| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lvecdim0 | Structured version Visualization version GIF version | ||
| Description: A vector space of dimension zero is reduced to its identity element, biconditional version. (Contributed by Thierry Arnoux, 31-Jul-2023.) |
| Ref | Expression |
|---|---|
| lvecdim0.1 | ⊢ 0 = (0g‘𝑉) |
| Ref | Expression |
|---|---|
| lvecdim0 | ⊢ (𝑉 ∈ LVec → ((dim‘𝑉) = 0 ↔ (Base‘𝑉) = { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lvecdim0.1 | . . 3 ⊢ 0 = (0g‘𝑉) | |
| 2 | 1 | lvecdim0i 33639 | . 2 ⊢ ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → (Base‘𝑉) = { 0 }) |
| 3 | simpl 482 | . . . 4 ⊢ ((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) → 𝑉 ∈ LVec) | |
| 4 | eqid 2733 | . . . . . . . 8 ⊢ (LBasis‘𝑉) = (LBasis‘𝑉) | |
| 5 | 4 | lbsex 21104 | . . . . . . 7 ⊢ (𝑉 ∈ LVec → (LBasis‘𝑉) ≠ ∅) |
| 6 | n0 4302 | . . . . . . 7 ⊢ ((LBasis‘𝑉) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (LBasis‘𝑉)) | |
| 7 | 5, 6 | sylib 218 | . . . . . 6 ⊢ (𝑉 ∈ LVec → ∃𝑏 𝑏 ∈ (LBasis‘𝑉)) |
| 8 | 3, 7 | syl 17 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) → ∃𝑏 𝑏 ∈ (LBasis‘𝑉)) |
| 9 | 1 | fvexi 6842 | . . . . . . . . . 10 ⊢ 0 ∈ V |
| 10 | 9 | snid 4614 | . . . . . . . . 9 ⊢ 0 ∈ { 0 } |
| 11 | simpr 484 | . . . . . . . . 9 ⊢ ((((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑏 = { 0 }) → 𝑏 = { 0 }) | |
| 12 | 10, 11 | eleqtrrid 2840 | . . . . . . . 8 ⊢ ((((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑏 = { 0 }) → 0 ∈ 𝑏) |
| 13 | simplll 774 | . . . . . . . . 9 ⊢ ((((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑏 = { 0 }) → 𝑉 ∈ LVec) | |
| 14 | 4 | lbslinds 21772 | . . . . . . . . . 10 ⊢ (LBasis‘𝑉) ⊆ (LIndS‘𝑉) |
| 15 | simplr 768 | . . . . . . . . . 10 ⊢ ((((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑏 = { 0 }) → 𝑏 ∈ (LBasis‘𝑉)) | |
| 16 | 14, 15 | sselid 3928 | . . . . . . . . 9 ⊢ ((((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑏 = { 0 }) → 𝑏 ∈ (LIndS‘𝑉)) |
| 17 | 1 | 0nellinds 33342 | . . . . . . . . 9 ⊢ ((𝑉 ∈ LVec ∧ 𝑏 ∈ (LIndS‘𝑉)) → ¬ 0 ∈ 𝑏) |
| 18 | 13, 16, 17 | syl2anc 584 | . . . . . . . 8 ⊢ ((((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑏 = { 0 }) → ¬ 0 ∈ 𝑏) |
| 19 | 12, 18 | pm2.65da 816 | . . . . . . 7 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → ¬ 𝑏 = { 0 }) |
| 20 | simpr 484 | . . . . . . . . . . . 12 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → 𝑏 ∈ (LBasis‘𝑉)) | |
| 21 | eqid 2733 | . . . . . . . . . . . . 13 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
| 22 | 21, 4 | lbsss 21013 | . . . . . . . . . . . 12 ⊢ (𝑏 ∈ (LBasis‘𝑉) → 𝑏 ⊆ (Base‘𝑉)) |
| 23 | 20, 22 | syl 17 | . . . . . . . . . . 11 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → 𝑏 ⊆ (Base‘𝑉)) |
| 24 | simplr 768 | . . . . . . . . . . 11 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (Base‘𝑉) = { 0 }) | |
| 25 | 23, 24 | sseqtrd 3967 | . . . . . . . . . 10 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → 𝑏 ⊆ { 0 }) |
| 26 | sssn 4777 | . . . . . . . . . 10 ⊢ (𝑏 ⊆ { 0 } ↔ (𝑏 = ∅ ∨ 𝑏 = { 0 })) | |
| 27 | 25, 26 | sylib 218 | . . . . . . . . 9 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (𝑏 = ∅ ∨ 𝑏 = { 0 })) |
| 28 | 27 | orcomd 871 | . . . . . . . 8 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (𝑏 = { 0 } ∨ 𝑏 = ∅)) |
| 29 | 28 | ord 864 | . . . . . . 7 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (¬ 𝑏 = { 0 } → 𝑏 = ∅)) |
| 30 | 19, 29 | mpd 15 | . . . . . 6 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → 𝑏 = ∅) |
| 31 | 30, 20 | eqeltrrd 2834 | . . . . 5 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → ∅ ∈ (LBasis‘𝑉)) |
| 32 | 8, 31 | exlimddv 1936 | . . . 4 ⊢ ((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) → ∅ ∈ (LBasis‘𝑉)) |
| 33 | 4 | dimval 33634 | . . . 4 ⊢ ((𝑉 ∈ LVec ∧ ∅ ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘∅)) |
| 34 | 3, 32, 33 | syl2anc 584 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) → (dim‘𝑉) = (♯‘∅)) |
| 35 | hash0 14276 | . . 3 ⊢ (♯‘∅) = 0 | |
| 36 | 34, 35 | eqtrdi 2784 | . 2 ⊢ ((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) → (dim‘𝑉) = 0) |
| 37 | 2, 36 | impbida 800 | 1 ⊢ (𝑉 ∈ LVec → ((dim‘𝑉) = 0 ↔ (Base‘𝑉) = { 0 })) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ≠ wne 2929 ⊆ wss 3898 ∅c0 4282 {csn 4575 ‘cfv 6486 0cc0 11013 ♯chash 14239 Basecbs 17122 0gc0g 17345 LBasisclbs 21010 LVecclvec 21038 LIndSclinds 21744 dimcldim 33632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-reg 9485 ax-inf2 9538 ax-ac2 10361 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-rpss 7662 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-oadd 8395 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-oi 9403 df-r1 9664 df-rank 9665 df-dju 9801 df-card 9839 df-acn 9842 df-ac 10014 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-xnn0 12462 df-z 12476 df-dec 12595 df-uz 12739 df-fz 13410 df-hash 14240 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-tset 17182 df-ple 17183 df-ocomp 17184 df-0g 17347 df-mre 17490 df-mrc 17491 df-mri 17492 df-acs 17493 df-proset 18202 df-drs 18203 df-poset 18221 df-ipo 18436 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-subg 19038 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-drng 20648 df-lmod 20797 df-lss 20867 df-lsp 20907 df-lbs 21011 df-lvec 21039 df-lindf 21745 df-linds 21746 df-dim 33633 |
| This theorem is referenced by: lvecendof1f1o 33667 |
| Copyright terms: Public domain | W3C validator |