Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lvecdim0 | Structured version Visualization version GIF version |
Description: A vector space of dimension zero is reduced to its identity element, biconditional version. (Contributed by Thierry Arnoux, 31-Jul-2023.) |
Ref | Expression |
---|---|
lvecdim0.1 | ⊢ 0 = (0g‘𝑉) |
Ref | Expression |
---|---|
lvecdim0 | ⊢ (𝑉 ∈ LVec → ((dim‘𝑉) = 0 ↔ (Base‘𝑉) = { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lvecdim0.1 | . . 3 ⊢ 0 = (0g‘𝑉) | |
2 | 1 | lvecdim0i 31689 | . 2 ⊢ ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → (Base‘𝑉) = { 0 }) |
3 | simpl 483 | . . . 4 ⊢ ((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) → 𝑉 ∈ LVec) | |
4 | eqid 2738 | . . . . . . . 8 ⊢ (LBasis‘𝑉) = (LBasis‘𝑉) | |
5 | 4 | lbsex 20427 | . . . . . . 7 ⊢ (𝑉 ∈ LVec → (LBasis‘𝑉) ≠ ∅) |
6 | n0 4280 | . . . . . . 7 ⊢ ((LBasis‘𝑉) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (LBasis‘𝑉)) | |
7 | 5, 6 | sylib 217 | . . . . . 6 ⊢ (𝑉 ∈ LVec → ∃𝑏 𝑏 ∈ (LBasis‘𝑉)) |
8 | 3, 7 | syl 17 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) → ∃𝑏 𝑏 ∈ (LBasis‘𝑉)) |
9 | 1 | fvexi 6788 | . . . . . . . . . 10 ⊢ 0 ∈ V |
10 | 9 | snid 4597 | . . . . . . . . 9 ⊢ 0 ∈ { 0 } |
11 | simpr 485 | . . . . . . . . 9 ⊢ ((((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑏 = { 0 }) → 𝑏 = { 0 }) | |
12 | 10, 11 | eleqtrrid 2846 | . . . . . . . 8 ⊢ ((((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑏 = { 0 }) → 0 ∈ 𝑏) |
13 | simplll 772 | . . . . . . . . 9 ⊢ ((((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑏 = { 0 }) → 𝑉 ∈ LVec) | |
14 | 4 | lbslinds 21040 | . . . . . . . . . 10 ⊢ (LBasis‘𝑉) ⊆ (LIndS‘𝑉) |
15 | simplr 766 | . . . . . . . . . 10 ⊢ ((((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑏 = { 0 }) → 𝑏 ∈ (LBasis‘𝑉)) | |
16 | 14, 15 | sselid 3919 | . . . . . . . . 9 ⊢ ((((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑏 = { 0 }) → 𝑏 ∈ (LIndS‘𝑉)) |
17 | 1 | 0nellinds 31566 | . . . . . . . . 9 ⊢ ((𝑉 ∈ LVec ∧ 𝑏 ∈ (LIndS‘𝑉)) → ¬ 0 ∈ 𝑏) |
18 | 13, 16, 17 | syl2anc 584 | . . . . . . . 8 ⊢ ((((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑏 = { 0 }) → ¬ 0 ∈ 𝑏) |
19 | 12, 18 | pm2.65da 814 | . . . . . . 7 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → ¬ 𝑏 = { 0 }) |
20 | simpr 485 | . . . . . . . . . . . 12 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → 𝑏 ∈ (LBasis‘𝑉)) | |
21 | eqid 2738 | . . . . . . . . . . . . 13 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
22 | 21, 4 | lbsss 20339 | . . . . . . . . . . . 12 ⊢ (𝑏 ∈ (LBasis‘𝑉) → 𝑏 ⊆ (Base‘𝑉)) |
23 | 20, 22 | syl 17 | . . . . . . . . . . 11 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → 𝑏 ⊆ (Base‘𝑉)) |
24 | simplr 766 | . . . . . . . . . . 11 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (Base‘𝑉) = { 0 }) | |
25 | 23, 24 | sseqtrd 3961 | . . . . . . . . . 10 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → 𝑏 ⊆ { 0 }) |
26 | sssn 4759 | . . . . . . . . . 10 ⊢ (𝑏 ⊆ { 0 } ↔ (𝑏 = ∅ ∨ 𝑏 = { 0 })) | |
27 | 25, 26 | sylib 217 | . . . . . . . . 9 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (𝑏 = ∅ ∨ 𝑏 = { 0 })) |
28 | 27 | orcomd 868 | . . . . . . . 8 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (𝑏 = { 0 } ∨ 𝑏 = ∅)) |
29 | 28 | ord 861 | . . . . . . 7 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (¬ 𝑏 = { 0 } → 𝑏 = ∅)) |
30 | 19, 29 | mpd 15 | . . . . . 6 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → 𝑏 = ∅) |
31 | 30, 20 | eqeltrrd 2840 | . . . . 5 ⊢ (((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) ∧ 𝑏 ∈ (LBasis‘𝑉)) → ∅ ∈ (LBasis‘𝑉)) |
32 | 8, 31 | exlimddv 1938 | . . . 4 ⊢ ((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) → ∅ ∈ (LBasis‘𝑉)) |
33 | 4 | dimval 31686 | . . . 4 ⊢ ((𝑉 ∈ LVec ∧ ∅ ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘∅)) |
34 | 3, 32, 33 | syl2anc 584 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) → (dim‘𝑉) = (♯‘∅)) |
35 | hash0 14082 | . . 3 ⊢ (♯‘∅) = 0 | |
36 | 34, 35 | eqtrdi 2794 | . 2 ⊢ ((𝑉 ∈ LVec ∧ (Base‘𝑉) = { 0 }) → (dim‘𝑉) = 0) |
37 | 2, 36 | impbida 798 | 1 ⊢ (𝑉 ∈ LVec → ((dim‘𝑉) = 0 ↔ (Base‘𝑉) = { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 ⊆ wss 3887 ∅c0 4256 {csn 4561 ‘cfv 6433 0cc0 10871 ♯chash 14044 Basecbs 16912 0gc0g 17150 LBasisclbs 20336 LVecclvec 20364 LIndSclinds 21012 dimcldim 31684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-reg 9351 ax-inf2 9399 ax-ac2 10219 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-rpss 7576 df-om 7713 df-1st 7831 df-2nd 7832 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-oi 9269 df-r1 9522 df-rank 9523 df-dju 9659 df-card 9697 df-acn 9700 df-ac 9872 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-xnn0 12306 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-hash 14045 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-tset 16981 df-ple 16982 df-ocomp 16983 df-0g 17152 df-mre 17295 df-mrc 17296 df-mri 17297 df-acs 17298 df-proset 18013 df-drs 18014 df-poset 18031 df-ipo 18246 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-subg 18752 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-drng 19993 df-lmod 20125 df-lss 20194 df-lsp 20234 df-lbs 20337 df-lvec 20365 df-lindf 21013 df-linds 21014 df-dim 31685 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |