Proof of Theorem supisoex
| Step | Hyp | Ref
| Expression |
| 1 | | supisoex.3 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧))) |
| 2 | | supiso.1 |
. . 3
⊢ (𝜑 → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |
| 3 | | supiso.2 |
. . 3
⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| 4 | | simpl 482 |
. . . . . 6
⊢ ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |
| 5 | | simpr 484 |
. . . . . 6
⊢ ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) → 𝐶 ⊆ 𝐴) |
| 6 | 4, 5 | supisolem 9443 |
. . . . 5
⊢ (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝑥 ∈ 𝐴) → ((∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧)) ↔ (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ (𝐹‘𝑥)𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆(𝐹‘𝑥) → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣)))) |
| 7 | | isof1o 7305 |
. . . . . . . 8
⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹:𝐴–1-1-onto→𝐵) |
| 8 | | f1of 6807 |
. . . . . . . 8
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴⟶𝐵) |
| 9 | 4, 7, 8 | 3syl 18 |
. . . . . . 7
⊢ ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) → 𝐹:𝐴⟶𝐵) |
| 10 | 9 | ffvelcdmda 7063 |
. . . . . 6
⊢ (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
| 11 | | breq1 5118 |
. . . . . . . . . . 11
⊢ (𝑢 = (𝐹‘𝑥) → (𝑢𝑆𝑤 ↔ (𝐹‘𝑥)𝑆𝑤)) |
| 12 | 11 | notbid 318 |
. . . . . . . . . 10
⊢ (𝑢 = (𝐹‘𝑥) → (¬ 𝑢𝑆𝑤 ↔ ¬ (𝐹‘𝑥)𝑆𝑤)) |
| 13 | 12 | ralbidv 3158 |
. . . . . . . . 9
⊢ (𝑢 = (𝐹‘𝑥) → (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ 𝑢𝑆𝑤 ↔ ∀𝑤 ∈ (𝐹 “ 𝐶) ¬ (𝐹‘𝑥)𝑆𝑤)) |
| 14 | | breq2 5119 |
. . . . . . . . . . 11
⊢ (𝑢 = (𝐹‘𝑥) → (𝑤𝑆𝑢 ↔ 𝑤𝑆(𝐹‘𝑥))) |
| 15 | 14 | imbi1d 341 |
. . . . . . . . . 10
⊢ (𝑢 = (𝐹‘𝑥) → ((𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣) ↔ (𝑤𝑆(𝐹‘𝑥) → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣))) |
| 16 | 15 | ralbidv 3158 |
. . . . . . . . 9
⊢ (𝑢 = (𝐹‘𝑥) → (∀𝑤 ∈ 𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣) ↔ ∀𝑤 ∈ 𝐵 (𝑤𝑆(𝐹‘𝑥) → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣))) |
| 17 | 13, 16 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑢 = (𝐹‘𝑥) → ((∀𝑤 ∈ (𝐹 “ 𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣)) ↔ (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ (𝐹‘𝑥)𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆(𝐹‘𝑥) → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣)))) |
| 18 | 17 | rspcev 3597 |
. . . . . . 7
⊢ (((𝐹‘𝑥) ∈ 𝐵 ∧ (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ (𝐹‘𝑥)𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆(𝐹‘𝑥) → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣))) → ∃𝑢 ∈ 𝐵 (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣))) |
| 19 | 18 | ex 412 |
. . . . . 6
⊢ ((𝐹‘𝑥) ∈ 𝐵 → ((∀𝑤 ∈ (𝐹 “ 𝐶) ¬ (𝐹‘𝑥)𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆(𝐹‘𝑥) → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣)) → ∃𝑢 ∈ 𝐵 (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣)))) |
| 20 | 10, 19 | syl 17 |
. . . . 5
⊢ (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝑥 ∈ 𝐴) → ((∀𝑤 ∈ (𝐹 “ 𝐶) ¬ (𝐹‘𝑥)𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆(𝐹‘𝑥) → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣)) → ∃𝑢 ∈ 𝐵 (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣)))) |
| 21 | 6, 20 | sylbid 240 |
. . . 4
⊢ (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝑥 ∈ 𝐴) → ((∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧)) → ∃𝑢 ∈ 𝐵 (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣)))) |
| 22 | 21 | rexlimdva 3136 |
. . 3
⊢ ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) → (∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧)) → ∃𝑢 ∈ 𝐵 (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣)))) |
| 23 | 2, 3, 22 | syl2anc 584 |
. 2
⊢ (𝜑 → (∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧)) → ∃𝑢 ∈ 𝐵 (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣)))) |
| 24 | 1, 23 | mpd 15 |
1
⊢ (𝜑 → ∃𝑢 ∈ 𝐵 (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣))) |