Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdifsupp Structured version   Visualization version   GIF version

Theorem fdifsupp 32628
Description: Express the support of a function 𝐹 outside of 𝐵 in two different ways. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
fdifsupp.1 (𝜑𝐴𝑉)
fdifsupp.2 (𝜑𝑍𝑊)
fdifsupp.3 (𝜑𝐹 Fn 𝐴)
Assertion
Ref Expression
fdifsupp (𝜑 → ((𝐹 ↾ (𝐴𝐵)) supp 𝑍) = ((𝐹 supp 𝑍) ∖ 𝐵))

Proof of Theorem fdifsupp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fdifsupp.3 . . . . 5 (𝜑𝐹 Fn 𝐴)
2 difssd 4088 . . . . 5 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
31, 2fnssresd 6606 . . . 4 (𝜑 → (𝐹 ↾ (𝐴𝐵)) Fn (𝐴𝐵))
4 fdifsupp.1 . . . . 5 (𝜑𝐴𝑉)
54difexd 5270 . . . 4 (𝜑 → (𝐴𝐵) ∈ V)
6 fdifsupp.2 . . . 4 (𝜑𝑍𝑊)
7 elsuppfn 8103 . . . 4 (((𝐹 ↾ (𝐴𝐵)) Fn (𝐴𝐵) ∧ (𝐴𝐵) ∈ V ∧ 𝑍𝑊) → (𝑥 ∈ ((𝐹 ↾ (𝐴𝐵)) supp 𝑍) ↔ (𝑥 ∈ (𝐴𝐵) ∧ ((𝐹 ↾ (𝐴𝐵))‘𝑥) ≠ 𝑍)))
83, 5, 6, 7syl3anc 1373 . . 3 (𝜑 → (𝑥 ∈ ((𝐹 ↾ (𝐴𝐵)) supp 𝑍) ↔ (𝑥 ∈ (𝐴𝐵) ∧ ((𝐹 ↾ (𝐴𝐵))‘𝑥) ≠ 𝑍)))
9 eldif 3913 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
109anbi1i 624 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ (𝐹𝑥) ≠ 𝑍) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ (𝐹𝑥) ≠ 𝑍))
1110a1i 11 . . . 4 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ∧ (𝐹𝑥) ≠ 𝑍) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ (𝐹𝑥) ≠ 𝑍)))
12 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝑥 ∈ (𝐴𝐵))
1312fvresd 6842 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐵)) → ((𝐹 ↾ (𝐴𝐵))‘𝑥) = (𝐹𝑥))
1413neeq1d 2984 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝐵)) → (((𝐹 ↾ (𝐴𝐵))‘𝑥) ≠ 𝑍 ↔ (𝐹𝑥) ≠ 𝑍))
1514pm5.32da 579 . . . 4 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ∧ ((𝐹 ↾ (𝐴𝐵))‘𝑥) ≠ 𝑍) ↔ (𝑥 ∈ (𝐴𝐵) ∧ (𝐹𝑥) ≠ 𝑍)))
16 an32 646 . . . . 5 (((𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍) ∧ ¬ 𝑥𝐵) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ (𝐹𝑥) ≠ 𝑍))
1716a1i 11 . . . 4 (𝜑 → (((𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍) ∧ ¬ 𝑥𝐵) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ (𝐹𝑥) ≠ 𝑍)))
1811, 15, 173bitr4d 311 . . 3 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ∧ ((𝐹 ↾ (𝐴𝐵))‘𝑥) ≠ 𝑍) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍) ∧ ¬ 𝑥𝐵)))
19 eldif 3913 . . . 4 (𝑥 ∈ ((𝐹 supp 𝑍) ∖ 𝐵) ↔ (𝑥 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑥𝐵))
204elexd 3460 . . . . . 6 (𝜑𝐴 ∈ V)
21 elsuppfn 8103 . . . . . 6 ((𝐹 Fn 𝐴𝐴 ∈ V ∧ 𝑍𝑊) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍)))
221, 20, 6, 21syl3anc 1373 . . . . 5 (𝜑 → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍)))
2322anbi1d 631 . . . 4 (𝜑 → ((𝑥 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑥𝐵) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍) ∧ ¬ 𝑥𝐵)))
2419, 23bitr2id 284 . . 3 (𝜑 → (((𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍) ∧ ¬ 𝑥𝐵) ↔ 𝑥 ∈ ((𝐹 supp 𝑍) ∖ 𝐵)))
258, 18, 243bitrd 305 . 2 (𝜑 → (𝑥 ∈ ((𝐹 ↾ (𝐴𝐵)) supp 𝑍) ↔ 𝑥 ∈ ((𝐹 supp 𝑍) ∖ 𝐵)))
2625eqrdv 2727 1 (𝜑 → ((𝐹 ↾ (𝐴𝐵)) supp 𝑍) = ((𝐹 supp 𝑍) ∖ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3436  cdif 3900  cres 5621   Fn wfn 6477  cfv 6482  (class class class)co 7349   supp csupp 8093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-supp 8094
This theorem is referenced by:  elrgspnlem4  33186
  Copyright terms: Public domain W3C validator