![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0iun | Structured version Visualization version GIF version |
Description: Sum of nonnegative extended reals over a disjoint indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0iun.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sge0iun.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
sge0iun.x | ⊢ 𝑋 = ∪ 𝑥 ∈ 𝐴 𝐵 |
sge0iun.f | ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) |
sge0iun.dj | ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) |
Ref | Expression |
---|---|
sge0iun | ⊢ (𝜑 → (Σ^‘𝐹) = (Σ^‘(𝑥 ∈ 𝐴 ↦ (Σ^‘(𝐹 ↾ 𝐵))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0iun.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | sge0iun.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) | |
3 | sge0iun.dj | . . 3 ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) | |
4 | sge0iun.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) | |
5 | 4 | adantr 474 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹:𝑋⟶(0[,]+∞)) |
6 | 5 | 3adant3 1123 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐹:𝑋⟶(0[,]+∞)) |
7 | ssiun2 4796 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | |
8 | 7 | adantl 475 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
9 | sge0iun.x | . . . . . . . 8 ⊢ 𝑋 = ∪ 𝑥 ∈ 𝐴 𝐵 | |
10 | 9 | eqcomi 2787 | . . . . . . 7 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = 𝑋 |
11 | 8, 10 | syl6sseq 3870 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝑋) |
12 | 11 | 3adant3 1123 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐵 ⊆ 𝑋) |
13 | simp3 1129 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) | |
14 | 12, 13 | sseldd 3822 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝑋) |
15 | 6, 14 | ffvelrnd 6624 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝐹‘𝑦) ∈ (0[,]+∞)) |
16 | 1, 2, 3, 15 | sge0iunmpt 41559 | . 2 ⊢ (𝜑 → (Σ^‘(𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ (𝐹‘𝑦))) = (Σ^‘(𝑥 ∈ 𝐴 ↦ (Σ^‘(𝑦 ∈ 𝐵 ↦ (𝐹‘𝑦)))))) |
17 | 9 | feq2i 6283 | . . . . . 6 ⊢ (𝐹:𝑋⟶(0[,]+∞) ↔ 𝐹:∪ 𝑥 ∈ 𝐴 𝐵⟶(0[,]+∞)) |
18 | 17 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝐹:𝑋⟶(0[,]+∞) ↔ 𝐹:∪ 𝑥 ∈ 𝐴 𝐵⟶(0[,]+∞))) |
19 | 4, 18 | mpbid 224 | . . . 4 ⊢ (𝜑 → 𝐹:∪ 𝑥 ∈ 𝐴 𝐵⟶(0[,]+∞)) |
20 | 19 | feqmptd 6509 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ (𝐹‘𝑦))) |
21 | 20 | fveq2d 6450 | . 2 ⊢ (𝜑 → (Σ^‘𝐹) = (Σ^‘(𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ (𝐹‘𝑦)))) |
22 | 5, 11 | fssresd 6321 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹 ↾ 𝐵):𝐵⟶(0[,]+∞)) |
23 | 22 | feqmptd 6509 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹 ↾ 𝐵) = (𝑦 ∈ 𝐵 ↦ ((𝐹 ↾ 𝐵)‘𝑦))) |
24 | fvres 6465 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝑦) = (𝐹‘𝑦)) | |
25 | 24 | mpteq2ia 4975 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐵 ↦ ((𝐹 ↾ 𝐵)‘𝑦)) = (𝑦 ∈ 𝐵 ↦ (𝐹‘𝑦)) |
26 | 25 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ 𝐵 ↦ ((𝐹 ↾ 𝐵)‘𝑦)) = (𝑦 ∈ 𝐵 ↦ (𝐹‘𝑦))) |
27 | 23, 26 | eqtrd 2814 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹 ↾ 𝐵) = (𝑦 ∈ 𝐵 ↦ (𝐹‘𝑦))) |
28 | 27 | fveq2d 6450 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (Σ^‘(𝐹 ↾ 𝐵)) = (Σ^‘(𝑦 ∈ 𝐵 ↦ (𝐹‘𝑦)))) |
29 | 28 | mpteq2dva 4979 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (Σ^‘(𝐹 ↾ 𝐵))) = (𝑥 ∈ 𝐴 ↦ (Σ^‘(𝑦 ∈ 𝐵 ↦ (𝐹‘𝑦))))) |
30 | 29 | fveq2d 6450 | . 2 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ (Σ^‘(𝐹 ↾ 𝐵)))) = (Σ^‘(𝑥 ∈ 𝐴 ↦ (Σ^‘(𝑦 ∈ 𝐵 ↦ (𝐹‘𝑦)))))) |
31 | 16, 21, 30 | 3eqtr4d 2824 | 1 ⊢ (𝜑 → (Σ^‘𝐹) = (Σ^‘(𝑥 ∈ 𝐴 ↦ (Σ^‘(𝐹 ↾ 𝐵))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ⊆ wss 3792 ∪ ciun 4753 Disj wdisj 4854 ↦ cmpt 4965 ↾ cres 5357 ⟶wf 6131 ‘cfv 6135 (class class class)co 6922 0cc0 10272 +∞cpnf 10408 [,]cicc 12490 Σ^csumge0 41503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 ax-ac2 9620 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-disj 4855 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-se 5315 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-map 8142 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-sup 8636 df-oi 8704 df-card 9098 df-acn 9101 df-ac 9272 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-n0 11643 df-z 11729 df-uz 11993 df-rp 12138 df-xadd 12258 df-ico 12493 df-icc 12494 df-fz 12644 df-fzo 12785 df-seq 13120 df-exp 13179 df-hash 13436 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 df-clim 14627 df-sum 14825 df-sumge0 41504 |
This theorem is referenced by: psmeasurelem 41611 |
Copyright terms: Public domain | W3C validator |