Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvecdim0 Structured version   Visualization version   GIF version

Theorem lvecdim0 31690
Description: A vector space of dimension zero is reduced to its identity element, biconditional version. (Contributed by Thierry Arnoux, 31-Jul-2023.)
Hypothesis
Ref Expression
lvecdim0.1 0 = (0g𝑉)
Assertion
Ref Expression
lvecdim0 (𝑉 ∈ LVec → ((dim‘𝑉) = 0 ↔ (Base‘𝑉) = { 0 }))

Proof of Theorem lvecdim0
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 lvecdim0.1 . . 3 0 = (0g𝑉)
21lvecdim0i 31689 . 2 ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → (Base‘𝑉) = { 0 })
3 simpl 483 . . . 4 ((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) → 𝑉 ∈ LVec)
4 eqid 2738 . . . . . . . 8 (LBasis‘𝑉) = (LBasis‘𝑉)
54lbsex 20427 . . . . . . 7 (𝑉 ∈ LVec → (LBasis‘𝑉) ≠ ∅)
6 n0 4280 . . . . . . 7 ((LBasis‘𝑉) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (LBasis‘𝑉))
75, 6sylib 217 . . . . . 6 (𝑉 ∈ LVec → ∃𝑏 𝑏 ∈ (LBasis‘𝑉))
83, 7syl 17 . . . . 5 ((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) → ∃𝑏 𝑏 ∈ (LBasis‘𝑉))
91fvexi 6788 . . . . . . . . . 10 0 ∈ V
109snid 4597 . . . . . . . . 9 0 ∈ { 0 }
11 simpr 485 . . . . . . . . 9 ((((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑏 = { 0 }) → 𝑏 = { 0 })
1210, 11eleqtrrid 2846 . . . . . . . 8 ((((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑏 = { 0 }) → 0𝑏)
13 simplll 772 . . . . . . . . 9 ((((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑏 = { 0 }) → 𝑉 ∈ LVec)
144lbslinds 21040 . . . . . . . . . 10 (LBasis‘𝑉) ⊆ (LIndS‘𝑉)
15 simplr 766 . . . . . . . . . 10 ((((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑏 = { 0 }) → 𝑏 ∈ (LBasis‘𝑉))
1614, 15sselid 3919 . . . . . . . . 9 ((((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑏 = { 0 }) → 𝑏 ∈ (LIndS‘𝑉))
1710nellinds 31566 . . . . . . . . 9 ((𝑉 ∈ LVec ∧ 𝑏 ∈ (LIndS‘𝑉)) → ¬ 0𝑏)
1813, 16, 17syl2anc 584 . . . . . . . 8 ((((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑏 = { 0 }) → ¬ 0𝑏)
1912, 18pm2.65da 814 . . . . . . 7 (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → ¬ 𝑏 = { 0 })
20 simpr 485 . . . . . . . . . . . 12 (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → 𝑏 ∈ (LBasis‘𝑉))
21 eqid 2738 . . . . . . . . . . . . 13 (Base‘𝑉) = (Base‘𝑉)
2221, 4lbsss 20339 . . . . . . . . . . . 12 (𝑏 ∈ (LBasis‘𝑉) → 𝑏 ⊆ (Base‘𝑉))
2320, 22syl 17 . . . . . . . . . . 11 (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → 𝑏 ⊆ (Base‘𝑉))
24 simplr 766 . . . . . . . . . . 11 (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (Base‘𝑉) = { 0 })
2523, 24sseqtrd 3961 . . . . . . . . . 10 (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → 𝑏 ⊆ { 0 })
26 sssn 4759 . . . . . . . . . 10 (𝑏 ⊆ { 0 } ↔ (𝑏 = ∅ ∨ 𝑏 = { 0 }))
2725, 26sylib 217 . . . . . . . . 9 (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (𝑏 = ∅ ∨ 𝑏 = { 0 }))
2827orcomd 868 . . . . . . . 8 (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (𝑏 = { 0 } ∨ 𝑏 = ∅))
2928ord 861 . . . . . . 7 (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (¬ 𝑏 = { 0 } → 𝑏 = ∅))
3019, 29mpd 15 . . . . . 6 (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → 𝑏 = ∅)
3130, 20eqeltrrd 2840 . . . . 5 (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → ∅ ∈ (LBasis‘𝑉))
328, 31exlimddv 1938 . . . 4 ((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) → ∅ ∈ (LBasis‘𝑉))
334dimval 31686 . . . 4 ((𝑉 ∈ LVec ∧ ∅ ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘∅))
343, 32, 33syl2anc 584 . . 3 ((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) → (dim‘𝑉) = (♯‘∅))
35 hash0 14082 . . 3 (♯‘∅) = 0
3634, 35eqtrdi 2794 . 2 ((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) → (dim‘𝑉) = 0)
372, 36impbida 798 1 (𝑉 ∈ LVec → ((dim‘𝑉) = 0 ↔ (Base‘𝑉) = { 0 }))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wex 1782  wcel 2106  wne 2943  wss 3887  c0 4256  {csn 4561  cfv 6433  0cc0 10871  chash 14044  Basecbs 16912  0gc0g 17150  LBasisclbs 20336  LVecclvec 20364  LIndSclinds 21012  dimcldim 31684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-reg 9351  ax-inf2 9399  ax-ac2 10219  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-rpss 7576  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-oi 9269  df-r1 9522  df-rank 9523  df-dju 9659  df-card 9697  df-acn 9700  df-ac 9872  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-tset 16981  df-ple 16982  df-ocomp 16983  df-0g 17152  df-mre 17295  df-mrc 17296  df-mri 17297  df-acs 17298  df-proset 18013  df-drs 18014  df-poset 18031  df-ipo 18246  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-drng 19993  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lbs 20337  df-lvec 20365  df-lindf 21013  df-linds 21014  df-dim 31685
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator