Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fisuppov1 Structured version   Visualization version   GIF version

Theorem fisuppov1 32606
Description: Formula building theorem for finite support: operator with left annihilator. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
fisuppov1.1 (𝜑𝑍𝑉)
fisuppov1.2 (𝜑0𝑋)
fisuppov1.3 (𝜑𝐴𝑊)
fisuppov1.4 (𝜑𝐷𝐴)
fisuppov1.5 ((𝜑𝑥𝐷) → 𝐵𝑌)
fisuppov1.6 (𝜑𝐹:𝐴𝐸)
fisuppov1.7 (𝜑𝐹 finSupp 0 )
fisuppov1.8 ((𝜑𝑦𝑌) → ( 0 𝑂𝑦) = 𝑍)
Assertion
Ref Expression
fisuppov1 (𝜑 → (𝑥𝐷 ↦ ((𝐹𝑥)𝑂𝐵)) finSupp 𝑍)
Distinct variable groups:   𝑥, 0   𝑦, 0   𝑥,𝐴   𝑦,𝐵   𝑥,𝐷   𝑥,𝐹   𝑦,𝑂   𝑦,𝑌   𝑥,𝑍   𝑦,𝑍   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥)   𝐷(𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑦)   𝑂(𝑥)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem fisuppov1
StepHypRef Expression
1 fisuppov1.3 . . . 4 (𝜑𝐴𝑊)
2 fisuppov1.4 . . . 4 (𝜑𝐷𝐴)
31, 2ssexd 5294 . . 3 (𝜑𝐷 ∈ V)
43mptexd 7215 . 2 (𝜑 → (𝑥𝐷 ↦ ((𝐹𝑥)𝑂𝐵)) ∈ V)
5 fisuppov1.1 . 2 (𝜑𝑍𝑉)
6 funmpt 6573 . . 3 Fun (𝑥𝐷 ↦ ((𝐹𝑥)𝑂𝐵))
76a1i 11 . 2 (𝜑 → Fun (𝑥𝐷 ↦ ((𝐹𝑥)𝑂𝐵)))
8 fisuppov1.7 . 2 (𝜑𝐹 finSupp 0 )
9 fisuppov1.6 . . . . . 6 (𝜑𝐹:𝐴𝐸)
109, 2feqresmpt 6947 . . . . 5 (𝜑 → (𝐹𝐷) = (𝑥𝐷 ↦ (𝐹𝑥)))
1110oveq1d 7418 . . . 4 (𝜑 → ((𝐹𝐷) supp 0 ) = ((𝑥𝐷 ↦ (𝐹𝑥)) supp 0 ))
129, 1fexd 7218 . . . . 5 (𝜑𝐹 ∈ V)
13 fisuppov1.2 . . . . 5 (𝜑0𝑋)
14 ressuppss 8180 . . . . 5 ((𝐹 ∈ V ∧ 0𝑋) → ((𝐹𝐷) supp 0 ) ⊆ (𝐹 supp 0 ))
1512, 13, 14syl2anc 584 . . . 4 (𝜑 → ((𝐹𝐷) supp 0 ) ⊆ (𝐹 supp 0 ))
1611, 15eqsstrrd 3994 . . 3 (𝜑 → ((𝑥𝐷 ↦ (𝐹𝑥)) supp 0 ) ⊆ (𝐹 supp 0 ))
17 fisuppov1.8 . . 3 ((𝜑𝑦𝑌) → ( 0 𝑂𝑦) = 𝑍)
18 fvexd 6890 . . 3 ((𝜑𝑥𝐷) → (𝐹𝑥) ∈ V)
19 fisuppov1.5 . . 3 ((𝜑𝑥𝐷) → 𝐵𝑌)
2016, 17, 18, 19, 13suppssov1 8194 . 2 (𝜑 → ((𝑥𝐷 ↦ ((𝐹𝑥)𝑂𝐵)) supp 𝑍) ⊆ (𝐹 supp 0 ))
214, 5, 7, 8, 20fsuppsssuppgd 9392 1 (𝜑 → (𝑥𝐷 ↦ ((𝐹𝑥)𝑂𝐵)) finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  wss 3926   class class class wbr 5119  cmpt 5201  cres 5656  Fun wfun 6524  wf 6526  cfv 6530  (class class class)co 7403   supp csupp 8157   finSupp cfsupp 9371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-supp 8158  df-1o 8478  df-en 8958  df-fin 8961  df-fsupp 9372
This theorem is referenced by:  elrgspnlem1  33183  elrgspnlem2  33184  fldextrspunlsplem  33660
  Copyright terms: Public domain W3C validator