Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fisuppov1 Structured version   Visualization version   GIF version

Theorem fisuppov1 32664
Description: Formula building theorem for finite support: operator with left annihilator. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
fisuppov1.1 (𝜑𝑍𝑉)
fisuppov1.2 (𝜑0𝑋)
fisuppov1.3 (𝜑𝐴𝑊)
fisuppov1.4 (𝜑𝐷𝐴)
fisuppov1.5 ((𝜑𝑥𝐷) → 𝐵𝑌)
fisuppov1.6 (𝜑𝐹:𝐴𝐸)
fisuppov1.7 (𝜑𝐹 finSupp 0 )
fisuppov1.8 ((𝜑𝑦𝑌) → ( 0 𝑂𝑦) = 𝑍)
Assertion
Ref Expression
fisuppov1 (𝜑 → (𝑥𝐷 ↦ ((𝐹𝑥)𝑂𝐵)) finSupp 𝑍)
Distinct variable groups:   𝑥, 0   𝑦, 0   𝑥,𝐴   𝑦,𝐵   𝑥,𝐷   𝑥,𝐹   𝑦,𝑂   𝑦,𝑌   𝑥,𝑍   𝑦,𝑍   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥)   𝐷(𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑦)   𝑂(𝑥)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem fisuppov1
StepHypRef Expression
1 fisuppov1.3 . . . 4 (𝜑𝐴𝑊)
2 fisuppov1.4 . . . 4 (𝜑𝐷𝐴)
31, 2ssexd 5260 . . 3 (𝜑𝐷 ∈ V)
43mptexd 7158 . 2 (𝜑 → (𝑥𝐷 ↦ ((𝐹𝑥)𝑂𝐵)) ∈ V)
5 fisuppov1.1 . 2 (𝜑𝑍𝑉)
6 funmpt 6519 . . 3 Fun (𝑥𝐷 ↦ ((𝐹𝑥)𝑂𝐵))
76a1i 11 . 2 (𝜑 → Fun (𝑥𝐷 ↦ ((𝐹𝑥)𝑂𝐵)))
8 fisuppov1.7 . 2 (𝜑𝐹 finSupp 0 )
9 fisuppov1.6 . . . . . 6 (𝜑𝐹:𝐴𝐸)
109, 2feqresmpt 6891 . . . . 5 (𝜑 → (𝐹𝐷) = (𝑥𝐷 ↦ (𝐹𝑥)))
1110oveq1d 7361 . . . 4 (𝜑 → ((𝐹𝐷) supp 0 ) = ((𝑥𝐷 ↦ (𝐹𝑥)) supp 0 ))
129, 1fexd 7161 . . . . 5 (𝜑𝐹 ∈ V)
13 fisuppov1.2 . . . . 5 (𝜑0𝑋)
14 ressuppss 8113 . . . . 5 ((𝐹 ∈ V ∧ 0𝑋) → ((𝐹𝐷) supp 0 ) ⊆ (𝐹 supp 0 ))
1512, 13, 14syl2anc 584 . . . 4 (𝜑 → ((𝐹𝐷) supp 0 ) ⊆ (𝐹 supp 0 ))
1611, 15eqsstrrd 3965 . . 3 (𝜑 → ((𝑥𝐷 ↦ (𝐹𝑥)) supp 0 ) ⊆ (𝐹 supp 0 ))
17 fisuppov1.8 . . 3 ((𝜑𝑦𝑌) → ( 0 𝑂𝑦) = 𝑍)
18 fvexd 6837 . . 3 ((𝜑𝑥𝐷) → (𝐹𝑥) ∈ V)
19 fisuppov1.5 . . 3 ((𝜑𝑥𝐷) → 𝐵𝑌)
2016, 17, 18, 19, 13suppssov1 8127 . 2 (𝜑 → ((𝑥𝐷 ↦ ((𝐹𝑥)𝑂𝐵)) supp 𝑍) ⊆ (𝐹 supp 0 ))
214, 5, 7, 8, 20fsuppsssuppgd 9266 1 (𝜑 → (𝑥𝐷 ↦ ((𝐹𝑥)𝑂𝐵)) finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  wss 3897   class class class wbr 5089  cmpt 5170  cres 5616  Fun wfun 6475  wf 6477  cfv 6481  (class class class)co 7346   supp csupp 8090   finSupp cfsupp 9245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-supp 8091  df-1o 8385  df-en 8870  df-fin 8873  df-fsupp 9246
This theorem is referenced by:  elrgspnlem1  33209  elrgspnlem2  33210  fldextrspunlsplem  33686
  Copyright terms: Public domain W3C validator