Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  voliunsge0lem Structured version   Visualization version   GIF version

Theorem voliunsge0lem 46463
Description: The Lebesgue measure function is countably additive. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
voliunsge0lem.s 𝑆 = seq1( + , 𝐺)
voliunsge0lem.g 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))
voliunsge0lem.e (𝜑𝐸:ℕ⟶dom vol)
voliunsge0lem.d (𝜑Disj 𝑛 ∈ ℕ (𝐸𝑛))
Assertion
Ref Expression
voliunsge0lem (𝜑 → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))))
Distinct variable groups:   𝑛,𝐸   𝜑,𝑛
Allowed substitution hints:   𝑆(𝑛)   𝐺(𝑛)

Proof of Theorem voliunsge0lem
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . . 5 𝑛𝜑
2 nfcv 2891 . . . . . . 7 𝑛vol
3 nfiu1 4987 . . . . . . 7 𝑛 𝑛 ∈ ℕ (𝐸𝑛)
42, 3nffv 6850 . . . . . 6 𝑛(vol‘ 𝑛 ∈ ℕ (𝐸𝑛))
54nfeq1 2907 . . . . 5 𝑛(vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = +∞
6 iccssxr 13367 . . . . . . . . . 10 (0[,]+∞) ⊆ ℝ*
7 volf 25463 . . . . . . . . . . . 12 vol:dom vol⟶(0[,]+∞)
87a1i 11 . . . . . . . . . . 11 (𝜑 → vol:dom vol⟶(0[,]+∞))
9 voliunsge0lem.e . . . . . . . . . . . . . 14 (𝜑𝐸:ℕ⟶dom vol)
109ffvelcdmda 7038 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) ∈ dom vol)
1110ralrimiva 3125 . . . . . . . . . . . 12 (𝜑 → ∀𝑛 ∈ ℕ (𝐸𝑛) ∈ dom vol)
12 iunmbl 25487 . . . . . . . . . . . 12 (∀𝑛 ∈ ℕ (𝐸𝑛) ∈ dom vol → 𝑛 ∈ ℕ (𝐸𝑛) ∈ dom vol)
1311, 12syl 17 . . . . . . . . . . 11 (𝜑 𝑛 ∈ ℕ (𝐸𝑛) ∈ dom vol)
148, 13ffvelcdmd 7039 . . . . . . . . . 10 (𝜑 → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) ∈ (0[,]+∞))
156, 14sselid 3941 . . . . . . . . 9 (𝜑 → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) ∈ ℝ*)
1615adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) ∈ ℝ*)
17163adant3 1132 . . . . . . 7 ((𝜑𝑛 ∈ ℕ ∧ (vol‘(𝐸𝑛)) = +∞) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) ∈ ℝ*)
18 id 22 . . . . . . . . . 10 ((vol‘(𝐸𝑛)) = +∞ → (vol‘(𝐸𝑛)) = +∞)
1918eqcomd 2735 . . . . . . . . 9 ((vol‘(𝐸𝑛)) = +∞ → +∞ = (vol‘(𝐸𝑛)))
20193ad2ant3 1135 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ ∧ (vol‘(𝐸𝑛)) = +∞) → +∞ = (vol‘(𝐸𝑛)))
2113adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ (𝐸𝑛) ∈ dom vol)
22 ssiun2 5006 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝐸𝑛) ⊆ 𝑛 ∈ ℕ (𝐸𝑛))
2322adantl 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) ⊆ 𝑛 ∈ ℕ (𝐸𝑛))
24 volss 25467 . . . . . . . . . 10 (((𝐸𝑛) ∈ dom vol ∧ 𝑛 ∈ ℕ (𝐸𝑛) ∈ dom vol ∧ (𝐸𝑛) ⊆ 𝑛 ∈ ℕ (𝐸𝑛)) → (vol‘(𝐸𝑛)) ≤ (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)))
2510, 21, 23, 24syl3anc 1373 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ≤ (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)))
26253adant3 1132 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ ∧ (vol‘(𝐸𝑛)) = +∞) → (vol‘(𝐸𝑛)) ≤ (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)))
2720, 26eqbrtrd 5124 . . . . . . 7 ((𝜑𝑛 ∈ ℕ ∧ (vol‘(𝐸𝑛)) = +∞) → +∞ ≤ (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)))
2817, 27xrgepnfd 45320 . . . . . 6 ((𝜑𝑛 ∈ ℕ ∧ (vol‘(𝐸𝑛)) = +∞) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = +∞)
29283exp 1119 . . . . 5 (𝜑 → (𝑛 ∈ ℕ → ((vol‘(𝐸𝑛)) = +∞ → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = +∞)))
301, 5, 29rexlimd 3242 . . . 4 (𝜑 → (∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞ → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = +∞))
3130imp 406 . . 3 ((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = +∞)
32 nfre1 3260 . . . . 5 𝑛𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞
331, 32nfan 1899 . . . 4 𝑛(𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞)
34 nnex 12168 . . . . 5 ℕ ∈ V
3534a1i 11 . . . 4 ((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → ℕ ∈ V)
367a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → vol:dom vol⟶(0[,]+∞))
3736, 10ffvelcdmd 7039 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ∈ (0[,]+∞))
3837adantlr 715 . . . 4 (((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ∈ (0[,]+∞))
39 simpr 484 . . . 4 ((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞)
4033, 35, 38, 39sge0pnfmpt 46436 . . 3 ((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))) = +∞)
4131, 40eqtr4d 2767 . 2 ((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))))
42 ralnex 3055 . . . . . 6 (∀𝑛 ∈ ℕ ¬ (vol‘(𝐸𝑛)) = +∞ ↔ ¬ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞)
4342biimpri 228 . . . . 5 (¬ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞ → ∀𝑛 ∈ ℕ ¬ (vol‘(𝐸𝑛)) = +∞)
4443adantl 481 . . . 4 ((𝜑 ∧ ¬ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → ∀𝑛 ∈ ℕ ¬ (vol‘(𝐸𝑛)) = +∞)
4537adantr 480 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (vol‘(𝐸𝑛)) = +∞) → (vol‘(𝐸𝑛)) ∈ (0[,]+∞))
4618necon3bi 2951 . . . . . . . . . 10 (¬ (vol‘(𝐸𝑛)) = +∞ → (vol‘(𝐸𝑛)) ≠ +∞)
4746adantl 481 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (vol‘(𝐸𝑛)) = +∞) → (vol‘(𝐸𝑛)) ≠ +∞)
48 ge0xrre 45522 . . . . . . . . 9 (((vol‘(𝐸𝑛)) ∈ (0[,]+∞) ∧ (vol‘(𝐸𝑛)) ≠ +∞) → (vol‘(𝐸𝑛)) ∈ ℝ)
4945, 47, 48syl2anc 584 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (vol‘(𝐸𝑛)) = +∞) → (vol‘(𝐸𝑛)) ∈ ℝ)
5049ex 412 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (¬ (vol‘(𝐸𝑛)) = +∞ → (vol‘(𝐸𝑛)) ∈ ℝ))
51 renepnf 11198 . . . . . . . . 9 ((vol‘(𝐸𝑛)) ∈ ℝ → (vol‘(𝐸𝑛)) ≠ +∞)
5251neneqd 2930 . . . . . . . 8 ((vol‘(𝐸𝑛)) ∈ ℝ → ¬ (vol‘(𝐸𝑛)) = +∞)
5352a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((vol‘(𝐸𝑛)) ∈ ℝ → ¬ (vol‘(𝐸𝑛)) = +∞))
5450, 53impbid 212 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (¬ (vol‘(𝐸𝑛)) = +∞ ↔ (vol‘(𝐸𝑛)) ∈ ℝ))
5554ralbidva 3154 . . . . 5 (𝜑 → (∀𝑛 ∈ ℕ ¬ (vol‘(𝐸𝑛)) = +∞ ↔ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ))
5655adantr 480 . . . 4 ((𝜑 ∧ ¬ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → (∀𝑛 ∈ ℕ ¬ (vol‘(𝐸𝑛)) = +∞ ↔ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ))
5744, 56mpbid 232 . . 3 ((𝜑 ∧ ¬ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ)
58 nfra1 3259 . . . . . . 7 𝑛𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ
591, 58nfan 1899 . . . . . 6 𝑛(𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ)
6010adantlr 715 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (𝐸𝑛) ∈ dom vol)
61 rspa 3224 . . . . . . . . 9 ((∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ∈ ℝ)
6261adantll 714 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ∈ ℝ)
6360, 62jca 511 . . . . . . 7 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝐸𝑛) ∈ dom vol ∧ (vol‘(𝐸𝑛)) ∈ ℝ))
6463ex 412 . . . . . 6 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → (𝑛 ∈ ℕ → ((𝐸𝑛) ∈ dom vol ∧ (vol‘(𝐸𝑛)) ∈ ℝ)))
6559, 64ralrimi 3233 . . . . 5 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → ∀𝑛 ∈ ℕ ((𝐸𝑛) ∈ dom vol ∧ (vol‘(𝐸𝑛)) ∈ ℝ))
66 voliunsge0lem.d . . . . . 6 (𝜑Disj 𝑛 ∈ ℕ (𝐸𝑛))
6766adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → Disj 𝑛 ∈ ℕ (𝐸𝑛))
68 voliunsge0lem.s . . . . . 6 𝑆 = seq1( + , 𝐺)
69 voliunsge0lem.g . . . . . 6 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))
7068, 69voliun 25488 . . . . 5 ((∀𝑛 ∈ ℕ ((𝐸𝑛) ∈ dom vol ∧ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ (𝐸𝑛)) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = sup(ran 𝑆, ℝ*, < ))
7165, 67, 70syl2anc 584 . . . 4 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = sup(ran 𝑆, ℝ*, < ))
72 1zzd 12540 . . . . 5 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → 1 ∈ ℤ)
73 nnuz 12812 . . . . 5 ℕ = (ℤ‘1)
74 nfv 1914 . . . . . . . . 9 𝑛 𝑚 ∈ ℕ
7559, 74nfan 1899 . . . . . . . 8 𝑛((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑚 ∈ ℕ)
76 nfv 1914 . . . . . . . 8 𝑛(vol‘(𝐸𝑚)) ∈ (0[,)+∞)
7775, 76nfim 1896 . . . . . . 7 𝑛(((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑚 ∈ ℕ) → (vol‘(𝐸𝑚)) ∈ (0[,)+∞))
78 eleq1w 2811 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑛 ∈ ℕ ↔ 𝑚 ∈ ℕ))
7978anbi2d 630 . . . . . . . 8 (𝑛 = 𝑚 → (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) ↔ ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑚 ∈ ℕ)))
80 2fveq3 6845 . . . . . . . . 9 (𝑛 = 𝑚 → (vol‘(𝐸𝑛)) = (vol‘(𝐸𝑚)))
8180eleq1d 2813 . . . . . . . 8 (𝑛 = 𝑚 → ((vol‘(𝐸𝑛)) ∈ (0[,)+∞) ↔ (vol‘(𝐸𝑚)) ∈ (0[,)+∞)))
8279, 81imbi12d 344 . . . . . . 7 (𝑛 = 𝑚 → ((((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ∈ (0[,)+∞)) ↔ (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑚 ∈ ℕ) → (vol‘(𝐸𝑚)) ∈ (0[,)+∞))))
83 0xr 11197 . . . . . . . . 9 0 ∈ ℝ*
8483a1i 11 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → 0 ∈ ℝ*)
85 pnfxr 11204 . . . . . . . . 9 +∞ ∈ ℝ*
8685a1i 11 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → +∞ ∈ ℝ*)
8762rexrd 11200 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ∈ ℝ*)
88 volge0 45952 . . . . . . . . . 10 ((𝐸𝑛) ∈ dom vol → 0 ≤ (vol‘(𝐸𝑛)))
8910, 88syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (vol‘(𝐸𝑛)))
9089adantlr 715 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → 0 ≤ (vol‘(𝐸𝑛)))
9162ltpnfd 13057 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) < +∞)
9284, 86, 87, 90, 91elicod 13332 . . . . . . 7 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ∈ (0[,)+∞))
9377, 82, 92chvarfv 2241 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑚 ∈ ℕ) → (vol‘(𝐸𝑚)) ∈ (0[,)+∞))
9480cbvmptv 5206 . . . . . 6 (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛))) = (𝑚 ∈ ℕ ↦ (vol‘(𝐸𝑚)))
9593, 94fmptd 7068 . . . . 5 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛))):ℕ⟶(0[,)+∞))
96 seqeq3 13947 . . . . . . 7 (𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛))) → seq1( + , 𝐺) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))))
9769, 96ax-mp 5 . . . . . 6 seq1( + , 𝐺) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛))))
9868, 97eqtri 2752 . . . . 5 𝑆 = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛))))
9972, 73, 95, 98sge0seq 46437 . . . 4 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))) = sup(ran 𝑆, ℝ*, < ))
10071, 99eqtr4d 2767 . . 3 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))))
10157, 100syldan 591 . 2 ((𝜑 ∧ ¬ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))))
10241, 101pm2.61dan 812 1 (𝜑 → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3444  wss 3911   ciun 4951  Disj wdisj 5069   class class class wbr 5102  cmpt 5183  dom cdm 5631  ran crn 5632  wf 6495  cfv 6499  (class class class)co 7369  supcsup 9367  cr 11043  0cc0 11044  1c1 11045   + caddc 11047  +∞cpnf 11181  *cxr 11183   < clt 11184  cle 11185  cn 12162  [,)cico 13284  [,]cicc 13285  seqcseq 13942  volcvol 25397  Σ^csumge0 46353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cc 10364  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-xadd 13049  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-xmet 21289  df-met 21290  df-ovol 25398  df-vol 25399  df-sumge0 46354
This theorem is referenced by:  voliunsge0  46464
  Copyright terms: Public domain W3C validator