| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lvecdim0 | Structured version Visualization version GIF version | ||
| Description: A vector space of dimension zero is reduced to its identity element, biconditional version. (Contributed by Thierry Arnoux, 31-Jul-2023.) |
| Ref | Expression |
|---|---|
| lvecdim0.1 | ⊢ 0 = (0g‘𝑉) |
| Ref | Expression |
|---|---|
| lvecdim0 | ⊢ (𝑉 ∈ LVec → ((dim‘𝑉) = 0 ↔ (Base‘𝑉) = { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lvecdim0.1 | . . 3 ⊢ 0 = (0g‘𝑉) | |
| 2 | 1 | lvecdim0i 33613 | . 2 ⊢ ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → (Base‘𝑉) = { 0 }) |
| 3 | simpl 482 | . . . 4 ⊢ ((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) → 𝑉 ∈ LVec) | |
| 4 | eqid 2731 | . . . . . . . 8 ⊢ (LBasis‘𝑉) = (LBasis‘𝑉) | |
| 5 | 4 | lbsex 21100 | . . . . . . 7 ⊢ (𝑉 ∈ LVec → (LBasis‘𝑉) ≠ ∅) |
| 6 | n0 4303 | . . . . . . 7 ⊢ ((LBasis‘𝑉) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (LBasis‘𝑉)) | |
| 7 | 5, 6 | sylib 218 | . . . . . 6 ⊢ (𝑉 ∈ LVec → ∃𝑏 𝑏 ∈ (LBasis‘𝑉)) |
| 8 | 3, 7 | syl 17 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) → ∃𝑏 𝑏 ∈ (LBasis‘𝑉)) |
| 9 | 1 | fvexi 6836 | . . . . . . . . . 10 ⊢ 0 ∈ V |
| 10 | 9 | snid 4615 | . . . . . . . . 9 ⊢ 0 ∈ { 0 } |
| 11 | simpr 484 | . . . . . . . . 9 ⊢ ((((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑏 = { 0 }) → 𝑏 = { 0 }) | |
| 12 | 10, 11 | eleqtrrid 2838 | . . . . . . . 8 ⊢ ((((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑏 = { 0 }) → 0 ∈ 𝑏) |
| 13 | simplll 774 | . . . . . . . . 9 ⊢ ((((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑏 = { 0 }) → 𝑉 ∈ LVec) | |
| 14 | 4 | lbslinds 21768 | . . . . . . . . . 10 ⊢ (LBasis‘𝑉) ⊆ (LIndS‘𝑉) |
| 15 | simplr 768 | . . . . . . . . . 10 ⊢ ((((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑏 = { 0 }) → 𝑏 ∈ (LBasis‘𝑉)) | |
| 16 | 14, 15 | sselid 3932 | . . . . . . . . 9 ⊢ ((((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑏 = { 0 }) → 𝑏 ∈ (LIndS‘𝑉)) |
| 17 | 1 | 0nellinds 33330 | . . . . . . . . 9 ⊢ ((𝑉 ∈ LVec ∧ 𝑏 ∈ (LIndS‘𝑉)) → ¬ 0 ∈ 𝑏) |
| 18 | 13, 16, 17 | syl2anc 584 | . . . . . . . 8 ⊢ ((((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑏 = { 0 }) → ¬ 0 ∈ 𝑏) |
| 19 | 12, 18 | pm2.65da 816 | . . . . . . 7 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → ¬ 𝑏 = { 0 }) |
| 20 | simpr 484 | . . . . . . . . . . . 12 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → 𝑏 ∈ (LBasis‘𝑉)) | |
| 21 | eqid 2731 | . . . . . . . . . . . . 13 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
| 22 | 21, 4 | lbsss 21009 | . . . . . . . . . . . 12 ⊢ (𝑏 ∈ (LBasis‘𝑉) → 𝑏 ⊆ (Base‘𝑉)) |
| 23 | 20, 22 | syl 17 | . . . . . . . . . . 11 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → 𝑏 ⊆ (Base‘𝑉)) |
| 24 | simplr 768 | . . . . . . . . . . 11 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (Base‘𝑉) = { 0 }) | |
| 25 | 23, 24 | sseqtrd 3971 | . . . . . . . . . 10 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → 𝑏 ⊆ { 0 }) |
| 26 | sssn 4778 | . . . . . . . . . 10 ⊢ (𝑏 ⊆ { 0 } ↔ (𝑏 = ∅ ∨ 𝑏 = { 0 })) | |
| 27 | 25, 26 | sylib 218 | . . . . . . . . 9 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (𝑏 = ∅ ∨ 𝑏 = { 0 })) |
| 28 | 27 | orcomd 871 | . . . . . . . 8 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (𝑏 = { 0 } ∨ 𝑏 = ∅)) |
| 29 | 28 | ord 864 | . . . . . . 7 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (¬ 𝑏 = { 0 } → 𝑏 = ∅)) |
| 30 | 19, 29 | mpd 15 | . . . . . 6 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → 𝑏 = ∅) |
| 31 | 30, 20 | eqeltrrd 2832 | . . . . 5 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → ∅ ∈ (LBasis‘𝑉)) |
| 32 | 8, 31 | exlimddv 1936 | . . . 4 ⊢ ((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) → ∅ ∈ (LBasis‘𝑉)) |
| 33 | 4 | dimval 33608 | . . . 4 ⊢ ((𝑉 ∈ LVec ∧ ∅ ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘∅)) |
| 34 | 3, 32, 33 | syl2anc 584 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) → (dim‘𝑉) = (♯‘∅)) |
| 35 | hash0 14271 | . . 3 ⊢ (♯‘∅) = 0 | |
| 36 | 34, 35 | eqtrdi 2782 | . 2 ⊢ ((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) → (dim‘𝑉) = 0) |
| 37 | 2, 36 | impbida 800 | 1 ⊢ (𝑉 ∈ LVec → ((dim‘𝑉) = 0 ↔ (Base‘𝑉) = { 0 })) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ⊆ wss 3902 ∅c0 4283 {csn 4576 ‘cfv 6481 0cc0 11003 ♯chash 14234 Basecbs 17117 0gc0g 17340 LBasisclbs 21006 LVecclvec 21034 LIndSclinds 21740 dimcldim 33606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-reg 9478 ax-inf2 9531 ax-ac2 10351 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-rpss 7656 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-oi 9396 df-r1 9654 df-rank 9655 df-dju 9791 df-card 9829 df-acn 9832 df-ac 10004 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-xnn0 12452 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-hash 14235 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-tset 17177 df-ple 17178 df-ocomp 17179 df-0g 17342 df-mre 17485 df-mrc 17486 df-mri 17487 df-acs 17488 df-proset 18197 df-drs 18198 df-poset 18216 df-ipo 18431 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-submnd 18689 df-grp 18846 df-minusg 18847 df-sbg 18848 df-subg 19033 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-drng 20644 df-lmod 20793 df-lss 20863 df-lsp 20903 df-lbs 21007 df-lvec 21035 df-lindf 21741 df-linds 21742 df-dim 33607 |
| This theorem is referenced by: lvecendof1f1o 33641 |
| Copyright terms: Public domain | W3C validator |