![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lvecdim0 | Structured version Visualization version GIF version |
Description: A vector space of dimension zero is reduced to its identity element, biconditional version. (Contributed by Thierry Arnoux, 31-Jul-2023.) |
Ref | Expression |
---|---|
lvecdim0.1 | ⊢ 0 = (0g‘𝑉) |
Ref | Expression |
---|---|
lvecdim0 | ⊢ (𝑉 ∈ LVec → ((dim‘𝑉) = 0 ↔ (Base‘𝑉) = { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lvecdim0.1 | . . 3 ⊢ 0 = (0g‘𝑉) | |
2 | 1 | lvecdim0i 33135 | . 2 ⊢ ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → (Base‘𝑉) = { 0 }) |
3 | simpl 482 | . . . 4 ⊢ ((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) → 𝑉 ∈ LVec) | |
4 | eqid 2724 | . . . . . . . 8 ⊢ (LBasis‘𝑉) = (LBasis‘𝑉) | |
5 | 4 | lbsex 21005 | . . . . . . 7 ⊢ (𝑉 ∈ LVec → (LBasis‘𝑉) ≠ ∅) |
6 | n0 4338 | . . . . . . 7 ⊢ ((LBasis‘𝑉) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (LBasis‘𝑉)) | |
7 | 5, 6 | sylib 217 | . . . . . 6 ⊢ (𝑉 ∈ LVec → ∃𝑏 𝑏 ∈ (LBasis‘𝑉)) |
8 | 3, 7 | syl 17 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) → ∃𝑏 𝑏 ∈ (LBasis‘𝑉)) |
9 | 1 | fvexi 6895 | . . . . . . . . . 10 ⊢ 0 ∈ V |
10 | 9 | snid 4656 | . . . . . . . . 9 ⊢ 0 ∈ { 0 } |
11 | simpr 484 | . . . . . . . . 9 ⊢ ((((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑏 = { 0 }) → 𝑏 = { 0 }) | |
12 | 10, 11 | eleqtrrid 2832 | . . . . . . . 8 ⊢ ((((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑏 = { 0 }) → 0 ∈ 𝑏) |
13 | simplll 772 | . . . . . . . . 9 ⊢ ((((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑏 = { 0 }) → 𝑉 ∈ LVec) | |
14 | 4 | lbslinds 21695 | . . . . . . . . . 10 ⊢ (LBasis‘𝑉) ⊆ (LIndS‘𝑉) |
15 | simplr 766 | . . . . . . . . . 10 ⊢ ((((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑏 = { 0 }) → 𝑏 ∈ (LBasis‘𝑉)) | |
16 | 14, 15 | sselid 3972 | . . . . . . . . 9 ⊢ ((((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑏 = { 0 }) → 𝑏 ∈ (LIndS‘𝑉)) |
17 | 1 | 0nellinds 32918 | . . . . . . . . 9 ⊢ ((𝑉 ∈ LVec ∧ 𝑏 ∈ (LIndS‘𝑉)) → ¬ 0 ∈ 𝑏) |
18 | 13, 16, 17 | syl2anc 583 | . . . . . . . 8 ⊢ ((((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑏 = { 0 }) → ¬ 0 ∈ 𝑏) |
19 | 12, 18 | pm2.65da 814 | . . . . . . 7 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → ¬ 𝑏 = { 0 }) |
20 | simpr 484 | . . . . . . . . . . . 12 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → 𝑏 ∈ (LBasis‘𝑉)) | |
21 | eqid 2724 | . . . . . . . . . . . . 13 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
22 | 21, 4 | lbsss 20914 | . . . . . . . . . . . 12 ⊢ (𝑏 ∈ (LBasis‘𝑉) → 𝑏 ⊆ (Base‘𝑉)) |
23 | 20, 22 | syl 17 | . . . . . . . . . . 11 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → 𝑏 ⊆ (Base‘𝑉)) |
24 | simplr 766 | . . . . . . . . . . 11 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (Base‘𝑉) = { 0 }) | |
25 | 23, 24 | sseqtrd 4014 | . . . . . . . . . 10 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → 𝑏 ⊆ { 0 }) |
26 | sssn 4821 | . . . . . . . . . 10 ⊢ (𝑏 ⊆ { 0 } ↔ (𝑏 = ∅ ∨ 𝑏 = { 0 })) | |
27 | 25, 26 | sylib 217 | . . . . . . . . 9 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (𝑏 = ∅ ∨ 𝑏 = { 0 })) |
28 | 27 | orcomd 868 | . . . . . . . 8 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (𝑏 = { 0 } ∨ 𝑏 = ∅)) |
29 | 28 | ord 861 | . . . . . . 7 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (¬ 𝑏 = { 0 } → 𝑏 = ∅)) |
30 | 19, 29 | mpd 15 | . . . . . 6 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → 𝑏 = ∅) |
31 | 30, 20 | eqeltrrd 2826 | . . . . 5 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → ∅ ∈ (LBasis‘𝑉)) |
32 | 8, 31 | exlimddv 1930 | . . . 4 ⊢ ((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) → ∅ ∈ (LBasis‘𝑉)) |
33 | 4 | dimval 33130 | . . . 4 ⊢ ((𝑉 ∈ LVec ∧ ∅ ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘∅)) |
34 | 3, 32, 33 | syl2anc 583 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) → (dim‘𝑉) = (♯‘∅)) |
35 | hash0 14323 | . . 3 ⊢ (♯‘∅) = 0 | |
36 | 34, 35 | eqtrdi 2780 | . 2 ⊢ ((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) → (dim‘𝑉) = 0) |
37 | 2, 36 | impbida 798 | 1 ⊢ (𝑉 ∈ LVec → ((dim‘𝑉) = 0 ↔ (Base‘𝑉) = { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ≠ wne 2932 ⊆ wss 3940 ∅c0 4314 {csn 4620 ‘cfv 6533 0cc0 11105 ♯chash 14286 Basecbs 17142 0gc0g 17383 LBasisclbs 20911 LVecclvec 20939 LIndSclinds 21667 dimcldim 33128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-reg 9582 ax-inf2 9631 ax-ac2 10453 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-rpss 7706 df-om 7849 df-1st 7968 df-2nd 7969 df-tpos 8206 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-oadd 8465 df-er 8698 df-map 8817 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-oi 9500 df-r1 9754 df-rank 9755 df-dju 9891 df-card 9929 df-acn 9932 df-ac 10106 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-xnn0 12541 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-hash 14287 df-struct 17078 df-sets 17095 df-slot 17113 df-ndx 17125 df-base 17143 df-ress 17172 df-plusg 17208 df-mulr 17209 df-tset 17214 df-ple 17215 df-ocomp 17216 df-0g 17385 df-mre 17528 df-mrc 17529 df-mri 17530 df-acs 17531 df-proset 18249 df-drs 18250 df-poset 18267 df-ipo 18482 df-mgm 18562 df-sgrp 18641 df-mnd 18657 df-submnd 18703 df-grp 18855 df-minusg 18856 df-sbg 18857 df-subg 19039 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-oppr 20225 df-dvdsr 20248 df-unit 20249 df-invr 20279 df-drng 20578 df-lmod 20697 df-lss 20768 df-lsp 20808 df-lbs 20912 df-lvec 20940 df-lindf 21668 df-linds 21669 df-dim 33129 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |