MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supisoex Structured version   Visualization version   GIF version

Theorem supisoex 9211
Description: Lemma for supiso 9212. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypotheses
Ref Expression
supiso.1 (𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
supiso.2 (𝜑𝐶𝐴)
supisoex.3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))
Assertion
Ref Expression
supisoex (𝜑 → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
Distinct variable groups:   𝑣,𝑢,𝑤,𝑥,𝑦,𝑧,𝐴   𝑢,𝐶,𝑣,𝑤,𝑥,𝑦,𝑧   𝜑,𝑢,𝑤   𝑢,𝐹,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝑅,𝑤,𝑥,𝑦,𝑧   𝑢,𝑆,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝐵,𝑣,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑣)   𝑅(𝑣)

Proof of Theorem supisoex
StepHypRef Expression
1 supisoex.3 . 2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))
2 supiso.1 . . 3 (𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
3 supiso.2 . . 3 (𝜑𝐶𝐴)
4 simpl 483 . . . . . 6 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
5 simpr 485 . . . . . 6 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) → 𝐶𝐴)
64, 5supisolem 9210 . . . . 5 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝑥𝐴) → ((∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)) ↔ (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝑥)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝑥) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
7 isof1o 7190 . . . . . . . 8 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹:𝐴1-1-onto𝐵)
8 f1of 6714 . . . . . . . 8 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
94, 7, 83syl 18 . . . . . . 7 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) → 𝐹:𝐴𝐵)
109ffvelrnda 6958 . . . . . 6 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
11 breq1 5082 . . . . . . . . . . 11 (𝑢 = (𝐹𝑥) → (𝑢𝑆𝑤 ↔ (𝐹𝑥)𝑆𝑤))
1211notbid 318 . . . . . . . . . 10 (𝑢 = (𝐹𝑥) → (¬ 𝑢𝑆𝑤 ↔ ¬ (𝐹𝑥)𝑆𝑤))
1312ralbidv 3123 . . . . . . . . 9 (𝑢 = (𝐹𝑥) → (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ↔ ∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝑥)𝑆𝑤))
14 breq2 5083 . . . . . . . . . . 11 (𝑢 = (𝐹𝑥) → (𝑤𝑆𝑢𝑤𝑆(𝐹𝑥)))
1514imbi1d 342 . . . . . . . . . 10 (𝑢 = (𝐹𝑥) → ((𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣) ↔ (𝑤𝑆(𝐹𝑥) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
1615ralbidv 3123 . . . . . . . . 9 (𝑢 = (𝐹𝑥) → (∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣) ↔ ∀𝑤𝐵 (𝑤𝑆(𝐹𝑥) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
1713, 16anbi12d 631 . . . . . . . 8 (𝑢 = (𝐹𝑥) → ((∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)) ↔ (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝑥)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝑥) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
1817rspcev 3561 . . . . . . 7 (((𝐹𝑥) ∈ 𝐵 ∧ (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝑥)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝑥) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))) → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
1918ex 413 . . . . . 6 ((𝐹𝑥) ∈ 𝐵 → ((∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝑥)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝑥) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)) → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
2010, 19syl 17 . . . . 5 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝑥𝐴) → ((∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝑥)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝑥) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)) → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
216, 20sylbid 239 . . . 4 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝑥𝐴) → ((∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)) → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
2221rexlimdva 3215 . . 3 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) → (∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)) → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
232, 3, 22syl2anc 584 . 2 (𝜑 → (∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)) → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
241, 23mpd 15 1 (𝜑 → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1542  wcel 2110  wral 3066  wrex 3067  wss 3892   class class class wbr 5079  cima 5593  wf 6428  1-1-ontowf1o 6431  cfv 6432   Isom wiso 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator