![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0iun | Structured version Visualization version GIF version |
Description: Sum of nonnegative extended reals over a disjoint indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0iun.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sge0iun.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
sge0iun.x | ⊢ 𝑋 = ∪ 𝑥 ∈ 𝐴 𝐵 |
sge0iun.f | ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) |
sge0iun.dj | ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) |
Ref | Expression |
---|---|
sge0iun | ⊢ (𝜑 → (Σ^‘𝐹) = (Σ^‘(𝑥 ∈ 𝐴 ↦ (Σ^‘(𝐹 ↾ 𝐵))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0iun.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | sge0iun.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) | |
3 | sge0iun.dj | . . 3 ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) | |
4 | sge0iun.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) | |
5 | 4 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹:𝑋⟶(0[,]+∞)) |
6 | 5 | 3adant3 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐹:𝑋⟶(0[,]+∞)) |
7 | ssiun2 5051 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | |
8 | 7 | adantl 483 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
9 | sge0iun.x | . . . . . . . 8 ⊢ 𝑋 = ∪ 𝑥 ∈ 𝐴 𝐵 | |
10 | 9 | eqcomi 2742 | . . . . . . 7 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = 𝑋 |
11 | 8, 10 | sseqtrdi 4033 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝑋) |
12 | 11 | 3adant3 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐵 ⊆ 𝑋) |
13 | simp3 1139 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) | |
14 | 12, 13 | sseldd 3984 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝑋) |
15 | 6, 14 | ffvelcdmd 7088 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝐹‘𝑦) ∈ (0[,]+∞)) |
16 | 1, 2, 3, 15 | sge0iunmpt 45134 | . 2 ⊢ (𝜑 → (Σ^‘(𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ (𝐹‘𝑦))) = (Σ^‘(𝑥 ∈ 𝐴 ↦ (Σ^‘(𝑦 ∈ 𝐵 ↦ (𝐹‘𝑦)))))) |
17 | 9 | feq2i 6710 | . . . . . 6 ⊢ (𝐹:𝑋⟶(0[,]+∞) ↔ 𝐹:∪ 𝑥 ∈ 𝐴 𝐵⟶(0[,]+∞)) |
18 | 17 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝐹:𝑋⟶(0[,]+∞) ↔ 𝐹:∪ 𝑥 ∈ 𝐴 𝐵⟶(0[,]+∞))) |
19 | 4, 18 | mpbid 231 | . . . 4 ⊢ (𝜑 → 𝐹:∪ 𝑥 ∈ 𝐴 𝐵⟶(0[,]+∞)) |
20 | 19 | feqmptd 6961 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ (𝐹‘𝑦))) |
21 | 20 | fveq2d 6896 | . 2 ⊢ (𝜑 → (Σ^‘𝐹) = (Σ^‘(𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ (𝐹‘𝑦)))) |
22 | 5, 11 | fssresd 6759 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹 ↾ 𝐵):𝐵⟶(0[,]+∞)) |
23 | 22 | feqmptd 6961 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹 ↾ 𝐵) = (𝑦 ∈ 𝐵 ↦ ((𝐹 ↾ 𝐵)‘𝑦))) |
24 | fvres 6911 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝑦) = (𝐹‘𝑦)) | |
25 | 24 | mpteq2ia 5252 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐵 ↦ ((𝐹 ↾ 𝐵)‘𝑦)) = (𝑦 ∈ 𝐵 ↦ (𝐹‘𝑦)) |
26 | 25 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ 𝐵 ↦ ((𝐹 ↾ 𝐵)‘𝑦)) = (𝑦 ∈ 𝐵 ↦ (𝐹‘𝑦))) |
27 | 23, 26 | eqtrd 2773 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹 ↾ 𝐵) = (𝑦 ∈ 𝐵 ↦ (𝐹‘𝑦))) |
28 | 27 | fveq2d 6896 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (Σ^‘(𝐹 ↾ 𝐵)) = (Σ^‘(𝑦 ∈ 𝐵 ↦ (𝐹‘𝑦)))) |
29 | 28 | mpteq2dva 5249 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (Σ^‘(𝐹 ↾ 𝐵))) = (𝑥 ∈ 𝐴 ↦ (Σ^‘(𝑦 ∈ 𝐵 ↦ (𝐹‘𝑦))))) |
30 | 29 | fveq2d 6896 | . 2 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ (Σ^‘(𝐹 ↾ 𝐵)))) = (Σ^‘(𝑥 ∈ 𝐴 ↦ (Σ^‘(𝑦 ∈ 𝐵 ↦ (𝐹‘𝑦)))))) |
31 | 16, 21, 30 | 3eqtr4d 2783 | 1 ⊢ (𝜑 → (Σ^‘𝐹) = (Σ^‘(𝑥 ∈ 𝐴 ↦ (Σ^‘(𝐹 ↾ 𝐵))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ⊆ wss 3949 ∪ ciun 4998 Disj wdisj 5114 ↦ cmpt 5232 ↾ cres 5679 ⟶wf 6540 ‘cfv 6544 (class class class)co 7409 0cc0 11110 +∞cpnf 11245 [,]cicc 13327 Σ^csumge0 45078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 ax-ac2 10458 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-disj 5115 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-sup 9437 df-oi 9505 df-card 9934 df-acn 9937 df-ac 10111 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-n0 12473 df-z 12559 df-uz 12823 df-rp 12975 df-xadd 13093 df-ico 13330 df-icc 13331 df-fz 13485 df-fzo 13628 df-seq 13967 df-exp 14028 df-hash 14291 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-clim 15432 df-sum 15633 df-sumge0 45079 |
This theorem is referenced by: psmeasurelem 45186 |
Copyright terms: Public domain | W3C validator |