Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0iun Structured version   Visualization version   GIF version

Theorem sge0iun 43058
Description: Sum of nonnegative extended reals over a disjoint indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0iun.a (𝜑𝐴𝑉)
sge0iun.b ((𝜑𝑥𝐴) → 𝐵𝑊)
sge0iun.x 𝑋 = 𝑥𝐴 𝐵
sge0iun.f (𝜑𝐹:𝑋⟶(0[,]+∞))
sge0iun.dj (𝜑Disj 𝑥𝐴 𝐵)
Assertion
Ref Expression
sge0iun (𝜑 → (Σ^𝐹) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝐹𝐵)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝑊   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)   𝑋(𝑥)

Proof of Theorem sge0iun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sge0iun.a . . 3 (𝜑𝐴𝑉)
2 sge0iun.b . . 3 ((𝜑𝑥𝐴) → 𝐵𝑊)
3 sge0iun.dj . . 3 (𝜑Disj 𝑥𝐴 𝐵)
4 sge0iun.f . . . . . 6 (𝜑𝐹:𝑋⟶(0[,]+∞))
54adantr 484 . . . . 5 ((𝜑𝑥𝐴) → 𝐹:𝑋⟶(0[,]+∞))
653adant3 1129 . . . 4 ((𝜑𝑥𝐴𝑦𝐵) → 𝐹:𝑋⟶(0[,]+∞))
7 ssiun2 4934 . . . . . . . 8 (𝑥𝐴𝐵 𝑥𝐴 𝐵)
87adantl 485 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 𝑥𝐴 𝐵)
9 sge0iun.x . . . . . . . 8 𝑋 = 𝑥𝐴 𝐵
109eqcomi 2807 . . . . . . 7 𝑥𝐴 𝐵 = 𝑋
118, 10sseqtrdi 3965 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝑋)
12113adant3 1129 . . . . 5 ((𝜑𝑥𝐴𝑦𝐵) → 𝐵𝑋)
13 simp3 1135 . . . . 5 ((𝜑𝑥𝐴𝑦𝐵) → 𝑦𝐵)
1412, 13sseldd 3916 . . . 4 ((𝜑𝑥𝐴𝑦𝐵) → 𝑦𝑋)
156, 14ffvelrnd 6829 . . 3 ((𝜑𝑥𝐴𝑦𝐵) → (𝐹𝑦) ∈ (0[,]+∞))
161, 2, 3, 15sge0iunmpt 43057 . 2 (𝜑 → (Σ^‘(𝑦 𝑥𝐴 𝐵 ↦ (𝐹𝑦))) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑦𝐵 ↦ (𝐹𝑦))))))
179feq2i 6479 . . . . . 6 (𝐹:𝑋⟶(0[,]+∞) ↔ 𝐹: 𝑥𝐴 𝐵⟶(0[,]+∞))
1817a1i 11 . . . . 5 (𝜑 → (𝐹:𝑋⟶(0[,]+∞) ↔ 𝐹: 𝑥𝐴 𝐵⟶(0[,]+∞)))
194, 18mpbid 235 . . . 4 (𝜑𝐹: 𝑥𝐴 𝐵⟶(0[,]+∞))
2019feqmptd 6708 . . 3 (𝜑𝐹 = (𝑦 𝑥𝐴 𝐵 ↦ (𝐹𝑦)))
2120fveq2d 6649 . 2 (𝜑 → (Σ^𝐹) = (Σ^‘(𝑦 𝑥𝐴 𝐵 ↦ (𝐹𝑦))))
225, 11fssresd 6519 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝐵):𝐵⟶(0[,]+∞))
2322feqmptd 6708 . . . . . 6 ((𝜑𝑥𝐴) → (𝐹𝐵) = (𝑦𝐵 ↦ ((𝐹𝐵)‘𝑦)))
24 fvres 6664 . . . . . . . 8 (𝑦𝐵 → ((𝐹𝐵)‘𝑦) = (𝐹𝑦))
2524mpteq2ia 5121 . . . . . . 7 (𝑦𝐵 ↦ ((𝐹𝐵)‘𝑦)) = (𝑦𝐵 ↦ (𝐹𝑦))
2625a1i 11 . . . . . 6 ((𝜑𝑥𝐴) → (𝑦𝐵 ↦ ((𝐹𝐵)‘𝑦)) = (𝑦𝐵 ↦ (𝐹𝑦)))
2723, 26eqtrd 2833 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝐵) = (𝑦𝐵 ↦ (𝐹𝑦)))
2827fveq2d 6649 . . . 4 ((𝜑𝑥𝐴) → (Σ^‘(𝐹𝐵)) = (Σ^‘(𝑦𝐵 ↦ (𝐹𝑦))))
2928mpteq2dva 5125 . . 3 (𝜑 → (𝑥𝐴 ↦ (Σ^‘(𝐹𝐵))) = (𝑥𝐴 ↦ (Σ^‘(𝑦𝐵 ↦ (𝐹𝑦)))))
3029fveq2d 6649 . 2 (𝜑 → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝐹𝐵)))) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑦𝐵 ↦ (𝐹𝑦))))))
3116, 21, 303eqtr4d 2843 1 (𝜑 → (Σ^𝐹) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝐹𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wss 3881   ciun 4881  Disj wdisj 4995  cmpt 5110  cres 5521  wf 6320  cfv 6324  (class class class)co 7135  0cc0 10526  +∞cpnf 10661  [,]cicc 12729  Σ^csumge0 43001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-ac2 9874  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-oi 8958  df-card 9352  df-acn 9355  df-ac 9527  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-xadd 12496  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-sumge0 43002
This theorem is referenced by:  psmeasurelem  43109
  Copyright terms: Public domain W3C validator