| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptfvmpt | Structured version Visualization version GIF version | ||
| Description: A function in maps-to notation as the value of another function in maps-to notation. (Contributed by AV, 20-Aug-2022.) |
| Ref | Expression |
|---|---|
| mptfvmpt.y | ⊢ (𝑦 = 𝑌 → 𝑀 = (𝑥 ∈ 𝑉 ↦ 𝐴)) |
| mptfvmpt.g | ⊢ 𝐺 = (𝑦 ∈ 𝑊 ↦ 𝑀) |
| mptfvmpt.v | ⊢ 𝑉 = (𝐹‘𝑋) |
| Ref | Expression |
|---|---|
| mptfvmpt | ⊢ (𝑌 ∈ 𝑊 → (𝐺‘𝑌) = (𝑥 ∈ 𝑉 ↦ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptfvmpt.y | . 2 ⊢ (𝑦 = 𝑌 → 𝑀 = (𝑥 ∈ 𝑉 ↦ 𝐴)) | |
| 2 | mptfvmpt.g | . 2 ⊢ 𝐺 = (𝑦 ∈ 𝑊 ↦ 𝑀) | |
| 3 | mptfvmpt.v | . . . 4 ⊢ 𝑉 = (𝐹‘𝑋) | |
| 4 | 3 | fvexi 6840 | . . 3 ⊢ 𝑉 ∈ V |
| 5 | 4 | mptex 7163 | . 2 ⊢ (𝑥 ∈ 𝑉 ↦ 𝐴) ∈ V |
| 6 | 1, 2, 5 | fvmpt 6934 | 1 ⊢ (𝑌 ∈ 𝑊 → (𝐺‘𝑌) = (𝑥 ∈ 𝑉 ↦ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5176 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 |
| This theorem is referenced by: cidfval 17600 idafval 17982 grpinvfvalALT 18876 grplactfval 18938 odfvalALT 19430 asclfval 21804 ig1pval 26097 ishlg 28565 htthlem 30879 sgnsv 33115 mvrsval 35477 mvhfval 35505 msrfval 35509 lkrfval 39065 pmapfval 39735 watfvalN 39971 ldilfset 40087 ltrnfset 40096 dilfsetN 40131 trnfsetN 40134 trlfset 40139 tgrpfset 40723 tendofset 40737 tendoi 40773 erngfset 40778 erngfset-rN 40786 dvafset 40983 diaffval 41009 dvhfset 41059 docaffvalN 41100 djaffvalN 41112 dibffval 41119 dicffval 41153 dihffval 41209 dihfval 41210 dochffval 41328 djhffval 41375 lcfrlem8 41528 lcdfval 41567 mapdffval 41605 mapdfval 41606 hvmapffval 41737 hdmap1ffval 41774 hdmapffval 41805 hdmapfval 41806 hgmapffval 41864 hgmapfval 41865 hbtlem1 43096 hbtlem7 43098 |
| Copyright terms: Public domain | W3C validator |