Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  voliunsge0lem Structured version   Visualization version   GIF version

Theorem voliunsge0lem 46487
Description: The Lebesgue measure function is countably additive. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
voliunsge0lem.s 𝑆 = seq1( + , 𝐺)
voliunsge0lem.g 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))
voliunsge0lem.e (𝜑𝐸:ℕ⟶dom vol)
voliunsge0lem.d (𝜑Disj 𝑛 ∈ ℕ (𝐸𝑛))
Assertion
Ref Expression
voliunsge0lem (𝜑 → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))))
Distinct variable groups:   𝑛,𝐸   𝜑,𝑛
Allowed substitution hints:   𝑆(𝑛)   𝐺(𝑛)

Proof of Theorem voliunsge0lem
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . . 5 𝑛𝜑
2 nfcv 2905 . . . . . . 7 𝑛vol
3 nfiu1 5027 . . . . . . 7 𝑛 𝑛 ∈ ℕ (𝐸𝑛)
42, 3nffv 6916 . . . . . 6 𝑛(vol‘ 𝑛 ∈ ℕ (𝐸𝑛))
54nfeq1 2921 . . . . 5 𝑛(vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = +∞
6 iccssxr 13470 . . . . . . . . . 10 (0[,]+∞) ⊆ ℝ*
7 volf 25564 . . . . . . . . . . . 12 vol:dom vol⟶(0[,]+∞)
87a1i 11 . . . . . . . . . . 11 (𝜑 → vol:dom vol⟶(0[,]+∞))
9 voliunsge0lem.e . . . . . . . . . . . . . 14 (𝜑𝐸:ℕ⟶dom vol)
109ffvelcdmda 7104 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) ∈ dom vol)
1110ralrimiva 3146 . . . . . . . . . . . 12 (𝜑 → ∀𝑛 ∈ ℕ (𝐸𝑛) ∈ dom vol)
12 iunmbl 25588 . . . . . . . . . . . 12 (∀𝑛 ∈ ℕ (𝐸𝑛) ∈ dom vol → 𝑛 ∈ ℕ (𝐸𝑛) ∈ dom vol)
1311, 12syl 17 . . . . . . . . . . 11 (𝜑 𝑛 ∈ ℕ (𝐸𝑛) ∈ dom vol)
148, 13ffvelcdmd 7105 . . . . . . . . . 10 (𝜑 → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) ∈ (0[,]+∞))
156, 14sselid 3981 . . . . . . . . 9 (𝜑 → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) ∈ ℝ*)
1615adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) ∈ ℝ*)
17163adant3 1133 . . . . . . 7 ((𝜑𝑛 ∈ ℕ ∧ (vol‘(𝐸𝑛)) = +∞) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) ∈ ℝ*)
18 id 22 . . . . . . . . . 10 ((vol‘(𝐸𝑛)) = +∞ → (vol‘(𝐸𝑛)) = +∞)
1918eqcomd 2743 . . . . . . . . 9 ((vol‘(𝐸𝑛)) = +∞ → +∞ = (vol‘(𝐸𝑛)))
20193ad2ant3 1136 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ ∧ (vol‘(𝐸𝑛)) = +∞) → +∞ = (vol‘(𝐸𝑛)))
2113adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ (𝐸𝑛) ∈ dom vol)
22 ssiun2 5047 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝐸𝑛) ⊆ 𝑛 ∈ ℕ (𝐸𝑛))
2322adantl 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) ⊆ 𝑛 ∈ ℕ (𝐸𝑛))
24 volss 25568 . . . . . . . . . 10 (((𝐸𝑛) ∈ dom vol ∧ 𝑛 ∈ ℕ (𝐸𝑛) ∈ dom vol ∧ (𝐸𝑛) ⊆ 𝑛 ∈ ℕ (𝐸𝑛)) → (vol‘(𝐸𝑛)) ≤ (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)))
2510, 21, 23, 24syl3anc 1373 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ≤ (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)))
26253adant3 1133 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ ∧ (vol‘(𝐸𝑛)) = +∞) → (vol‘(𝐸𝑛)) ≤ (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)))
2720, 26eqbrtrd 5165 . . . . . . 7 ((𝜑𝑛 ∈ ℕ ∧ (vol‘(𝐸𝑛)) = +∞) → +∞ ≤ (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)))
2817, 27xrgepnfd 45342 . . . . . 6 ((𝜑𝑛 ∈ ℕ ∧ (vol‘(𝐸𝑛)) = +∞) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = +∞)
29283exp 1120 . . . . 5 (𝜑 → (𝑛 ∈ ℕ → ((vol‘(𝐸𝑛)) = +∞ → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = +∞)))
301, 5, 29rexlimd 3266 . . . 4 (𝜑 → (∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞ → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = +∞))
3130imp 406 . . 3 ((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = +∞)
32 nfre1 3285 . . . . 5 𝑛𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞
331, 32nfan 1899 . . . 4 𝑛(𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞)
34 nnex 12272 . . . . 5 ℕ ∈ V
3534a1i 11 . . . 4 ((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → ℕ ∈ V)
367a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → vol:dom vol⟶(0[,]+∞))
3736, 10ffvelcdmd 7105 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ∈ (0[,]+∞))
3837adantlr 715 . . . 4 (((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ∈ (0[,]+∞))
39 simpr 484 . . . 4 ((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞)
4033, 35, 38, 39sge0pnfmpt 46460 . . 3 ((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))) = +∞)
4131, 40eqtr4d 2780 . 2 ((𝜑 ∧ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))))
42 ralnex 3072 . . . . . 6 (∀𝑛 ∈ ℕ ¬ (vol‘(𝐸𝑛)) = +∞ ↔ ¬ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞)
4342biimpri 228 . . . . 5 (¬ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞ → ∀𝑛 ∈ ℕ ¬ (vol‘(𝐸𝑛)) = +∞)
4443adantl 481 . . . 4 ((𝜑 ∧ ¬ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → ∀𝑛 ∈ ℕ ¬ (vol‘(𝐸𝑛)) = +∞)
4537adantr 480 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (vol‘(𝐸𝑛)) = +∞) → (vol‘(𝐸𝑛)) ∈ (0[,]+∞))
4618necon3bi 2967 . . . . . . . . . 10 (¬ (vol‘(𝐸𝑛)) = +∞ → (vol‘(𝐸𝑛)) ≠ +∞)
4746adantl 481 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (vol‘(𝐸𝑛)) = +∞) → (vol‘(𝐸𝑛)) ≠ +∞)
48 ge0xrre 45544 . . . . . . . . 9 (((vol‘(𝐸𝑛)) ∈ (0[,]+∞) ∧ (vol‘(𝐸𝑛)) ≠ +∞) → (vol‘(𝐸𝑛)) ∈ ℝ)
4945, 47, 48syl2anc 584 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (vol‘(𝐸𝑛)) = +∞) → (vol‘(𝐸𝑛)) ∈ ℝ)
5049ex 412 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (¬ (vol‘(𝐸𝑛)) = +∞ → (vol‘(𝐸𝑛)) ∈ ℝ))
51 renepnf 11309 . . . . . . . . 9 ((vol‘(𝐸𝑛)) ∈ ℝ → (vol‘(𝐸𝑛)) ≠ +∞)
5251neneqd 2945 . . . . . . . 8 ((vol‘(𝐸𝑛)) ∈ ℝ → ¬ (vol‘(𝐸𝑛)) = +∞)
5352a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((vol‘(𝐸𝑛)) ∈ ℝ → ¬ (vol‘(𝐸𝑛)) = +∞))
5450, 53impbid 212 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (¬ (vol‘(𝐸𝑛)) = +∞ ↔ (vol‘(𝐸𝑛)) ∈ ℝ))
5554ralbidva 3176 . . . . 5 (𝜑 → (∀𝑛 ∈ ℕ ¬ (vol‘(𝐸𝑛)) = +∞ ↔ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ))
5655adantr 480 . . . 4 ((𝜑 ∧ ¬ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → (∀𝑛 ∈ ℕ ¬ (vol‘(𝐸𝑛)) = +∞ ↔ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ))
5744, 56mpbid 232 . . 3 ((𝜑 ∧ ¬ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ)
58 nfra1 3284 . . . . . . 7 𝑛𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ
591, 58nfan 1899 . . . . . 6 𝑛(𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ)
6010adantlr 715 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (𝐸𝑛) ∈ dom vol)
61 rspa 3248 . . . . . . . . 9 ((∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ∈ ℝ)
6261adantll 714 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ∈ ℝ)
6360, 62jca 511 . . . . . . 7 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝐸𝑛) ∈ dom vol ∧ (vol‘(𝐸𝑛)) ∈ ℝ))
6463ex 412 . . . . . 6 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → (𝑛 ∈ ℕ → ((𝐸𝑛) ∈ dom vol ∧ (vol‘(𝐸𝑛)) ∈ ℝ)))
6559, 64ralrimi 3257 . . . . 5 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → ∀𝑛 ∈ ℕ ((𝐸𝑛) ∈ dom vol ∧ (vol‘(𝐸𝑛)) ∈ ℝ))
66 voliunsge0lem.d . . . . . 6 (𝜑Disj 𝑛 ∈ ℕ (𝐸𝑛))
6766adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → Disj 𝑛 ∈ ℕ (𝐸𝑛))
68 voliunsge0lem.s . . . . . 6 𝑆 = seq1( + , 𝐺)
69 voliunsge0lem.g . . . . . 6 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))
7068, 69voliun 25589 . . . . 5 ((∀𝑛 ∈ ℕ ((𝐸𝑛) ∈ dom vol ∧ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ (𝐸𝑛)) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = sup(ran 𝑆, ℝ*, < ))
7165, 67, 70syl2anc 584 . . . 4 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = sup(ran 𝑆, ℝ*, < ))
72 1zzd 12648 . . . . 5 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → 1 ∈ ℤ)
73 nnuz 12921 . . . . 5 ℕ = (ℤ‘1)
74 nfv 1914 . . . . . . . . 9 𝑛 𝑚 ∈ ℕ
7559, 74nfan 1899 . . . . . . . 8 𝑛((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑚 ∈ ℕ)
76 nfv 1914 . . . . . . . 8 𝑛(vol‘(𝐸𝑚)) ∈ (0[,)+∞)
7775, 76nfim 1896 . . . . . . 7 𝑛(((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑚 ∈ ℕ) → (vol‘(𝐸𝑚)) ∈ (0[,)+∞))
78 eleq1w 2824 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑛 ∈ ℕ ↔ 𝑚 ∈ ℕ))
7978anbi2d 630 . . . . . . . 8 (𝑛 = 𝑚 → (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) ↔ ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑚 ∈ ℕ)))
80 2fveq3 6911 . . . . . . . . 9 (𝑛 = 𝑚 → (vol‘(𝐸𝑛)) = (vol‘(𝐸𝑚)))
8180eleq1d 2826 . . . . . . . 8 (𝑛 = 𝑚 → ((vol‘(𝐸𝑛)) ∈ (0[,)+∞) ↔ (vol‘(𝐸𝑚)) ∈ (0[,)+∞)))
8279, 81imbi12d 344 . . . . . . 7 (𝑛 = 𝑚 → ((((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ∈ (0[,)+∞)) ↔ (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑚 ∈ ℕ) → (vol‘(𝐸𝑚)) ∈ (0[,)+∞))))
83 0xr 11308 . . . . . . . . 9 0 ∈ ℝ*
8483a1i 11 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → 0 ∈ ℝ*)
85 pnfxr 11315 . . . . . . . . 9 +∞ ∈ ℝ*
8685a1i 11 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → +∞ ∈ ℝ*)
8762rexrd 11311 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ∈ ℝ*)
88 volge0 45976 . . . . . . . . . 10 ((𝐸𝑛) ∈ dom vol → 0 ≤ (vol‘(𝐸𝑛)))
8910, 88syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (vol‘(𝐸𝑛)))
9089adantlr 715 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → 0 ≤ (vol‘(𝐸𝑛)))
9162ltpnfd 13163 . . . . . . . 8 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) < +∞)
9284, 86, 87, 90, 91elicod 13437 . . . . . . 7 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐸𝑛)) ∈ (0[,)+∞))
9377, 82, 92chvarfv 2240 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) ∧ 𝑚 ∈ ℕ) → (vol‘(𝐸𝑚)) ∈ (0[,)+∞))
9480cbvmptv 5255 . . . . . 6 (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛))) = (𝑚 ∈ ℕ ↦ (vol‘(𝐸𝑚)))
9593, 94fmptd 7134 . . . . 5 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛))):ℕ⟶(0[,)+∞))
96 seqeq3 14047 . . . . . . 7 (𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛))) → seq1( + , 𝐺) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))))
9769, 96ax-mp 5 . . . . . 6 seq1( + , 𝐺) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛))))
9868, 97eqtri 2765 . . . . 5 𝑆 = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛))))
9972, 73, 95, 98sge0seq 46461 . . . 4 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))) = sup(ran 𝑆, ℝ*, < ))
10071, 99eqtr4d 2780 . . 3 ((𝜑 ∧ ∀𝑛 ∈ ℕ (vol‘(𝐸𝑛)) ∈ ℝ) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))))
10157, 100syldan 591 . 2 ((𝜑 ∧ ¬ ∃𝑛 ∈ ℕ (vol‘(𝐸𝑛)) = +∞) → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))))
10241, 101pm2.61dan 813 1 (𝜑 → (vol‘ 𝑛 ∈ ℕ (𝐸𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  Vcvv 3480  wss 3951   ciun 4991  Disj wdisj 5110   class class class wbr 5143  cmpt 5225  dom cdm 5685  ran crn 5686  wf 6557  cfv 6561  (class class class)co 7431  supcsup 9480  cr 11154  0cc0 11155  1c1 11156   + caddc 11158  +∞cpnf 11292  *cxr 11294   < clt 11295  cle 11296  cn 12266  [,)cico 13389  [,]cicc 13390  seqcseq 14042  volcvol 25498  Σ^csumge0 46377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xadd 13155  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-xmet 21357  df-met 21358  df-ovol 25499  df-vol 25500  df-sumge0 46378
This theorem is referenced by:  voliunsge0  46488
  Copyright terms: Public domain W3C validator