| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cplem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for the Collection Principle cp 9910. (Contributed by NM, 17-Oct-2003.) |
| Ref | Expression |
|---|---|
| cplem1.1 | ⊢ 𝐶 = {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝐵 (rank‘𝑦) ⊆ (rank‘𝑧)} |
| cplem1.2 | ⊢ 𝐷 = ∪ 𝑥 ∈ 𝐴 𝐶 |
| Ref | Expression |
|---|---|
| cplem1 | ⊢ ∀𝑥 ∈ 𝐴 (𝐵 ≠ ∅ → (𝐵 ∩ 𝐷) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scott0 9905 | . . . . . 6 ⊢ (𝐵 = ∅ ↔ {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝐵 (rank‘𝑦) ⊆ (rank‘𝑧)} = ∅) | |
| 2 | cplem1.1 | . . . . . . 7 ⊢ 𝐶 = {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝐵 (rank‘𝑦) ⊆ (rank‘𝑧)} | |
| 3 | 2 | eqeq1i 2741 | . . . . . 6 ⊢ (𝐶 = ∅ ↔ {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝐵 (rank‘𝑦) ⊆ (rank‘𝑧)} = ∅) |
| 4 | 1, 3 | bitr4i 278 | . . . . 5 ⊢ (𝐵 = ∅ ↔ 𝐶 = ∅) |
| 5 | 4 | necon3bii 2985 | . . . 4 ⊢ (𝐵 ≠ ∅ ↔ 𝐶 ≠ ∅) |
| 6 | n0 4333 | . . . 4 ⊢ (𝐶 ≠ ∅ ↔ ∃𝑤 𝑤 ∈ 𝐶) | |
| 7 | 5, 6 | bitri 275 | . . 3 ⊢ (𝐵 ≠ ∅ ↔ ∃𝑤 𝑤 ∈ 𝐶) |
| 8 | 2 | ssrab3 4062 | . . . . . . . 8 ⊢ 𝐶 ⊆ 𝐵 |
| 9 | 8 | sseli 3959 | . . . . . . 7 ⊢ (𝑤 ∈ 𝐶 → 𝑤 ∈ 𝐵) |
| 10 | 9 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → (𝑤 ∈ 𝐶 → 𝑤 ∈ 𝐵)) |
| 11 | ssiun2 5028 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 12 | cplem1.2 | . . . . . . . 8 ⊢ 𝐷 = ∪ 𝑥 ∈ 𝐴 𝐶 | |
| 13 | 11, 12 | sseqtrrdi 4005 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ⊆ 𝐷) |
| 14 | 13 | sseld 3962 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → (𝑤 ∈ 𝐶 → 𝑤 ∈ 𝐷)) |
| 15 | 10, 14 | jcad 512 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (𝑤 ∈ 𝐶 → (𝑤 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷))) |
| 16 | inelcm 4445 | . . . . 5 ⊢ ((𝑤 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷) → (𝐵 ∩ 𝐷) ≠ ∅) | |
| 17 | 15, 16 | syl6 35 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝑤 ∈ 𝐶 → (𝐵 ∩ 𝐷) ≠ ∅)) |
| 18 | 17 | exlimdv 1933 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∃𝑤 𝑤 ∈ 𝐶 → (𝐵 ∩ 𝐷) ≠ ∅)) |
| 19 | 7, 18 | biimtrid 242 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝐵 ≠ ∅ → (𝐵 ∩ 𝐷) ≠ ∅)) |
| 20 | 19 | rgen 3054 | 1 ⊢ ∀𝑥 ∈ 𝐴 (𝐵 ≠ ∅ → (𝐵 ∩ 𝐷) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 {crab 3420 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 ∪ ciun 4972 ‘cfv 6536 rankcrnk 9782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-r1 9783 df-rank 9784 |
| This theorem is referenced by: cplem2 9909 |
| Copyright terms: Public domain | W3C validator |