| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0iun | Structured version Visualization version GIF version | ||
| Description: Sum of nonnegative extended reals over a disjoint indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| sge0iun.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| sge0iun.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
| sge0iun.x | ⊢ 𝑋 = ∪ 𝑥 ∈ 𝐴 𝐵 |
| sge0iun.f | ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) |
| sge0iun.dj | ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) |
| Ref | Expression |
|---|---|
| sge0iun | ⊢ (𝜑 → (Σ^‘𝐹) = (Σ^‘(𝑥 ∈ 𝐴 ↦ (Σ^‘(𝐹 ↾ 𝐵))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sge0iun.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | sge0iun.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) | |
| 3 | sge0iun.dj | . . 3 ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) | |
| 4 | sge0iun.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) | |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹:𝑋⟶(0[,]+∞)) |
| 6 | 5 | 3adant3 1132 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐹:𝑋⟶(0[,]+∞)) |
| 7 | ssiun2 5023 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | |
| 8 | 7 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
| 9 | sge0iun.x | . . . . . . . 8 ⊢ 𝑋 = ∪ 𝑥 ∈ 𝐴 𝐵 | |
| 10 | 9 | eqcomi 2744 | . . . . . . 7 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = 𝑋 |
| 11 | 8, 10 | sseqtrdi 3999 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝑋) |
| 12 | 11 | 3adant3 1132 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐵 ⊆ 𝑋) |
| 13 | simp3 1138 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) | |
| 14 | 12, 13 | sseldd 3959 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝑋) |
| 15 | 6, 14 | ffvelcdmd 7075 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝐹‘𝑦) ∈ (0[,]+∞)) |
| 16 | 1, 2, 3, 15 | sge0iunmpt 46447 | . 2 ⊢ (𝜑 → (Σ^‘(𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ (𝐹‘𝑦))) = (Σ^‘(𝑥 ∈ 𝐴 ↦ (Σ^‘(𝑦 ∈ 𝐵 ↦ (𝐹‘𝑦)))))) |
| 17 | 9 | feq2i 6698 | . . . . . 6 ⊢ (𝐹:𝑋⟶(0[,]+∞) ↔ 𝐹:∪ 𝑥 ∈ 𝐴 𝐵⟶(0[,]+∞)) |
| 18 | 17 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝐹:𝑋⟶(0[,]+∞) ↔ 𝐹:∪ 𝑥 ∈ 𝐴 𝐵⟶(0[,]+∞))) |
| 19 | 4, 18 | mpbid 232 | . . . 4 ⊢ (𝜑 → 𝐹:∪ 𝑥 ∈ 𝐴 𝐵⟶(0[,]+∞)) |
| 20 | 19 | feqmptd 6947 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ (𝐹‘𝑦))) |
| 21 | 20 | fveq2d 6880 | . 2 ⊢ (𝜑 → (Σ^‘𝐹) = (Σ^‘(𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ (𝐹‘𝑦)))) |
| 22 | 5, 11 | fssresd 6745 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹 ↾ 𝐵):𝐵⟶(0[,]+∞)) |
| 23 | 22 | feqmptd 6947 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹 ↾ 𝐵) = (𝑦 ∈ 𝐵 ↦ ((𝐹 ↾ 𝐵)‘𝑦))) |
| 24 | fvres 6895 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝑦) = (𝐹‘𝑦)) | |
| 25 | 24 | mpteq2ia 5216 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐵 ↦ ((𝐹 ↾ 𝐵)‘𝑦)) = (𝑦 ∈ 𝐵 ↦ (𝐹‘𝑦)) |
| 26 | 25 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ 𝐵 ↦ ((𝐹 ↾ 𝐵)‘𝑦)) = (𝑦 ∈ 𝐵 ↦ (𝐹‘𝑦))) |
| 27 | 23, 26 | eqtrd 2770 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹 ↾ 𝐵) = (𝑦 ∈ 𝐵 ↦ (𝐹‘𝑦))) |
| 28 | 27 | fveq2d 6880 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (Σ^‘(𝐹 ↾ 𝐵)) = (Σ^‘(𝑦 ∈ 𝐵 ↦ (𝐹‘𝑦)))) |
| 29 | 28 | mpteq2dva 5214 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (Σ^‘(𝐹 ↾ 𝐵))) = (𝑥 ∈ 𝐴 ↦ (Σ^‘(𝑦 ∈ 𝐵 ↦ (𝐹‘𝑦))))) |
| 30 | 29 | fveq2d 6880 | . 2 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ (Σ^‘(𝐹 ↾ 𝐵)))) = (Σ^‘(𝑥 ∈ 𝐴 ↦ (Σ^‘(𝑦 ∈ 𝐵 ↦ (𝐹‘𝑦)))))) |
| 31 | 16, 21, 30 | 3eqtr4d 2780 | 1 ⊢ (𝜑 → (Σ^‘𝐹) = (Σ^‘(𝑥 ∈ 𝐴 ↦ (Σ^‘(𝐹 ↾ 𝐵))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ∪ ciun 4967 Disj wdisj 5086 ↦ cmpt 5201 ↾ cres 5656 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 0cc0 11129 +∞cpnf 11266 [,]cicc 13365 Σ^csumge0 46391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-ac2 10477 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-disj 5087 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-oi 9524 df-card 9953 df-acn 9956 df-ac 10130 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-xadd 13129 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-sum 15703 df-sumge0 46392 |
| This theorem is referenced by: psmeasurelem 46499 |
| Copyright terms: Public domain | W3C validator |