Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fisuppov1 Structured version   Visualization version   GIF version

Theorem fisuppov1 32613
Description: Formula building theorem for finite support: operator with left annihilator. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
fisuppov1.1 (𝜑𝑍𝑉)
fisuppov1.2 (𝜑0𝑋)
fisuppov1.3 (𝜑𝐴𝑊)
fisuppov1.4 (𝜑𝐷𝐴)
fisuppov1.5 ((𝜑𝑥𝐷) → 𝐵𝑌)
fisuppov1.6 (𝜑𝐹:𝐴𝐸)
fisuppov1.7 (𝜑𝐹 finSupp 0 )
fisuppov1.8 ((𝜑𝑦𝑌) → ( 0 𝑂𝑦) = 𝑍)
Assertion
Ref Expression
fisuppov1 (𝜑 → (𝑥𝐷 ↦ ((𝐹𝑥)𝑂𝐵)) finSupp 𝑍)
Distinct variable groups:   𝑥, 0   𝑦, 0   𝑥,𝐴   𝑦,𝐵   𝑥,𝐷   𝑥,𝐹   𝑦,𝑂   𝑦,𝑌   𝑥,𝑍   𝑦,𝑍   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥)   𝐷(𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑦)   𝑂(𝑥)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem fisuppov1
StepHypRef Expression
1 fisuppov1.3 . . . 4 (𝜑𝐴𝑊)
2 fisuppov1.4 . . . 4 (𝜑𝐷𝐴)
31, 2ssexd 5282 . . 3 (𝜑𝐷 ∈ V)
43mptexd 7201 . 2 (𝜑 → (𝑥𝐷 ↦ ((𝐹𝑥)𝑂𝐵)) ∈ V)
5 fisuppov1.1 . 2 (𝜑𝑍𝑉)
6 funmpt 6557 . . 3 Fun (𝑥𝐷 ↦ ((𝐹𝑥)𝑂𝐵))
76a1i 11 . 2 (𝜑 → Fun (𝑥𝐷 ↦ ((𝐹𝑥)𝑂𝐵)))
8 fisuppov1.7 . 2 (𝜑𝐹 finSupp 0 )
9 fisuppov1.6 . . . . . 6 (𝜑𝐹:𝐴𝐸)
109, 2feqresmpt 6933 . . . . 5 (𝜑 → (𝐹𝐷) = (𝑥𝐷 ↦ (𝐹𝑥)))
1110oveq1d 7405 . . . 4 (𝜑 → ((𝐹𝐷) supp 0 ) = ((𝑥𝐷 ↦ (𝐹𝑥)) supp 0 ))
129, 1fexd 7204 . . . . 5 (𝜑𝐹 ∈ V)
13 fisuppov1.2 . . . . 5 (𝜑0𝑋)
14 ressuppss 8165 . . . . 5 ((𝐹 ∈ V ∧ 0𝑋) → ((𝐹𝐷) supp 0 ) ⊆ (𝐹 supp 0 ))
1512, 13, 14syl2anc 584 . . . 4 (𝜑 → ((𝐹𝐷) supp 0 ) ⊆ (𝐹 supp 0 ))
1611, 15eqsstrrd 3985 . . 3 (𝜑 → ((𝑥𝐷 ↦ (𝐹𝑥)) supp 0 ) ⊆ (𝐹 supp 0 ))
17 fisuppov1.8 . . 3 ((𝜑𝑦𝑌) → ( 0 𝑂𝑦) = 𝑍)
18 fvexd 6876 . . 3 ((𝜑𝑥𝐷) → (𝐹𝑥) ∈ V)
19 fisuppov1.5 . . 3 ((𝜑𝑥𝐷) → 𝐵𝑌)
2016, 17, 18, 19, 13suppssov1 8179 . 2 (𝜑 → ((𝑥𝐷 ↦ ((𝐹𝑥)𝑂𝐵)) supp 𝑍) ⊆ (𝐹 supp 0 ))
214, 5, 7, 8, 20fsuppsssuppgd 9340 1 (𝜑 → (𝑥𝐷 ↦ ((𝐹𝑥)𝑂𝐵)) finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917   class class class wbr 5110  cmpt 5191  cres 5643  Fun wfun 6508  wf 6510  cfv 6514  (class class class)co 7390   supp csupp 8142   finSupp cfsupp 9319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-supp 8143  df-1o 8437  df-en 8922  df-fin 8925  df-fsupp 9320
This theorem is referenced by:  elrgspnlem1  33200  elrgspnlem2  33201  fldextrspunlsplem  33675
  Copyright terms: Public domain W3C validator