MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supisoex Structured version   Visualization version   GIF version

Theorem supisoex 9444
Description: Lemma for supiso 9445. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypotheses
Ref Expression
supiso.1 (𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
supiso.2 (𝜑𝐶𝐴)
supisoex.3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))
Assertion
Ref Expression
supisoex (𝜑 → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
Distinct variable groups:   𝑣,𝑢,𝑤,𝑥,𝑦,𝑧,𝐴   𝑢,𝐶,𝑣,𝑤,𝑥,𝑦,𝑧   𝜑,𝑢,𝑤   𝑢,𝐹,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝑅,𝑤,𝑥,𝑦,𝑧   𝑢,𝑆,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝐵,𝑣,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑣)   𝑅(𝑣)

Proof of Theorem supisoex
StepHypRef Expression
1 supisoex.3 . 2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))
2 supiso.1 . . 3 (𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
3 supiso.2 . . 3 (𝜑𝐶𝐴)
4 simpl 482 . . . . . 6 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
5 simpr 484 . . . . . 6 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) → 𝐶𝐴)
64, 5supisolem 9443 . . . . 5 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝑥𝐴) → ((∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)) ↔ (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝑥)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝑥) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
7 isof1o 7305 . . . . . . . 8 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹:𝐴1-1-onto𝐵)
8 f1of 6807 . . . . . . . 8 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
94, 7, 83syl 18 . . . . . . 7 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) → 𝐹:𝐴𝐵)
109ffvelcdmda 7063 . . . . . 6 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
11 breq1 5118 . . . . . . . . . . 11 (𝑢 = (𝐹𝑥) → (𝑢𝑆𝑤 ↔ (𝐹𝑥)𝑆𝑤))
1211notbid 318 . . . . . . . . . 10 (𝑢 = (𝐹𝑥) → (¬ 𝑢𝑆𝑤 ↔ ¬ (𝐹𝑥)𝑆𝑤))
1312ralbidv 3158 . . . . . . . . 9 (𝑢 = (𝐹𝑥) → (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ↔ ∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝑥)𝑆𝑤))
14 breq2 5119 . . . . . . . . . . 11 (𝑢 = (𝐹𝑥) → (𝑤𝑆𝑢𝑤𝑆(𝐹𝑥)))
1514imbi1d 341 . . . . . . . . . 10 (𝑢 = (𝐹𝑥) → ((𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣) ↔ (𝑤𝑆(𝐹𝑥) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
1615ralbidv 3158 . . . . . . . . 9 (𝑢 = (𝐹𝑥) → (∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣) ↔ ∀𝑤𝐵 (𝑤𝑆(𝐹𝑥) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
1713, 16anbi12d 632 . . . . . . . 8 (𝑢 = (𝐹𝑥) → ((∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)) ↔ (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝑥)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝑥) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
1817rspcev 3597 . . . . . . 7 (((𝐹𝑥) ∈ 𝐵 ∧ (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝑥)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝑥) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))) → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
1918ex 412 . . . . . 6 ((𝐹𝑥) ∈ 𝐵 → ((∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝑥)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝑥) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)) → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
2010, 19syl 17 . . . . 5 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝑥𝐴) → ((∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝑥)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝑥) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)) → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
216, 20sylbid 240 . . . 4 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝑥𝐴) → ((∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)) → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
2221rexlimdva 3136 . . 3 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) → (∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)) → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
232, 3, 22syl2anc 584 . 2 (𝜑 → (∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)) → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
241, 23mpd 15 1 (𝜑 → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3046  wrex 3055  wss 3922   class class class wbr 5115  cima 5649  wf 6515  1-1-ontowf1o 6518  cfv 6519   Isom wiso 6520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-isom 6528
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator