Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdifsupp Structured version   Visualization version   GIF version

Theorem fdifsupp 32658
Description: Express the support of a function 𝐹 outside of 𝐵 in two different ways. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
fdifsupp.1 (𝜑𝐴𝑉)
fdifsupp.2 (𝜑𝑍𝑊)
fdifsupp.3 (𝜑𝐹 Fn 𝐴)
Assertion
Ref Expression
fdifsupp (𝜑 → ((𝐹 ↾ (𝐴𝐵)) supp 𝑍) = ((𝐹 supp 𝑍) ∖ 𝐵))

Proof of Theorem fdifsupp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fdifsupp.3 . . . . 5 (𝜑𝐹 Fn 𝐴)
2 difssd 4096 . . . . 5 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
31, 2fnssresd 6624 . . . 4 (𝜑 → (𝐹 ↾ (𝐴𝐵)) Fn (𝐴𝐵))
4 fdifsupp.1 . . . . 5 (𝜑𝐴𝑉)
54difexd 5281 . . . 4 (𝜑 → (𝐴𝐵) ∈ V)
6 fdifsupp.2 . . . 4 (𝜑𝑍𝑊)
7 elsuppfn 8126 . . . 4 (((𝐹 ↾ (𝐴𝐵)) Fn (𝐴𝐵) ∧ (𝐴𝐵) ∈ V ∧ 𝑍𝑊) → (𝑥 ∈ ((𝐹 ↾ (𝐴𝐵)) supp 𝑍) ↔ (𝑥 ∈ (𝐴𝐵) ∧ ((𝐹 ↾ (𝐴𝐵))‘𝑥) ≠ 𝑍)))
83, 5, 6, 7syl3anc 1373 . . 3 (𝜑 → (𝑥 ∈ ((𝐹 ↾ (𝐴𝐵)) supp 𝑍) ↔ (𝑥 ∈ (𝐴𝐵) ∧ ((𝐹 ↾ (𝐴𝐵))‘𝑥) ≠ 𝑍)))
9 eldif 3921 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
109anbi1i 624 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ (𝐹𝑥) ≠ 𝑍) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ (𝐹𝑥) ≠ 𝑍))
1110a1i 11 . . . 4 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ∧ (𝐹𝑥) ≠ 𝑍) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ (𝐹𝑥) ≠ 𝑍)))
12 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝑥 ∈ (𝐴𝐵))
1312fvresd 6860 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐵)) → ((𝐹 ↾ (𝐴𝐵))‘𝑥) = (𝐹𝑥))
1413neeq1d 2984 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝐵)) → (((𝐹 ↾ (𝐴𝐵))‘𝑥) ≠ 𝑍 ↔ (𝐹𝑥) ≠ 𝑍))
1514pm5.32da 579 . . . 4 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ∧ ((𝐹 ↾ (𝐴𝐵))‘𝑥) ≠ 𝑍) ↔ (𝑥 ∈ (𝐴𝐵) ∧ (𝐹𝑥) ≠ 𝑍)))
16 an32 646 . . . . 5 (((𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍) ∧ ¬ 𝑥𝐵) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ (𝐹𝑥) ≠ 𝑍))
1716a1i 11 . . . 4 (𝜑 → (((𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍) ∧ ¬ 𝑥𝐵) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ (𝐹𝑥) ≠ 𝑍)))
1811, 15, 173bitr4d 311 . . 3 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ∧ ((𝐹 ↾ (𝐴𝐵))‘𝑥) ≠ 𝑍) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍) ∧ ¬ 𝑥𝐵)))
19 eldif 3921 . . . 4 (𝑥 ∈ ((𝐹 supp 𝑍) ∖ 𝐵) ↔ (𝑥 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑥𝐵))
204elexd 3468 . . . . . 6 (𝜑𝐴 ∈ V)
21 elsuppfn 8126 . . . . . 6 ((𝐹 Fn 𝐴𝐴 ∈ V ∧ 𝑍𝑊) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍)))
221, 20, 6, 21syl3anc 1373 . . . . 5 (𝜑 → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍)))
2322anbi1d 631 . . . 4 (𝜑 → ((𝑥 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑥𝐵) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍) ∧ ¬ 𝑥𝐵)))
2419, 23bitr2id 284 . . 3 (𝜑 → (((𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍) ∧ ¬ 𝑥𝐵) ↔ 𝑥 ∈ ((𝐹 supp 𝑍) ∖ 𝐵)))
258, 18, 243bitrd 305 . 2 (𝜑 → (𝑥 ∈ ((𝐹 ↾ (𝐴𝐵)) supp 𝑍) ↔ 𝑥 ∈ ((𝐹 supp 𝑍) ∖ 𝐵)))
2625eqrdv 2727 1 (𝜑 → ((𝐹 ↾ (𝐴𝐵)) supp 𝑍) = ((𝐹 supp 𝑍) ∖ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  cdif 3908  cres 5633   Fn wfn 6494  cfv 6499  (class class class)co 7369   supp csupp 8116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-supp 8117
This theorem is referenced by:  elrgspnlem4  33212
  Copyright terms: Public domain W3C validator