MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cplem1 Structured version   Visualization version   GIF version

Theorem cplem1 9647
Description: Lemma for the Collection Principle cp 9649. (Contributed by NM, 17-Oct-2003.)
Hypotheses
Ref Expression
cplem1.1 𝐶 = {𝑦𝐵 ∣ ∀𝑧𝐵 (rank‘𝑦) ⊆ (rank‘𝑧)}
cplem1.2 𝐷 = 𝑥𝐴 𝐶
Assertion
Ref Expression
cplem1 𝑥𝐴 (𝐵 ≠ ∅ → (𝐵𝐷) ≠ ∅)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑦,𝐵,𝑧
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦,𝑧)   𝐷(𝑥,𝑦,𝑧)

Proof of Theorem cplem1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 scott0 9644 . . . . . 6 (𝐵 = ∅ ↔ {𝑦𝐵 ∣ ∀𝑧𝐵 (rank‘𝑦) ⊆ (rank‘𝑧)} = ∅)
2 cplem1.1 . . . . . . 7 𝐶 = {𝑦𝐵 ∣ ∀𝑧𝐵 (rank‘𝑦) ⊆ (rank‘𝑧)}
32eqeq1i 2743 . . . . . 6 (𝐶 = ∅ ↔ {𝑦𝐵 ∣ ∀𝑧𝐵 (rank‘𝑦) ⊆ (rank‘𝑧)} = ∅)
41, 3bitr4i 277 . . . . 5 (𝐵 = ∅ ↔ 𝐶 = ∅)
54necon3bii 2996 . . . 4 (𝐵 ≠ ∅ ↔ 𝐶 ≠ ∅)
6 n0 4280 . . . 4 (𝐶 ≠ ∅ ↔ ∃𝑤 𝑤𝐶)
75, 6bitri 274 . . 3 (𝐵 ≠ ∅ ↔ ∃𝑤 𝑤𝐶)
82ssrab3 4015 . . . . . . . 8 𝐶𝐵
98sseli 3917 . . . . . . 7 (𝑤𝐶𝑤𝐵)
109a1i 11 . . . . . 6 (𝑥𝐴 → (𝑤𝐶𝑤𝐵))
11 ssiun2 4977 . . . . . . . 8 (𝑥𝐴𝐶 𝑥𝐴 𝐶)
12 cplem1.2 . . . . . . . 8 𝐷 = 𝑥𝐴 𝐶
1311, 12sseqtrrdi 3972 . . . . . . 7 (𝑥𝐴𝐶𝐷)
1413sseld 3920 . . . . . 6 (𝑥𝐴 → (𝑤𝐶𝑤𝐷))
1510, 14jcad 513 . . . . 5 (𝑥𝐴 → (𝑤𝐶 → (𝑤𝐵𝑤𝐷)))
16 inelcm 4398 . . . . 5 ((𝑤𝐵𝑤𝐷) → (𝐵𝐷) ≠ ∅)
1715, 16syl6 35 . . . 4 (𝑥𝐴 → (𝑤𝐶 → (𝐵𝐷) ≠ ∅))
1817exlimdv 1936 . . 3 (𝑥𝐴 → (∃𝑤 𝑤𝐶 → (𝐵𝐷) ≠ ∅))
197, 18syl5bi 241 . 2 (𝑥𝐴 → (𝐵 ≠ ∅ → (𝐵𝐷) ≠ ∅))
2019rgen 3074 1 𝑥𝐴 (𝐵 ≠ ∅ → (𝐵𝐷) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  {crab 3068  cin 3886  wss 3887  c0 4256   ciun 4924  cfv 6433  rankcrnk 9521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-r1 9522  df-rank 9523
This theorem is referenced by:  cplem2  9648
  Copyright terms: Public domain W3C validator