Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdifsupp Structured version   Visualization version   GIF version

Theorem fdifsupp 32699
Description: Express the support of a function 𝐹 outside of 𝐵 in two different ways. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
fdifsupp.1 (𝜑𝐴𝑉)
fdifsupp.2 (𝜑𝑍𝑊)
fdifsupp.3 (𝜑𝐹 Fn 𝐴)
Assertion
Ref Expression
fdifsupp (𝜑 → ((𝐹 ↾ (𝐴𝐵)) supp 𝑍) = ((𝐹 supp 𝑍) ∖ 𝐵))

Proof of Theorem fdifsupp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fdifsupp.3 . . . . 5 (𝜑𝐹 Fn 𝐴)
2 difssd 4146 . . . . 5 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
31, 2fnssresd 6692 . . . 4 (𝜑 → (𝐹 ↾ (𝐴𝐵)) Fn (𝐴𝐵))
4 fdifsupp.1 . . . . 5 (𝜑𝐴𝑉)
54difexd 5336 . . . 4 (𝜑 → (𝐴𝐵) ∈ V)
6 fdifsupp.2 . . . 4 (𝜑𝑍𝑊)
7 elsuppfn 8193 . . . 4 (((𝐹 ↾ (𝐴𝐵)) Fn (𝐴𝐵) ∧ (𝐴𝐵) ∈ V ∧ 𝑍𝑊) → (𝑥 ∈ ((𝐹 ↾ (𝐴𝐵)) supp 𝑍) ↔ (𝑥 ∈ (𝐴𝐵) ∧ ((𝐹 ↾ (𝐴𝐵))‘𝑥) ≠ 𝑍)))
83, 5, 6, 7syl3anc 1370 . . 3 (𝜑 → (𝑥 ∈ ((𝐹 ↾ (𝐴𝐵)) supp 𝑍) ↔ (𝑥 ∈ (𝐴𝐵) ∧ ((𝐹 ↾ (𝐴𝐵))‘𝑥) ≠ 𝑍)))
9 eldif 3972 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
109anbi1i 624 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ (𝐹𝑥) ≠ 𝑍) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ (𝐹𝑥) ≠ 𝑍))
1110a1i 11 . . . 4 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ∧ (𝐹𝑥) ≠ 𝑍) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ (𝐹𝑥) ≠ 𝑍)))
12 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝑥 ∈ (𝐴𝐵))
1312fvresd 6926 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐵)) → ((𝐹 ↾ (𝐴𝐵))‘𝑥) = (𝐹𝑥))
1413neeq1d 2997 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝐵)) → (((𝐹 ↾ (𝐴𝐵))‘𝑥) ≠ 𝑍 ↔ (𝐹𝑥) ≠ 𝑍))
1514pm5.32da 579 . . . 4 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ∧ ((𝐹 ↾ (𝐴𝐵))‘𝑥) ≠ 𝑍) ↔ (𝑥 ∈ (𝐴𝐵) ∧ (𝐹𝑥) ≠ 𝑍)))
16 an32 646 . . . . 5 (((𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍) ∧ ¬ 𝑥𝐵) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ (𝐹𝑥) ≠ 𝑍))
1716a1i 11 . . . 4 (𝜑 → (((𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍) ∧ ¬ 𝑥𝐵) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ (𝐹𝑥) ≠ 𝑍)))
1811, 15, 173bitr4d 311 . . 3 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ∧ ((𝐹 ↾ (𝐴𝐵))‘𝑥) ≠ 𝑍) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍) ∧ ¬ 𝑥𝐵)))
19 eldif 3972 . . . 4 (𝑥 ∈ ((𝐹 supp 𝑍) ∖ 𝐵) ↔ (𝑥 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑥𝐵))
204elexd 3501 . . . . . 6 (𝜑𝐴 ∈ V)
21 elsuppfn 8193 . . . . . 6 ((𝐹 Fn 𝐴𝐴 ∈ V ∧ 𝑍𝑊) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍)))
221, 20, 6, 21syl3anc 1370 . . . . 5 (𝜑 → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍)))
2322anbi1d 631 . . . 4 (𝜑 → ((𝑥 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑥𝐵) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍) ∧ ¬ 𝑥𝐵)))
2419, 23bitr2id 284 . . 3 (𝜑 → (((𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍) ∧ ¬ 𝑥𝐵) ↔ 𝑥 ∈ ((𝐹 supp 𝑍) ∖ 𝐵)))
258, 18, 243bitrd 305 . 2 (𝜑 → (𝑥 ∈ ((𝐹 ↾ (𝐴𝐵)) supp 𝑍) ↔ 𝑥 ∈ ((𝐹 supp 𝑍) ∖ 𝐵)))
2625eqrdv 2732 1 (𝜑 → ((𝐹 ↾ (𝐴𝐵)) supp 𝑍) = ((𝐹 supp 𝑍) ∖ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wne 2937  Vcvv 3477  cdif 3959  cres 5690   Fn wfn 6557  cfv 6562  (class class class)co 7430   supp csupp 8183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-supp 8184
This theorem is referenced by:  elrgspnlem4  33234
  Copyright terms: Public domain W3C validator