Proof of Theorem supisoex
Step | Hyp | Ref
| Expression |
1 | | supisoex.3 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧))) |
2 | | supiso.1 |
. . 3
⊢ (𝜑 → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |
3 | | supiso.2 |
. . 3
⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
4 | | simpl 483 |
. . . . . 6
⊢ ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |
5 | | simpr 485 |
. . . . . 6
⊢ ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) → 𝐶 ⊆ 𝐴) |
6 | 4, 5 | supisolem 9210 |
. . . . 5
⊢ (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝑥 ∈ 𝐴) → ((∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧)) ↔ (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ (𝐹‘𝑥)𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆(𝐹‘𝑥) → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣)))) |
7 | | isof1o 7190 |
. . . . . . . 8
⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹:𝐴–1-1-onto→𝐵) |
8 | | f1of 6714 |
. . . . . . . 8
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴⟶𝐵) |
9 | 4, 7, 8 | 3syl 18 |
. . . . . . 7
⊢ ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) → 𝐹:𝐴⟶𝐵) |
10 | 9 | ffvelrnda 6958 |
. . . . . 6
⊢ (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
11 | | breq1 5082 |
. . . . . . . . . . 11
⊢ (𝑢 = (𝐹‘𝑥) → (𝑢𝑆𝑤 ↔ (𝐹‘𝑥)𝑆𝑤)) |
12 | 11 | notbid 318 |
. . . . . . . . . 10
⊢ (𝑢 = (𝐹‘𝑥) → (¬ 𝑢𝑆𝑤 ↔ ¬ (𝐹‘𝑥)𝑆𝑤)) |
13 | 12 | ralbidv 3123 |
. . . . . . . . 9
⊢ (𝑢 = (𝐹‘𝑥) → (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ 𝑢𝑆𝑤 ↔ ∀𝑤 ∈ (𝐹 “ 𝐶) ¬ (𝐹‘𝑥)𝑆𝑤)) |
14 | | breq2 5083 |
. . . . . . . . . . 11
⊢ (𝑢 = (𝐹‘𝑥) → (𝑤𝑆𝑢 ↔ 𝑤𝑆(𝐹‘𝑥))) |
15 | 14 | imbi1d 342 |
. . . . . . . . . 10
⊢ (𝑢 = (𝐹‘𝑥) → ((𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣) ↔ (𝑤𝑆(𝐹‘𝑥) → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣))) |
16 | 15 | ralbidv 3123 |
. . . . . . . . 9
⊢ (𝑢 = (𝐹‘𝑥) → (∀𝑤 ∈ 𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣) ↔ ∀𝑤 ∈ 𝐵 (𝑤𝑆(𝐹‘𝑥) → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣))) |
17 | 13, 16 | anbi12d 631 |
. . . . . . . 8
⊢ (𝑢 = (𝐹‘𝑥) → ((∀𝑤 ∈ (𝐹 “ 𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣)) ↔ (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ (𝐹‘𝑥)𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆(𝐹‘𝑥) → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣)))) |
18 | 17 | rspcev 3561 |
. . . . . . 7
⊢ (((𝐹‘𝑥) ∈ 𝐵 ∧ (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ (𝐹‘𝑥)𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆(𝐹‘𝑥) → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣))) → ∃𝑢 ∈ 𝐵 (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣))) |
19 | 18 | ex 413 |
. . . . . 6
⊢ ((𝐹‘𝑥) ∈ 𝐵 → ((∀𝑤 ∈ (𝐹 “ 𝐶) ¬ (𝐹‘𝑥)𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆(𝐹‘𝑥) → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣)) → ∃𝑢 ∈ 𝐵 (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣)))) |
20 | 10, 19 | syl 17 |
. . . . 5
⊢ (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝑥 ∈ 𝐴) → ((∀𝑤 ∈ (𝐹 “ 𝐶) ¬ (𝐹‘𝑥)𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆(𝐹‘𝑥) → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣)) → ∃𝑢 ∈ 𝐵 (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣)))) |
21 | 6, 20 | sylbid 239 |
. . . 4
⊢ (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝑥 ∈ 𝐴) → ((∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧)) → ∃𝑢 ∈ 𝐵 (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣)))) |
22 | 21 | rexlimdva 3215 |
. . 3
⊢ ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) → (∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧)) → ∃𝑢 ∈ 𝐵 (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣)))) |
23 | 2, 3, 22 | syl2anc 584 |
. 2
⊢ (𝜑 → (∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧)) → ∃𝑢 ∈ 𝐵 (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣)))) |
24 | 1, 23 | mpd 15 |
1
⊢ (𝜑 → ∃𝑢 ∈ 𝐵 (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣))) |