| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fisuppov1 | Structured version Visualization version GIF version | ||
| Description: Formula building theorem for finite support: operator with left annihilator. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| Ref | Expression |
|---|---|
| fisuppov1.1 | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| fisuppov1.2 | ⊢ (𝜑 → 0 ∈ 𝑋) |
| fisuppov1.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
| fisuppov1.4 | ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
| fisuppov1.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐵 ∈ 𝑌) |
| fisuppov1.6 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐸) |
| fisuppov1.7 | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
| fisuppov1.8 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → ( 0 𝑂𝑦) = 𝑍) |
| Ref | Expression |
|---|---|
| fisuppov1 | ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ ((𝐹‘𝑥)𝑂𝐵)) finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fisuppov1.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
| 2 | fisuppov1.4 | . . . 4 ⊢ (𝜑 → 𝐷 ⊆ 𝐴) | |
| 3 | 1, 2 | ssexd 5260 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
| 4 | 3 | mptexd 7158 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ ((𝐹‘𝑥)𝑂𝐵)) ∈ V) |
| 5 | fisuppov1.1 | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
| 6 | funmpt 6519 | . . 3 ⊢ Fun (𝑥 ∈ 𝐷 ↦ ((𝐹‘𝑥)𝑂𝐵)) | |
| 7 | 6 | a1i 11 | . 2 ⊢ (𝜑 → Fun (𝑥 ∈ 𝐷 ↦ ((𝐹‘𝑥)𝑂𝐵))) |
| 8 | fisuppov1.7 | . 2 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
| 9 | fisuppov1.6 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶𝐸) | |
| 10 | 9, 2 | feqresmpt 6891 | . . . . 5 ⊢ (𝜑 → (𝐹 ↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥))) |
| 11 | 10 | oveq1d 7361 | . . . 4 ⊢ (𝜑 → ((𝐹 ↾ 𝐷) supp 0 ) = ((𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥)) supp 0 )) |
| 12 | 9, 1 | fexd 7161 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ V) |
| 13 | fisuppov1.2 | . . . . 5 ⊢ (𝜑 → 0 ∈ 𝑋) | |
| 14 | ressuppss 8113 | . . . . 5 ⊢ ((𝐹 ∈ V ∧ 0 ∈ 𝑋) → ((𝐹 ↾ 𝐷) supp 0 ) ⊆ (𝐹 supp 0 )) | |
| 15 | 12, 13, 14 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐹 ↾ 𝐷) supp 0 ) ⊆ (𝐹 supp 0 )) |
| 16 | 11, 15 | eqsstrrd 3965 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥)) supp 0 ) ⊆ (𝐹 supp 0 )) |
| 17 | fisuppov1.8 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → ( 0 𝑂𝑦) = 𝑍) | |
| 18 | fvexd 6837 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐹‘𝑥) ∈ V) | |
| 19 | fisuppov1.5 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐵 ∈ 𝑌) | |
| 20 | 16, 17, 18, 19, 13 | suppssov1 8127 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ ((𝐹‘𝑥)𝑂𝐵)) supp 𝑍) ⊆ (𝐹 supp 0 )) |
| 21 | 4, 5, 7, 8, 20 | fsuppsssuppgd 9266 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ ((𝐹‘𝑥)𝑂𝐵)) finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 class class class wbr 5089 ↦ cmpt 5170 ↾ cres 5616 Fun wfun 6475 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 supp csupp 8090 finSupp cfsupp 9245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-supp 8091 df-1o 8385 df-en 8870 df-fin 8873 df-fsupp 9246 |
| This theorem is referenced by: elrgspnlem1 33209 elrgspnlem2 33210 fldextrspunlsplem 33686 |
| Copyright terms: Public domain | W3C validator |