| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cplem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for the Collection Principle cp 9844. (Contributed by NM, 17-Oct-2003.) |
| Ref | Expression |
|---|---|
| cplem1.1 | ⊢ 𝐶 = {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝐵 (rank‘𝑦) ⊆ (rank‘𝑧)} |
| cplem1.2 | ⊢ 𝐷 = ∪ 𝑥 ∈ 𝐴 𝐶 |
| Ref | Expression |
|---|---|
| cplem1 | ⊢ ∀𝑥 ∈ 𝐴 (𝐵 ≠ ∅ → (𝐵 ∩ 𝐷) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scott0 9839 | . . . . . 6 ⊢ (𝐵 = ∅ ↔ {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝐵 (rank‘𝑦) ⊆ (rank‘𝑧)} = ∅) | |
| 2 | cplem1.1 | . . . . . . 7 ⊢ 𝐶 = {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝐵 (rank‘𝑦) ⊆ (rank‘𝑧)} | |
| 3 | 2 | eqeq1i 2734 | . . . . . 6 ⊢ (𝐶 = ∅ ↔ {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝐵 (rank‘𝑦) ⊆ (rank‘𝑧)} = ∅) |
| 4 | 1, 3 | bitr4i 278 | . . . . 5 ⊢ (𝐵 = ∅ ↔ 𝐶 = ∅) |
| 5 | 4 | necon3bii 2977 | . . . 4 ⊢ (𝐵 ≠ ∅ ↔ 𝐶 ≠ ∅) |
| 6 | n0 4316 | . . . 4 ⊢ (𝐶 ≠ ∅ ↔ ∃𝑤 𝑤 ∈ 𝐶) | |
| 7 | 5, 6 | bitri 275 | . . 3 ⊢ (𝐵 ≠ ∅ ↔ ∃𝑤 𝑤 ∈ 𝐶) |
| 8 | 2 | ssrab3 4045 | . . . . . . . 8 ⊢ 𝐶 ⊆ 𝐵 |
| 9 | 8 | sseli 3942 | . . . . . . 7 ⊢ (𝑤 ∈ 𝐶 → 𝑤 ∈ 𝐵) |
| 10 | 9 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → (𝑤 ∈ 𝐶 → 𝑤 ∈ 𝐵)) |
| 11 | ssiun2 5011 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 12 | cplem1.2 | . . . . . . . 8 ⊢ 𝐷 = ∪ 𝑥 ∈ 𝐴 𝐶 | |
| 13 | 11, 12 | sseqtrrdi 3988 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ⊆ 𝐷) |
| 14 | 13 | sseld 3945 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → (𝑤 ∈ 𝐶 → 𝑤 ∈ 𝐷)) |
| 15 | 10, 14 | jcad 512 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (𝑤 ∈ 𝐶 → (𝑤 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷))) |
| 16 | inelcm 4428 | . . . . 5 ⊢ ((𝑤 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷) → (𝐵 ∩ 𝐷) ≠ ∅) | |
| 17 | 15, 16 | syl6 35 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝑤 ∈ 𝐶 → (𝐵 ∩ 𝐷) ≠ ∅)) |
| 18 | 17 | exlimdv 1933 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∃𝑤 𝑤 ∈ 𝐶 → (𝐵 ∩ 𝐷) ≠ ∅)) |
| 19 | 7, 18 | biimtrid 242 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝐵 ≠ ∅ → (𝐵 ∩ 𝐷) ≠ ∅)) |
| 20 | 19 | rgen 3046 | 1 ⊢ ∀𝑥 ∈ 𝐴 (𝐵 ≠ ∅ → (𝐵 ∩ 𝐷) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 {crab 3405 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 ∪ ciun 4955 ‘cfv 6511 rankcrnk 9716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-r1 9717 df-rank 9718 |
| This theorem is referenced by: cplem2 9843 |
| Copyright terms: Public domain | W3C validator |