| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cplem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for the Collection Principle cp 9793. (Contributed by NM, 17-Oct-2003.) |
| Ref | Expression |
|---|---|
| cplem1.1 | ⊢ 𝐶 = {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝐵 (rank‘𝑦) ⊆ (rank‘𝑧)} |
| cplem1.2 | ⊢ 𝐷 = ∪ 𝑥 ∈ 𝐴 𝐶 |
| Ref | Expression |
|---|---|
| cplem1 | ⊢ ∀𝑥 ∈ 𝐴 (𝐵 ≠ ∅ → (𝐵 ∩ 𝐷) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scott0 9788 | . . . . . 6 ⊢ (𝐵 = ∅ ↔ {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝐵 (rank‘𝑦) ⊆ (rank‘𝑧)} = ∅) | |
| 2 | cplem1.1 | . . . . . . 7 ⊢ 𝐶 = {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝐵 (rank‘𝑦) ⊆ (rank‘𝑧)} | |
| 3 | 2 | eqeq1i 2738 | . . . . . 6 ⊢ (𝐶 = ∅ ↔ {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝐵 (rank‘𝑦) ⊆ (rank‘𝑧)} = ∅) |
| 4 | 1, 3 | bitr4i 278 | . . . . 5 ⊢ (𝐵 = ∅ ↔ 𝐶 = ∅) |
| 5 | 4 | necon3bii 2981 | . . . 4 ⊢ (𝐵 ≠ ∅ ↔ 𝐶 ≠ ∅) |
| 6 | n0 4302 | . . . 4 ⊢ (𝐶 ≠ ∅ ↔ ∃𝑤 𝑤 ∈ 𝐶) | |
| 7 | 5, 6 | bitri 275 | . . 3 ⊢ (𝐵 ≠ ∅ ↔ ∃𝑤 𝑤 ∈ 𝐶) |
| 8 | 2 | ssrab3 4031 | . . . . . . . 8 ⊢ 𝐶 ⊆ 𝐵 |
| 9 | 8 | sseli 3926 | . . . . . . 7 ⊢ (𝑤 ∈ 𝐶 → 𝑤 ∈ 𝐵) |
| 10 | 9 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → (𝑤 ∈ 𝐶 → 𝑤 ∈ 𝐵)) |
| 11 | ssiun2 5000 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 12 | cplem1.2 | . . . . . . . 8 ⊢ 𝐷 = ∪ 𝑥 ∈ 𝐴 𝐶 | |
| 13 | 11, 12 | sseqtrrdi 3972 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ⊆ 𝐷) |
| 14 | 13 | sseld 3929 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → (𝑤 ∈ 𝐶 → 𝑤 ∈ 𝐷)) |
| 15 | 10, 14 | jcad 512 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (𝑤 ∈ 𝐶 → (𝑤 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷))) |
| 16 | inelcm 4414 | . . . . 5 ⊢ ((𝑤 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷) → (𝐵 ∩ 𝐷) ≠ ∅) | |
| 17 | 15, 16 | syl6 35 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝑤 ∈ 𝐶 → (𝐵 ∩ 𝐷) ≠ ∅)) |
| 18 | 17 | exlimdv 1934 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∃𝑤 𝑤 ∈ 𝐶 → (𝐵 ∩ 𝐷) ≠ ∅)) |
| 19 | 7, 18 | biimtrid 242 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝐵 ≠ ∅ → (𝐵 ∩ 𝐷) ≠ ∅)) |
| 20 | 19 | rgen 3050 | 1 ⊢ ∀𝑥 ∈ 𝐴 (𝐵 ≠ ∅ → (𝐵 ∩ 𝐷) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 {crab 3396 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 ∪ ciun 4943 ‘cfv 6488 rankcrnk 9665 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-om 7805 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-r1 9666 df-rank 9667 |
| This theorem is referenced by: cplem2 9792 |
| Copyright terms: Public domain | W3C validator |