| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fisuppov1 | Structured version Visualization version GIF version | ||
| Description: Formula building theorem for finite support: operator with left annihilator. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| Ref | Expression |
|---|---|
| fisuppov1.1 | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| fisuppov1.2 | ⊢ (𝜑 → 0 ∈ 𝑋) |
| fisuppov1.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
| fisuppov1.4 | ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
| fisuppov1.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐵 ∈ 𝑌) |
| fisuppov1.6 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐸) |
| fisuppov1.7 | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
| fisuppov1.8 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → ( 0 𝑂𝑦) = 𝑍) |
| Ref | Expression |
|---|---|
| fisuppov1 | ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ ((𝐹‘𝑥)𝑂𝐵)) finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fisuppov1.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
| 2 | fisuppov1.4 | . . . 4 ⊢ (𝜑 → 𝐷 ⊆ 𝐴) | |
| 3 | 1, 2 | ssexd 5282 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
| 4 | 3 | mptexd 7201 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ ((𝐹‘𝑥)𝑂𝐵)) ∈ V) |
| 5 | fisuppov1.1 | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
| 6 | funmpt 6557 | . . 3 ⊢ Fun (𝑥 ∈ 𝐷 ↦ ((𝐹‘𝑥)𝑂𝐵)) | |
| 7 | 6 | a1i 11 | . 2 ⊢ (𝜑 → Fun (𝑥 ∈ 𝐷 ↦ ((𝐹‘𝑥)𝑂𝐵))) |
| 8 | fisuppov1.7 | . 2 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
| 9 | fisuppov1.6 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶𝐸) | |
| 10 | 9, 2 | feqresmpt 6933 | . . . . 5 ⊢ (𝜑 → (𝐹 ↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥))) |
| 11 | 10 | oveq1d 7405 | . . . 4 ⊢ (𝜑 → ((𝐹 ↾ 𝐷) supp 0 ) = ((𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥)) supp 0 )) |
| 12 | 9, 1 | fexd 7204 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ V) |
| 13 | fisuppov1.2 | . . . . 5 ⊢ (𝜑 → 0 ∈ 𝑋) | |
| 14 | ressuppss 8165 | . . . . 5 ⊢ ((𝐹 ∈ V ∧ 0 ∈ 𝑋) → ((𝐹 ↾ 𝐷) supp 0 ) ⊆ (𝐹 supp 0 )) | |
| 15 | 12, 13, 14 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐹 ↾ 𝐷) supp 0 ) ⊆ (𝐹 supp 0 )) |
| 16 | 11, 15 | eqsstrrd 3985 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥)) supp 0 ) ⊆ (𝐹 supp 0 )) |
| 17 | fisuppov1.8 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → ( 0 𝑂𝑦) = 𝑍) | |
| 18 | fvexd 6876 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐹‘𝑥) ∈ V) | |
| 19 | fisuppov1.5 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐵 ∈ 𝑌) | |
| 20 | 16, 17, 18, 19, 13 | suppssov1 8179 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ ((𝐹‘𝑥)𝑂𝐵)) supp 𝑍) ⊆ (𝐹 supp 0 )) |
| 21 | 4, 5, 7, 8, 20 | fsuppsssuppgd 9340 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ ((𝐹‘𝑥)𝑂𝐵)) finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 class class class wbr 5110 ↦ cmpt 5191 ↾ cres 5643 Fun wfun 6508 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 supp csupp 8142 finSupp cfsupp 9319 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-supp 8143 df-1o 8437 df-en 8922 df-fin 8925 df-fsupp 9320 |
| This theorem is referenced by: elrgspnlem1 33200 elrgspnlem2 33201 fldextrspunlsplem 33675 |
| Copyright terms: Public domain | W3C validator |