Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdifsupp Structured version   Visualization version   GIF version

Theorem fdifsupp 32694
Description: Express the support of a function 𝐹 outside of 𝐵 in two different ways. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
fdifsupp.1 (𝜑𝐴𝑉)
fdifsupp.2 (𝜑𝑍𝑊)
fdifsupp.3 (𝜑𝐹 Fn 𝐴)
Assertion
Ref Expression
fdifsupp (𝜑 → ((𝐹 ↾ (𝐴𝐵)) supp 𝑍) = ((𝐹 supp 𝑍) ∖ 𝐵))

Proof of Theorem fdifsupp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fdifsupp.3 . . . . 5 (𝜑𝐹 Fn 𝐴)
2 difssd 4137 . . . . 5 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
31, 2fnssresd 6692 . . . 4 (𝜑 → (𝐹 ↾ (𝐴𝐵)) Fn (𝐴𝐵))
4 fdifsupp.1 . . . . 5 (𝜑𝐴𝑉)
54difexd 5331 . . . 4 (𝜑 → (𝐴𝐵) ∈ V)
6 fdifsupp.2 . . . 4 (𝜑𝑍𝑊)
7 elsuppfn 8195 . . . 4 (((𝐹 ↾ (𝐴𝐵)) Fn (𝐴𝐵) ∧ (𝐴𝐵) ∈ V ∧ 𝑍𝑊) → (𝑥 ∈ ((𝐹 ↾ (𝐴𝐵)) supp 𝑍) ↔ (𝑥 ∈ (𝐴𝐵) ∧ ((𝐹 ↾ (𝐴𝐵))‘𝑥) ≠ 𝑍)))
83, 5, 6, 7syl3anc 1373 . . 3 (𝜑 → (𝑥 ∈ ((𝐹 ↾ (𝐴𝐵)) supp 𝑍) ↔ (𝑥 ∈ (𝐴𝐵) ∧ ((𝐹 ↾ (𝐴𝐵))‘𝑥) ≠ 𝑍)))
9 eldif 3961 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
109anbi1i 624 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ (𝐹𝑥) ≠ 𝑍) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ (𝐹𝑥) ≠ 𝑍))
1110a1i 11 . . . 4 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ∧ (𝐹𝑥) ≠ 𝑍) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ (𝐹𝑥) ≠ 𝑍)))
12 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝑥 ∈ (𝐴𝐵))
1312fvresd 6926 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐵)) → ((𝐹 ↾ (𝐴𝐵))‘𝑥) = (𝐹𝑥))
1413neeq1d 3000 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝐵)) → (((𝐹 ↾ (𝐴𝐵))‘𝑥) ≠ 𝑍 ↔ (𝐹𝑥) ≠ 𝑍))
1514pm5.32da 579 . . . 4 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ∧ ((𝐹 ↾ (𝐴𝐵))‘𝑥) ≠ 𝑍) ↔ (𝑥 ∈ (𝐴𝐵) ∧ (𝐹𝑥) ≠ 𝑍)))
16 an32 646 . . . . 5 (((𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍) ∧ ¬ 𝑥𝐵) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ (𝐹𝑥) ≠ 𝑍))
1716a1i 11 . . . 4 (𝜑 → (((𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍) ∧ ¬ 𝑥𝐵) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ (𝐹𝑥) ≠ 𝑍)))
1811, 15, 173bitr4d 311 . . 3 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ∧ ((𝐹 ↾ (𝐴𝐵))‘𝑥) ≠ 𝑍) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍) ∧ ¬ 𝑥𝐵)))
19 eldif 3961 . . . 4 (𝑥 ∈ ((𝐹 supp 𝑍) ∖ 𝐵) ↔ (𝑥 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑥𝐵))
204elexd 3504 . . . . . 6 (𝜑𝐴 ∈ V)
21 elsuppfn 8195 . . . . . 6 ((𝐹 Fn 𝐴𝐴 ∈ V ∧ 𝑍𝑊) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍)))
221, 20, 6, 21syl3anc 1373 . . . . 5 (𝜑 → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍)))
2322anbi1d 631 . . . 4 (𝜑 → ((𝑥 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑥𝐵) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍) ∧ ¬ 𝑥𝐵)))
2419, 23bitr2id 284 . . 3 (𝜑 → (((𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍) ∧ ¬ 𝑥𝐵) ↔ 𝑥 ∈ ((𝐹 supp 𝑍) ∖ 𝐵)))
258, 18, 243bitrd 305 . 2 (𝜑 → (𝑥 ∈ ((𝐹 ↾ (𝐴𝐵)) supp 𝑍) ↔ 𝑥 ∈ ((𝐹 supp 𝑍) ∖ 𝐵)))
2625eqrdv 2735 1 (𝜑 → ((𝐹 ↾ (𝐴𝐵)) supp 𝑍) = ((𝐹 supp 𝑍) ∖ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  Vcvv 3480  cdif 3948  cres 5687   Fn wfn 6556  cfv 6561  (class class class)co 7431   supp csupp 8185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-supp 8186
This theorem is referenced by:  elrgspnlem4  33249
  Copyright terms: Public domain W3C validator