![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0iun | Structured version Visualization version GIF version |
Description: Sum of nonnegative extended reals over a disjoint indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0iun.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sge0iun.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
sge0iun.x | ⊢ 𝑋 = ∪ 𝑥 ∈ 𝐴 𝐵 |
sge0iun.f | ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) |
sge0iun.dj | ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) |
Ref | Expression |
---|---|
sge0iun | ⊢ (𝜑 → (Σ^‘𝐹) = (Σ^‘(𝑥 ∈ 𝐴 ↦ (Σ^‘(𝐹 ↾ 𝐵))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0iun.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | sge0iun.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) | |
3 | sge0iun.dj | . . 3 ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) | |
4 | sge0iun.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) | |
5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹:𝑋⟶(0[,]+∞)) |
6 | 5 | 3adant3 1131 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐹:𝑋⟶(0[,]+∞)) |
7 | ssiun2 5052 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | |
8 | 7 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
9 | sge0iun.x | . . . . . . . 8 ⊢ 𝑋 = ∪ 𝑥 ∈ 𝐴 𝐵 | |
10 | 9 | eqcomi 2744 | . . . . . . 7 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = 𝑋 |
11 | 8, 10 | sseqtrdi 4046 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝑋) |
12 | 11 | 3adant3 1131 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐵 ⊆ 𝑋) |
13 | simp3 1137 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) | |
14 | 12, 13 | sseldd 3996 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝑋) |
15 | 6, 14 | ffvelcdmd 7105 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝐹‘𝑦) ∈ (0[,]+∞)) |
16 | 1, 2, 3, 15 | sge0iunmpt 46374 | . 2 ⊢ (𝜑 → (Σ^‘(𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ (𝐹‘𝑦))) = (Σ^‘(𝑥 ∈ 𝐴 ↦ (Σ^‘(𝑦 ∈ 𝐵 ↦ (𝐹‘𝑦)))))) |
17 | 9 | feq2i 6729 | . . . . . 6 ⊢ (𝐹:𝑋⟶(0[,]+∞) ↔ 𝐹:∪ 𝑥 ∈ 𝐴 𝐵⟶(0[,]+∞)) |
18 | 17 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝐹:𝑋⟶(0[,]+∞) ↔ 𝐹:∪ 𝑥 ∈ 𝐴 𝐵⟶(0[,]+∞))) |
19 | 4, 18 | mpbid 232 | . . . 4 ⊢ (𝜑 → 𝐹:∪ 𝑥 ∈ 𝐴 𝐵⟶(0[,]+∞)) |
20 | 19 | feqmptd 6977 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ (𝐹‘𝑦))) |
21 | 20 | fveq2d 6911 | . 2 ⊢ (𝜑 → (Σ^‘𝐹) = (Σ^‘(𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ (𝐹‘𝑦)))) |
22 | 5, 11 | fssresd 6776 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹 ↾ 𝐵):𝐵⟶(0[,]+∞)) |
23 | 22 | feqmptd 6977 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹 ↾ 𝐵) = (𝑦 ∈ 𝐵 ↦ ((𝐹 ↾ 𝐵)‘𝑦))) |
24 | fvres 6926 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝑦) = (𝐹‘𝑦)) | |
25 | 24 | mpteq2ia 5251 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐵 ↦ ((𝐹 ↾ 𝐵)‘𝑦)) = (𝑦 ∈ 𝐵 ↦ (𝐹‘𝑦)) |
26 | 25 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ 𝐵 ↦ ((𝐹 ↾ 𝐵)‘𝑦)) = (𝑦 ∈ 𝐵 ↦ (𝐹‘𝑦))) |
27 | 23, 26 | eqtrd 2775 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹 ↾ 𝐵) = (𝑦 ∈ 𝐵 ↦ (𝐹‘𝑦))) |
28 | 27 | fveq2d 6911 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (Σ^‘(𝐹 ↾ 𝐵)) = (Σ^‘(𝑦 ∈ 𝐵 ↦ (𝐹‘𝑦)))) |
29 | 28 | mpteq2dva 5248 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (Σ^‘(𝐹 ↾ 𝐵))) = (𝑥 ∈ 𝐴 ↦ (Σ^‘(𝑦 ∈ 𝐵 ↦ (𝐹‘𝑦))))) |
30 | 29 | fveq2d 6911 | . 2 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ (Σ^‘(𝐹 ↾ 𝐵)))) = (Σ^‘(𝑥 ∈ 𝐴 ↦ (Σ^‘(𝑦 ∈ 𝐵 ↦ (𝐹‘𝑦)))))) |
31 | 16, 21, 30 | 3eqtr4d 2785 | 1 ⊢ (𝜑 → (Σ^‘𝐹) = (Σ^‘(𝑥 ∈ 𝐴 ↦ (Σ^‘(𝐹 ↾ 𝐵))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 ∪ ciun 4996 Disj wdisj 5115 ↦ cmpt 5231 ↾ cres 5691 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 0cc0 11153 +∞cpnf 11290 [,]cicc 13387 Σ^csumge0 46318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-ac2 10501 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-disj 5116 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-oi 9548 df-card 9977 df-acn 9980 df-ac 10154 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-xadd 13153 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-sum 15720 df-sumge0 46319 |
This theorem is referenced by: psmeasurelem 46426 |
Copyright terms: Public domain | W3C validator |