Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0iun Structured version   Visualization version   GIF version

Theorem sge0iun 46448
Description: Sum of nonnegative extended reals over a disjoint indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0iun.a (𝜑𝐴𝑉)
sge0iun.b ((𝜑𝑥𝐴) → 𝐵𝑊)
sge0iun.x 𝑋 = 𝑥𝐴 𝐵
sge0iun.f (𝜑𝐹:𝑋⟶(0[,]+∞))
sge0iun.dj (𝜑Disj 𝑥𝐴 𝐵)
Assertion
Ref Expression
sge0iun (𝜑 → (Σ^𝐹) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝐹𝐵)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝑊   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)   𝑋(𝑥)

Proof of Theorem sge0iun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sge0iun.a . . 3 (𝜑𝐴𝑉)
2 sge0iun.b . . 3 ((𝜑𝑥𝐴) → 𝐵𝑊)
3 sge0iun.dj . . 3 (𝜑Disj 𝑥𝐴 𝐵)
4 sge0iun.f . . . . . 6 (𝜑𝐹:𝑋⟶(0[,]+∞))
54adantr 480 . . . . 5 ((𝜑𝑥𝐴) → 𝐹:𝑋⟶(0[,]+∞))
653adant3 1132 . . . 4 ((𝜑𝑥𝐴𝑦𝐵) → 𝐹:𝑋⟶(0[,]+∞))
7 ssiun2 5023 . . . . . . . 8 (𝑥𝐴𝐵 𝑥𝐴 𝐵)
87adantl 481 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 𝑥𝐴 𝐵)
9 sge0iun.x . . . . . . . 8 𝑋 = 𝑥𝐴 𝐵
109eqcomi 2744 . . . . . . 7 𝑥𝐴 𝐵 = 𝑋
118, 10sseqtrdi 3999 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝑋)
12113adant3 1132 . . . . 5 ((𝜑𝑥𝐴𝑦𝐵) → 𝐵𝑋)
13 simp3 1138 . . . . 5 ((𝜑𝑥𝐴𝑦𝐵) → 𝑦𝐵)
1412, 13sseldd 3959 . . . 4 ((𝜑𝑥𝐴𝑦𝐵) → 𝑦𝑋)
156, 14ffvelcdmd 7075 . . 3 ((𝜑𝑥𝐴𝑦𝐵) → (𝐹𝑦) ∈ (0[,]+∞))
161, 2, 3, 15sge0iunmpt 46447 . 2 (𝜑 → (Σ^‘(𝑦 𝑥𝐴 𝐵 ↦ (𝐹𝑦))) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑦𝐵 ↦ (𝐹𝑦))))))
179feq2i 6698 . . . . . 6 (𝐹:𝑋⟶(0[,]+∞) ↔ 𝐹: 𝑥𝐴 𝐵⟶(0[,]+∞))
1817a1i 11 . . . . 5 (𝜑 → (𝐹:𝑋⟶(0[,]+∞) ↔ 𝐹: 𝑥𝐴 𝐵⟶(0[,]+∞)))
194, 18mpbid 232 . . . 4 (𝜑𝐹: 𝑥𝐴 𝐵⟶(0[,]+∞))
2019feqmptd 6947 . . 3 (𝜑𝐹 = (𝑦 𝑥𝐴 𝐵 ↦ (𝐹𝑦)))
2120fveq2d 6880 . 2 (𝜑 → (Σ^𝐹) = (Σ^‘(𝑦 𝑥𝐴 𝐵 ↦ (𝐹𝑦))))
225, 11fssresd 6745 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝐵):𝐵⟶(0[,]+∞))
2322feqmptd 6947 . . . . . 6 ((𝜑𝑥𝐴) → (𝐹𝐵) = (𝑦𝐵 ↦ ((𝐹𝐵)‘𝑦)))
24 fvres 6895 . . . . . . . 8 (𝑦𝐵 → ((𝐹𝐵)‘𝑦) = (𝐹𝑦))
2524mpteq2ia 5216 . . . . . . 7 (𝑦𝐵 ↦ ((𝐹𝐵)‘𝑦)) = (𝑦𝐵 ↦ (𝐹𝑦))
2625a1i 11 . . . . . 6 ((𝜑𝑥𝐴) → (𝑦𝐵 ↦ ((𝐹𝐵)‘𝑦)) = (𝑦𝐵 ↦ (𝐹𝑦)))
2723, 26eqtrd 2770 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝐵) = (𝑦𝐵 ↦ (𝐹𝑦)))
2827fveq2d 6880 . . . 4 ((𝜑𝑥𝐴) → (Σ^‘(𝐹𝐵)) = (Σ^‘(𝑦𝐵 ↦ (𝐹𝑦))))
2928mpteq2dva 5214 . . 3 (𝜑 → (𝑥𝐴 ↦ (Σ^‘(𝐹𝐵))) = (𝑥𝐴 ↦ (Σ^‘(𝑦𝐵 ↦ (𝐹𝑦)))))
3029fveq2d 6880 . 2 (𝜑 → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝐹𝐵)))) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑦𝐵 ↦ (𝐹𝑦))))))
3116, 21, 303eqtr4d 2780 1 (𝜑 → (Σ^𝐹) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝐹𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wss 3926   ciun 4967  Disj wdisj 5086  cmpt 5201  cres 5656  wf 6527  cfv 6531  (class class class)co 7405  0cc0 11129  +∞cpnf 11266  [,]cicc 13365  Σ^csumge0 46391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-ac2 10477  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-oi 9524  df-card 9953  df-acn 9956  df-ac 10130  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-xadd 13129  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-sumge0 46392
This theorem is referenced by:  psmeasurelem  46499
  Copyright terms: Public domain W3C validator