| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cplem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for the Collection Principle cp 9914. (Contributed by NM, 17-Oct-2003.) |
| Ref | Expression |
|---|---|
| cplem1.1 | ⊢ 𝐶 = {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝐵 (rank‘𝑦) ⊆ (rank‘𝑧)} |
| cplem1.2 | ⊢ 𝐷 = ∪ 𝑥 ∈ 𝐴 𝐶 |
| Ref | Expression |
|---|---|
| cplem1 | ⊢ ∀𝑥 ∈ 𝐴 (𝐵 ≠ ∅ → (𝐵 ∩ 𝐷) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scott0 9909 | . . . . . 6 ⊢ (𝐵 = ∅ ↔ {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝐵 (rank‘𝑦) ⊆ (rank‘𝑧)} = ∅) | |
| 2 | cplem1.1 | . . . . . . 7 ⊢ 𝐶 = {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝐵 (rank‘𝑦) ⊆ (rank‘𝑧)} | |
| 3 | 2 | eqeq1i 2739 | . . . . . 6 ⊢ (𝐶 = ∅ ↔ {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝐵 (rank‘𝑦) ⊆ (rank‘𝑧)} = ∅) |
| 4 | 1, 3 | bitr4i 278 | . . . . 5 ⊢ (𝐵 = ∅ ↔ 𝐶 = ∅) |
| 5 | 4 | necon3bii 2983 | . . . 4 ⊢ (𝐵 ≠ ∅ ↔ 𝐶 ≠ ∅) |
| 6 | n0 4335 | . . . 4 ⊢ (𝐶 ≠ ∅ ↔ ∃𝑤 𝑤 ∈ 𝐶) | |
| 7 | 5, 6 | bitri 275 | . . 3 ⊢ (𝐵 ≠ ∅ ↔ ∃𝑤 𝑤 ∈ 𝐶) |
| 8 | 2 | ssrab3 4064 | . . . . . . . 8 ⊢ 𝐶 ⊆ 𝐵 |
| 9 | 8 | sseli 3961 | . . . . . . 7 ⊢ (𝑤 ∈ 𝐶 → 𝑤 ∈ 𝐵) |
| 10 | 9 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → (𝑤 ∈ 𝐶 → 𝑤 ∈ 𝐵)) |
| 11 | ssiun2 5029 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 12 | cplem1.2 | . . . . . . . 8 ⊢ 𝐷 = ∪ 𝑥 ∈ 𝐴 𝐶 | |
| 13 | 11, 12 | sseqtrrdi 4007 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ⊆ 𝐷) |
| 14 | 13 | sseld 3964 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → (𝑤 ∈ 𝐶 → 𝑤 ∈ 𝐷)) |
| 15 | 10, 14 | jcad 512 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (𝑤 ∈ 𝐶 → (𝑤 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷))) |
| 16 | inelcm 4447 | . . . . 5 ⊢ ((𝑤 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷) → (𝐵 ∩ 𝐷) ≠ ∅) | |
| 17 | 15, 16 | syl6 35 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝑤 ∈ 𝐶 → (𝐵 ∩ 𝐷) ≠ ∅)) |
| 18 | 17 | exlimdv 1932 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∃𝑤 𝑤 ∈ 𝐶 → (𝐵 ∩ 𝐷) ≠ ∅)) |
| 19 | 7, 18 | biimtrid 242 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝐵 ≠ ∅ → (𝐵 ∩ 𝐷) ≠ ∅)) |
| 20 | 19 | rgen 3052 | 1 ⊢ ∀𝑥 ∈ 𝐴 (𝐵 ≠ ∅ → (𝐵 ∩ 𝐷) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 {crab 3420 ∩ cin 3932 ⊆ wss 3933 ∅c0 4315 ∪ ciun 4973 ‘cfv 6542 rankcrnk 9786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-iin 4976 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-om 7871 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-r1 9787 df-rank 9788 |
| This theorem is referenced by: cplem2 9913 |
| Copyright terms: Public domain | W3C validator |