| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cplem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for the Collection Principle cp 9784. (Contributed by NM, 17-Oct-2003.) |
| Ref | Expression |
|---|---|
| cplem1.1 | ⊢ 𝐶 = {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝐵 (rank‘𝑦) ⊆ (rank‘𝑧)} |
| cplem1.2 | ⊢ 𝐷 = ∪ 𝑥 ∈ 𝐴 𝐶 |
| Ref | Expression |
|---|---|
| cplem1 | ⊢ ∀𝑥 ∈ 𝐴 (𝐵 ≠ ∅ → (𝐵 ∩ 𝐷) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scott0 9779 | . . . . . 6 ⊢ (𝐵 = ∅ ↔ {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝐵 (rank‘𝑦) ⊆ (rank‘𝑧)} = ∅) | |
| 2 | cplem1.1 | . . . . . . 7 ⊢ 𝐶 = {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝐵 (rank‘𝑦) ⊆ (rank‘𝑧)} | |
| 3 | 2 | eqeq1i 2736 | . . . . . 6 ⊢ (𝐶 = ∅ ↔ {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝐵 (rank‘𝑦) ⊆ (rank‘𝑧)} = ∅) |
| 4 | 1, 3 | bitr4i 278 | . . . . 5 ⊢ (𝐵 = ∅ ↔ 𝐶 = ∅) |
| 5 | 4 | necon3bii 2980 | . . . 4 ⊢ (𝐵 ≠ ∅ ↔ 𝐶 ≠ ∅) |
| 6 | n0 4303 | . . . 4 ⊢ (𝐶 ≠ ∅ ↔ ∃𝑤 𝑤 ∈ 𝐶) | |
| 7 | 5, 6 | bitri 275 | . . 3 ⊢ (𝐵 ≠ ∅ ↔ ∃𝑤 𝑤 ∈ 𝐶) |
| 8 | 2 | ssrab3 4032 | . . . . . . . 8 ⊢ 𝐶 ⊆ 𝐵 |
| 9 | 8 | sseli 3930 | . . . . . . 7 ⊢ (𝑤 ∈ 𝐶 → 𝑤 ∈ 𝐵) |
| 10 | 9 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → (𝑤 ∈ 𝐶 → 𝑤 ∈ 𝐵)) |
| 11 | ssiun2 4996 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 12 | cplem1.2 | . . . . . . . 8 ⊢ 𝐷 = ∪ 𝑥 ∈ 𝐴 𝐶 | |
| 13 | 11, 12 | sseqtrrdi 3976 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ⊆ 𝐷) |
| 14 | 13 | sseld 3933 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → (𝑤 ∈ 𝐶 → 𝑤 ∈ 𝐷)) |
| 15 | 10, 14 | jcad 512 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (𝑤 ∈ 𝐶 → (𝑤 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷))) |
| 16 | inelcm 4415 | . . . . 5 ⊢ ((𝑤 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷) → (𝐵 ∩ 𝐷) ≠ ∅) | |
| 17 | 15, 16 | syl6 35 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝑤 ∈ 𝐶 → (𝐵 ∩ 𝐷) ≠ ∅)) |
| 18 | 17 | exlimdv 1934 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∃𝑤 𝑤 ∈ 𝐶 → (𝐵 ∩ 𝐷) ≠ ∅)) |
| 19 | 7, 18 | biimtrid 242 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝐵 ≠ ∅ → (𝐵 ∩ 𝐷) ≠ ∅)) |
| 20 | 19 | rgen 3049 | 1 ⊢ ∀𝑥 ∈ 𝐴 (𝐵 ≠ ∅ → (𝐵 ∩ 𝐷) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 {crab 3395 ∩ cin 3901 ⊆ wss 3902 ∅c0 4283 ∪ ciun 4941 ‘cfv 6481 rankcrnk 9656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-r1 9657 df-rank 9658 |
| This theorem is referenced by: cplem2 9783 |
| Copyright terms: Public domain | W3C validator |