![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cplem1 | Structured version Visualization version GIF version |
Description: Lemma for the Collection Principle cp 9892. (Contributed by NM, 17-Oct-2003.) |
Ref | Expression |
---|---|
cplem1.1 | β’ πΆ = {π¦ β π΅ β£ βπ§ β π΅ (rankβπ¦) β (rankβπ§)} |
cplem1.2 | β’ π· = βͺ π₯ β π΄ πΆ |
Ref | Expression |
---|---|
cplem1 | β’ βπ₯ β π΄ (π΅ β β β (π΅ β© π·) β β ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scott0 9887 | . . . . . 6 β’ (π΅ = β β {π¦ β π΅ β£ βπ§ β π΅ (rankβπ¦) β (rankβπ§)} = β ) | |
2 | cplem1.1 | . . . . . . 7 β’ πΆ = {π¦ β π΅ β£ βπ§ β π΅ (rankβπ¦) β (rankβπ§)} | |
3 | 2 | eqeq1i 2736 | . . . . . 6 β’ (πΆ = β β {π¦ β π΅ β£ βπ§ β π΅ (rankβπ¦) β (rankβπ§)} = β ) |
4 | 1, 3 | bitr4i 278 | . . . . 5 β’ (π΅ = β β πΆ = β ) |
5 | 4 | necon3bii 2992 | . . . 4 β’ (π΅ β β β πΆ β β ) |
6 | n0 4346 | . . . 4 β’ (πΆ β β β βπ€ π€ β πΆ) | |
7 | 5, 6 | bitri 275 | . . 3 β’ (π΅ β β β βπ€ π€ β πΆ) |
8 | 2 | ssrab3 4080 | . . . . . . . 8 β’ πΆ β π΅ |
9 | 8 | sseli 3978 | . . . . . . 7 β’ (π€ β πΆ β π€ β π΅) |
10 | 9 | a1i 11 | . . . . . 6 β’ (π₯ β π΄ β (π€ β πΆ β π€ β π΅)) |
11 | ssiun2 5050 | . . . . . . . 8 β’ (π₯ β π΄ β πΆ β βͺ π₯ β π΄ πΆ) | |
12 | cplem1.2 | . . . . . . . 8 β’ π· = βͺ π₯ β π΄ πΆ | |
13 | 11, 12 | sseqtrrdi 4033 | . . . . . . 7 β’ (π₯ β π΄ β πΆ β π·) |
14 | 13 | sseld 3981 | . . . . . 6 β’ (π₯ β π΄ β (π€ β πΆ β π€ β π·)) |
15 | 10, 14 | jcad 512 | . . . . 5 β’ (π₯ β π΄ β (π€ β πΆ β (π€ β π΅ β§ π€ β π·))) |
16 | inelcm 4464 | . . . . 5 β’ ((π€ β π΅ β§ π€ β π·) β (π΅ β© π·) β β ) | |
17 | 15, 16 | syl6 35 | . . . 4 β’ (π₯ β π΄ β (π€ β πΆ β (π΅ β© π·) β β )) |
18 | 17 | exlimdv 1935 | . . 3 β’ (π₯ β π΄ β (βπ€ π€ β πΆ β (π΅ β© π·) β β )) |
19 | 7, 18 | biimtrid 241 | . 2 β’ (π₯ β π΄ β (π΅ β β β (π΅ β© π·) β β )) |
20 | 19 | rgen 3062 | 1 β’ βπ₯ β π΄ (π΅ β β β (π΅ β© π·) β β ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 βwex 1780 β wcel 2105 β wne 2939 βwral 3060 {crab 3431 β© cin 3947 β wss 3948 β c0 4322 βͺ ciun 4997 βcfv 6543 rankcrnk 9764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-r1 9765 df-rank 9766 |
This theorem is referenced by: cplem2 9891 |
Copyright terms: Public domain | W3C validator |