MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cplem1 Structured version   Visualization version   GIF version

Theorem cplem1 9791
Description: Lemma for the Collection Principle cp 9793. (Contributed by NM, 17-Oct-2003.)
Hypotheses
Ref Expression
cplem1.1 𝐶 = {𝑦𝐵 ∣ ∀𝑧𝐵 (rank‘𝑦) ⊆ (rank‘𝑧)}
cplem1.2 𝐷 = 𝑥𝐴 𝐶
Assertion
Ref Expression
cplem1 𝑥𝐴 (𝐵 ≠ ∅ → (𝐵𝐷) ≠ ∅)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑦,𝐵,𝑧
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦,𝑧)   𝐷(𝑥,𝑦,𝑧)

Proof of Theorem cplem1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 scott0 9788 . . . . . 6 (𝐵 = ∅ ↔ {𝑦𝐵 ∣ ∀𝑧𝐵 (rank‘𝑦) ⊆ (rank‘𝑧)} = ∅)
2 cplem1.1 . . . . . . 7 𝐶 = {𝑦𝐵 ∣ ∀𝑧𝐵 (rank‘𝑦) ⊆ (rank‘𝑧)}
32eqeq1i 2738 . . . . . 6 (𝐶 = ∅ ↔ {𝑦𝐵 ∣ ∀𝑧𝐵 (rank‘𝑦) ⊆ (rank‘𝑧)} = ∅)
41, 3bitr4i 278 . . . . 5 (𝐵 = ∅ ↔ 𝐶 = ∅)
54necon3bii 2981 . . . 4 (𝐵 ≠ ∅ ↔ 𝐶 ≠ ∅)
6 n0 4302 . . . 4 (𝐶 ≠ ∅ ↔ ∃𝑤 𝑤𝐶)
75, 6bitri 275 . . 3 (𝐵 ≠ ∅ ↔ ∃𝑤 𝑤𝐶)
82ssrab3 4031 . . . . . . . 8 𝐶𝐵
98sseli 3926 . . . . . . 7 (𝑤𝐶𝑤𝐵)
109a1i 11 . . . . . 6 (𝑥𝐴 → (𝑤𝐶𝑤𝐵))
11 ssiun2 5000 . . . . . . . 8 (𝑥𝐴𝐶 𝑥𝐴 𝐶)
12 cplem1.2 . . . . . . . 8 𝐷 = 𝑥𝐴 𝐶
1311, 12sseqtrrdi 3972 . . . . . . 7 (𝑥𝐴𝐶𝐷)
1413sseld 3929 . . . . . 6 (𝑥𝐴 → (𝑤𝐶𝑤𝐷))
1510, 14jcad 512 . . . . 5 (𝑥𝐴 → (𝑤𝐶 → (𝑤𝐵𝑤𝐷)))
16 inelcm 4414 . . . . 5 ((𝑤𝐵𝑤𝐷) → (𝐵𝐷) ≠ ∅)
1715, 16syl6 35 . . . 4 (𝑥𝐴 → (𝑤𝐶 → (𝐵𝐷) ≠ ∅))
1817exlimdv 1934 . . 3 (𝑥𝐴 → (∃𝑤 𝑤𝐶 → (𝐵𝐷) ≠ ∅))
197, 18biimtrid 242 . 2 (𝑥𝐴 → (𝐵 ≠ ∅ → (𝐵𝐷) ≠ ∅))
2019rgen 3050 1 𝑥𝐴 (𝐵 ≠ ∅ → (𝐵𝐷) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2113  wne 2929  wral 3048  {crab 3396  cin 3897  wss 3898  c0 4282   ciun 4943  cfv 6488  rankcrnk 9665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-ov 7357  df-om 7805  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-r1 9666  df-rank 9667
This theorem is referenced by:  cplem2  9792
  Copyright terms: Public domain W3C validator