ffvelrnd 6962 |
. . . . . . . . . 10
⊢ (𝜑 → (vol‘∪ 𝑛 ∈ ℕ (𝐸‘𝑛)) ∈ (0[,]+∞)) |
15 | 6, 14 | sselid 3919 |
. . . . . . . . 9
⊢ (𝜑 → (vol‘∪ 𝑛 ∈ ℕ (𝐸‘𝑛)) ∈
ℝ*) |
16 | 15 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (vol‘∪ 𝑛 ∈ ℕ (𝐸‘𝑛)) ∈
ℝ*) |
17 | 16 | 3adant3 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ ∧ (vol‘(𝐸‘𝑛)) = +∞) → (vol‘∪ 𝑛 ∈ ℕ (𝐸‘𝑛)) ∈
ℝ*) |
18 | | id 22 |
. . . . . . . . . 10
⊢
((vol‘(𝐸‘𝑛)) = +∞ → (vol‘(𝐸‘𝑛)) = +∞) |
19 | 18 | eqcomd 2744 |
. . . . . . . . 9
⊢
((vol‘(𝐸‘𝑛)) = +∞ → +∞ =
(vol‘(𝐸‘𝑛))) |
20 | 19 | 3ad2ant3 1134 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ ∧ (vol‘(𝐸‘𝑛)) = +∞) → +∞ =
(vol‘(𝐸‘𝑛))) |
21 | 13 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∪ 𝑛 ∈ ℕ (𝐸‘𝑛) ∈ dom vol) |
22 | | ssiun2 4977 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → (𝐸‘𝑛) ⊆ ∪
𝑛 ∈ ℕ (𝐸‘𝑛)) |
23 | 22 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐸‘𝑛) ⊆ ∪
𝑛 ∈ ℕ (𝐸‘𝑛)) |
24 | | volss 24697 |
. . . . . . . . . 10
⊢ (((𝐸‘𝑛) ∈ dom vol ∧ ∪ 𝑛 ∈ ℕ (𝐸‘𝑛) ∈ dom vol ∧ (𝐸‘𝑛) ⊆ ∪
𝑛 ∈ ℕ (𝐸‘𝑛)) → (vol‘(𝐸‘𝑛)) ≤ (vol‘∪ 𝑛 ∈ ℕ (𝐸‘𝑛))) |
25 | 10, 21, 23, 24 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸‘𝑛)) ≤ (vol‘∪ 𝑛 ∈ ℕ (𝐸‘𝑛))) |
26 | 25 | 3adant3 1131 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ ∧ (vol‘(𝐸‘𝑛)) = +∞) → (vol‘(𝐸‘𝑛)) ≤ (vol‘∪ 𝑛 ∈ ℕ (𝐸‘𝑛))) |
27 | 20, 26 | eqbrtrd 5096 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ ∧ (vol‘(𝐸‘𝑛)) = +∞) → +∞ ≤
(vol‘∪ 𝑛 ∈ ℕ (𝐸‘𝑛))) |
28 | 17, 27 | xrgepnfd 42870 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ ∧ (vol‘(𝐸‘𝑛)) = +∞) → (vol‘∪ 𝑛 ∈ ℕ (𝐸‘𝑛)) = +∞) |
29 | 28 | 3exp 1118 |
. . . . 5
⊢ (𝜑 → (𝑛 ∈ ℕ → ((vol‘(𝐸‘𝑛)) = +∞ → (vol‘∪ 𝑛 ∈ ℕ (𝐸‘𝑛)) = +∞))) |
30 | 1, 5, 29 | rexlimd 3250 |
. . . 4
⊢ (𝜑 → (∃𝑛 ∈ ℕ (vol‘(𝐸‘𝑛)) = +∞ → (vol‘∪ 𝑛 ∈ ℕ (𝐸‘𝑛)) = +∞)) |
31 | 30 | imp 407 |
. . 3
⊢ ((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸‘𝑛)) = +∞) → (vol‘∪ 𝑛 ∈ ℕ (𝐸‘𝑛)) = +∞) |
32 | | nfre1 3239 |
. . . . 5
⊢
Ⅎ𝑛∃𝑛 ∈ ℕ
(vol‘(𝐸‘𝑛)) = +∞ |
33 | 1, 32 | nfan 1902 |
. . . 4
⊢
Ⅎ𝑛(𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸‘𝑛)) = +∞) |
34 | | nnex 11979 |
. . . . 5
⊢ ℕ
∈ V |
35 | 34 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸‘𝑛)) = +∞) → ℕ ∈
V) |
36 | 7 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → vol:dom
vol⟶(0[,]+∞)) |
37 | 36, 10 | ffvelrnd 6962 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸‘𝑛)) ∈ (0[,]+∞)) |
38 | 37 | adantlr 712 |
. . . 4
⊢ (((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸‘𝑛)) = +∞) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸‘𝑛)) ∈ (0[,]+∞)) |
39 | | simpr 485 |
. . . 4
⊢ ((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸‘𝑛)) = +∞) → ∃𝑛 ∈ ℕ
(vol‘(𝐸‘𝑛)) = +∞) |
40 | 33, 35, 38, 39 | sge0pnfmpt 43983 |
. . 3
⊢ ((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸‘𝑛)) = +∞) →
(Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸‘𝑛)))) = +∞) |
41 | 31, 40 | eqtr4d 2781 |
. 2
⊢ ((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸‘𝑛)) = +∞) → (vol‘∪ 𝑛 ∈ ℕ (𝐸‘𝑛)) =
(Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸‘𝑛))))) |
42 | | ralnex 3167 |
. . . . . 6
⊢
(∀𝑛 ∈
ℕ ¬ (vol‘(𝐸‘𝑛)) = +∞ ↔ ¬ ∃𝑛 ∈ ℕ
(vol‘(𝐸‘𝑛)) = +∞) |
43 | 42 | biimpri 227 |
. . . . 5
⊢ (¬
∃𝑛 ∈ ℕ
(vol‘(𝐸‘𝑛)) = +∞ →
∀𝑛 ∈ ℕ
¬ (vol‘(𝐸‘𝑛)) = +∞) |
44 | 43 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ ¬ ∃𝑛 ∈ ℕ
(vol‘(𝐸‘𝑛)) = +∞) →
∀𝑛 ∈ ℕ
¬ (vol‘(𝐸‘𝑛)) = +∞) |
45 | 37 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ¬
(vol‘(𝐸‘𝑛)) = +∞) →
(vol‘(𝐸‘𝑛)) ∈
(0[,]+∞)) |
46 | 18 | necon3bi 2970 |
. . . . . . . . . 10
⊢ (¬
(vol‘(𝐸‘𝑛)) = +∞ →
(vol‘(𝐸‘𝑛)) ≠
+∞) |
47 | 46 | adantl 482 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ¬
(vol‘(𝐸‘𝑛)) = +∞) →
(vol‘(𝐸‘𝑛)) ≠
+∞) |
48 | | ge0xrre 43069 |
. . . . . . . . 9
⊢
(((vol‘(𝐸‘𝑛)) ∈ (0[,]+∞) ∧
(vol‘(𝐸‘𝑛)) ≠ +∞) →
(vol‘(𝐸‘𝑛)) ∈
ℝ) |
49 | 45, 47, 48 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ¬
(vol‘(𝐸‘𝑛)) = +∞) →
(vol‘(𝐸‘𝑛)) ∈
ℝ) |
50 | 49 | ex 413 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (¬
(vol‘(𝐸‘𝑛)) = +∞ →
(vol‘(𝐸‘𝑛)) ∈
ℝ)) |
51 | | renepnf 11023 |
. . . . . . . . 9
⊢
((vol‘(𝐸‘𝑛)) ∈ ℝ → (vol‘(𝐸‘𝑛)) ≠ +∞) |
52 | 51 | neneqd 2948 |
. . . . . . . 8
⊢
((vol‘(𝐸‘𝑛)) ∈ ℝ → ¬
(vol‘(𝐸‘𝑛)) = +∞) |
53 | 52 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((vol‘(𝐸‘𝑛)) ∈ ℝ → ¬
(vol‘(𝐸‘𝑛)) = +∞)) |
54 | 50, 53 | impbid 211 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (¬
(vol‘(𝐸‘𝑛)) = +∞ ↔
(vol‘(𝐸‘𝑛)) ∈
ℝ)) |
55 | 54 | ralbidva 3111 |
. . . . 5
⊢ (𝜑 → (∀𝑛 ∈ ℕ ¬
(vol‘(𝐸‘𝑛)) = +∞ ↔
∀𝑛 ∈ ℕ
(vol‘(𝐸‘𝑛)) ∈
ℝ)) |
56 | 55 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ ¬ ∃𝑛 ∈ ℕ
(vol‘(𝐸‘𝑛)) = +∞) →
(∀𝑛 ∈ ℕ
¬ (vol‘(𝐸‘𝑛)) = +∞ ↔ ∀𝑛 ∈ ℕ
(vol‘(𝐸‘𝑛)) ∈
ℝ)) |
57 | 44, 56 | mpbid 231 |
. . 3
⊢ ((𝜑 ∧ ¬ ∃𝑛 ∈ ℕ
(vol‘(𝐸‘𝑛)) = +∞) →
∀𝑛 ∈ ℕ
(vol‘(𝐸‘𝑛)) ∈
ℝ) |
58 | | nfra1 3144 |
. . . . . . 7
⊢
Ⅎ𝑛∀𝑛 ∈ ℕ (vol‘(𝐸‘𝑛)) ∈ ℝ |
59 | 1, 58 | nfan 1902 |
. . . . . 6
⊢
Ⅎ𝑛(𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸‘𝑛)) ∈ ℝ) |
60 | 10 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸‘𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (𝐸‘𝑛) ∈ dom vol) |
61 | | rspa 3132 |
. . . . . . . . 9
⊢
((∀𝑛 ∈
ℕ (vol‘(𝐸‘𝑛)) ∈ ℝ ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸‘𝑛)) ∈ ℝ) |
62 | 61 | adantll 711 |
. . . . . . . 8
⊢ (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸‘𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸‘𝑛)) ∈ ℝ) |
63 | 60, 62 | jca 512 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸‘𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝐸‘𝑛) ∈ dom vol ∧ (vol‘(𝐸‘𝑛)) ∈ ℝ)) |
64 | 63 | ex 413 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸‘𝑛)) ∈ ℝ) → (𝑛 ∈ ℕ → ((𝐸‘𝑛) ∈ dom vol ∧ (vol‘(𝐸‘𝑛)) ∈ ℝ))) |
65 | 59, 64 | ralrimi 3141 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸‘𝑛)) ∈ ℝ) → ∀𝑛 ∈ ℕ ((𝐸‘𝑛) ∈ dom vol ∧ (vol‘(𝐸‘𝑛)) ∈ ℝ)) |
66 | | voliunsge0lem.d |
. . . . . 6
⊢ (𝜑 → Disj 𝑛 ∈ ℕ (𝐸‘𝑛)) |
67 | 66 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸‘𝑛)) ∈ ℝ) → Disj 𝑛 ∈ ℕ (𝐸‘𝑛)) |
68 | | voliunsge0lem.s |
. . . . . 6
⊢ 𝑆 = seq1( + , 𝐺) |
69 | | voliunsge0lem.g |
. . . . . 6
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝐸‘𝑛))) |
70 | 68, 69 | voliun 24718 |
. . . . 5
⊢
((∀𝑛 ∈
ℕ ((𝐸‘𝑛) ∈ dom vol ∧
(vol‘(𝐸‘𝑛)) ∈ ℝ) ∧
Disj 𝑛 ∈
ℕ (𝐸‘𝑛)) → (vol‘∪ 𝑛 ∈ ℕ (𝐸‘𝑛)) = sup(ran 𝑆, ℝ*, <
)) |
71 | 65, 67, 70 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸‘𝑛)) ∈ ℝ) → (vol‘∪ 𝑛 ∈ ℕ (𝐸‘𝑛)) = sup(ran 𝑆, ℝ*, <
)) |
72 | | 1zzd 12351 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸‘𝑛)) ∈ ℝ) → 1 ∈
ℤ) |
73 | | nnuz 12621 |
. . . . 5
⊢ ℕ =
(ℤ≥‘1) |
74 | | nfv 1917 |
. . . . . . . . 9
⊢
Ⅎ𝑛 𝑚 ∈ ℕ |
75 | 59, 74 | nfan 1902 |
. . . . . . . 8
⊢
Ⅎ𝑛((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸‘𝑛)) ∈ ℝ) ∧ 𝑚 ∈ ℕ) |
76 | | nfv 1917 |
. . . . . . . 8
⊢
Ⅎ𝑛(vol‘(𝐸‘𝑚)) ∈ (0[,)+∞) |
77 | 75, 76 | nfim 1899 |
. . . . . . 7
⊢
Ⅎ𝑛(((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸‘𝑛)) ∈ ℝ) ∧ 𝑚 ∈ ℕ) → (vol‘(𝐸‘𝑚)) ∈ (0[,)+∞)) |
78 | | eleq1w 2821 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (𝑛 ∈ ℕ ↔ 𝑚 ∈ ℕ)) |
79 | 78 | anbi2d 629 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸‘𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) ↔ ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸‘𝑛)) ∈ ℝ) ∧ 𝑚 ∈ ℕ))) |
80 | | 2fveq3 6779 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (vol‘(𝐸‘𝑛)) = (vol‘(𝐸‘𝑚))) |
81 | 80 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → ((vol‘(𝐸‘𝑛)) ∈ (0[,)+∞) ↔
(vol‘(𝐸‘𝑚)) ∈
(0[,)+∞))) |
82 | 79, 81 | imbi12d 345 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → ((((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸‘𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸‘𝑛)) ∈ (0[,)+∞)) ↔ (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸‘𝑛)) ∈ ℝ) ∧ 𝑚 ∈ ℕ) → (vol‘(𝐸‘𝑚)) ∈ (0[,)+∞)))) |
83 | | 0xr 11022 |
. . . . . . . . 9
⊢ 0 ∈
ℝ* |
84 | 83 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸‘𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → 0 ∈
ℝ*) |
85 | | pnfxr 11029 |
. . . . . . . . 9
⊢ +∞
∈ ℝ* |
86 | 85 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸‘𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → +∞ ∈
ℝ*) |
87 | 62 | rexrd 11025 |
. . . . . . . 8
⊢ (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸‘𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸‘𝑛)) ∈
ℝ*) |
88 | | volge0 43502 |
. . . . . . . . . 10
⊢ ((𝐸‘𝑛) ∈ dom vol → 0 ≤
(vol‘(𝐸‘𝑛))) |
89 | 10, 88 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 ≤
(vol‘(𝐸‘𝑛))) |
90 | 89 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸‘𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → 0 ≤
(vol‘(𝐸‘𝑛))) |
91 | 62 | ltpnfd 12857 |
. . . . . . . 8
⊢ (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸‘𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸‘𝑛)) < +∞) |
92 | 84, 86, 87, 90, 91 | elicod 13129 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸‘𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸‘𝑛)) ∈ (0[,)+∞)) |
93 | 77, 82, 92 | chvarfv 2233 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸‘𝑛)) ∈ ℝ) ∧ 𝑚 ∈ ℕ) → (vol‘(𝐸‘𝑚)) ∈ (0[,)+∞)) |
94 | 80 | cbvmptv 5187 |
. . . . . 6
⊢ (𝑛 ∈ ℕ ↦
(vol‘(𝐸‘𝑛))) = (𝑚 ∈ ℕ ↦ (vol‘(𝐸‘𝑚))) |
95 | 93, 94 | fmptd 6988 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸‘𝑛)) ∈ ℝ) → (𝑛 ∈ ℕ ↦ (vol‘(𝐸‘𝑛))):ℕ⟶(0[,)+∞)) |
96 | | seqeq3 13726 |
. . . . . . 7
⊢ (𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝐸‘𝑛))) → seq1( + , 𝐺) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝐸‘𝑛))))) |
97 | 69, 96 | ax-mp 5 |
. . . . . 6
⊢ seq1( + ,
𝐺) = seq1( + , (𝑛 ∈ ℕ ↦
(vol‘(𝐸‘𝑛)))) |
98 | 68, 97 | eqtri 2766 |
. . . . 5
⊢ 𝑆 = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝐸‘𝑛)))) |
99 | 72, 73, 95, 98 | sge0seq 43984 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸‘𝑛)) ∈ ℝ) →
(Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸‘𝑛)))) = sup(ran 𝑆, ℝ*, <
)) |
100 | 71, 99 | eqtr4d 2781 |
. . 3
⊢ ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸‘𝑛)) ∈ ℝ) → (vol‘∪ 𝑛 ∈ ℕ (𝐸‘𝑛)) =
(Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸‘𝑛))))) |
101 | 57, 100 | syldan 591 |
. 2
⊢ ((𝜑 ∧ ¬ ∃𝑛 ∈ ℕ
(vol‘(𝐸‘𝑛)) = +∞) →
(vol‘∪ 𝑛 ∈ ℕ (𝐸‘𝑛)) =
(Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸‘𝑛))))) |
102 | 41, 101 | pm2.61dan 810 |
1
⊢ (𝜑 → (vol‘∪ 𝑛 ∈ ℕ (𝐸‘𝑛)) =
(Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸‘𝑛))))) |