| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fisuppov1 | Structured version Visualization version GIF version | ||
| Description: Formula building theorem for finite support: operator with left annihilator. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| Ref | Expression |
|---|---|
| fisuppov1.1 | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| fisuppov1.2 | ⊢ (𝜑 → 0 ∈ 𝑋) |
| fisuppov1.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
| fisuppov1.4 | ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
| fisuppov1.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐵 ∈ 𝑌) |
| fisuppov1.6 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐸) |
| fisuppov1.7 | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
| fisuppov1.8 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → ( 0 𝑂𝑦) = 𝑍) |
| Ref | Expression |
|---|---|
| fisuppov1 | ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ ((𝐹‘𝑥)𝑂𝐵)) finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fisuppov1.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
| 2 | fisuppov1.4 | . . . 4 ⊢ (𝜑 → 𝐷 ⊆ 𝐴) | |
| 3 | 1, 2 | ssexd 5274 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
| 4 | 3 | mptexd 7180 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ ((𝐹‘𝑥)𝑂𝐵)) ∈ V) |
| 5 | fisuppov1.1 | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
| 6 | funmpt 6538 | . . 3 ⊢ Fun (𝑥 ∈ 𝐷 ↦ ((𝐹‘𝑥)𝑂𝐵)) | |
| 7 | 6 | a1i 11 | . 2 ⊢ (𝜑 → Fun (𝑥 ∈ 𝐷 ↦ ((𝐹‘𝑥)𝑂𝐵))) |
| 8 | fisuppov1.7 | . 2 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
| 9 | fisuppov1.6 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶𝐸) | |
| 10 | 9, 2 | feqresmpt 6912 | . . . . 5 ⊢ (𝜑 → (𝐹 ↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥))) |
| 11 | 10 | oveq1d 7384 | . . . 4 ⊢ (𝜑 → ((𝐹 ↾ 𝐷) supp 0 ) = ((𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥)) supp 0 )) |
| 12 | 9, 1 | fexd 7183 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ V) |
| 13 | fisuppov1.2 | . . . . 5 ⊢ (𝜑 → 0 ∈ 𝑋) | |
| 14 | ressuppss 8139 | . . . . 5 ⊢ ((𝐹 ∈ V ∧ 0 ∈ 𝑋) → ((𝐹 ↾ 𝐷) supp 0 ) ⊆ (𝐹 supp 0 )) | |
| 15 | 12, 13, 14 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐹 ↾ 𝐷) supp 0 ) ⊆ (𝐹 supp 0 )) |
| 16 | 11, 15 | eqsstrrd 3979 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥)) supp 0 ) ⊆ (𝐹 supp 0 )) |
| 17 | fisuppov1.8 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → ( 0 𝑂𝑦) = 𝑍) | |
| 18 | fvexd 6855 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐹‘𝑥) ∈ V) | |
| 19 | fisuppov1.5 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐵 ∈ 𝑌) | |
| 20 | 16, 17, 18, 19, 13 | suppssov1 8153 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ ((𝐹‘𝑥)𝑂𝐵)) supp 𝑍) ⊆ (𝐹 supp 0 )) |
| 21 | 4, 5, 7, 8, 20 | fsuppsssuppgd 9309 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ ((𝐹‘𝑥)𝑂𝐵)) finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 class class class wbr 5102 ↦ cmpt 5183 ↾ cres 5633 Fun wfun 6493 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 supp csupp 8116 finSupp cfsupp 9288 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-supp 8117 df-1o 8411 df-en 8896 df-fin 8899 df-fsupp 9289 |
| This theorem is referenced by: elrgspnlem1 33209 elrgspnlem2 33210 fldextrspunlsplem 33661 |
| Copyright terms: Public domain | W3C validator |