MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptfvmpt Structured version   Visualization version   GIF version

Theorem mptfvmpt 7247
Description: A function in maps-to notation as the value of another function in maps-to notation. (Contributed by AV, 20-Aug-2022.)
Hypotheses
Ref Expression
mptfvmpt.y (𝑦 = 𝑌𝑀 = (𝑥𝑉𝐴))
mptfvmpt.g 𝐺 = (𝑦𝑊𝑀)
mptfvmpt.v 𝑉 = (𝐹𝑋)
Assertion
Ref Expression
mptfvmpt (𝑌𝑊 → (𝐺𝑌) = (𝑥𝑉𝐴))
Distinct variable groups:   𝑦,𝐴   𝑥,𝑉,𝑦   𝑦,𝑊   𝑦,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑀(𝑥,𝑦)   𝑊(𝑥)   𝑋(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem mptfvmpt
StepHypRef Expression
1 mptfvmpt.y . 2 (𝑦 = 𝑌𝑀 = (𝑥𝑉𝐴))
2 mptfvmpt.g . 2 𝐺 = (𝑦𝑊𝑀)
3 mptfvmpt.v . . . 4 𝑉 = (𝐹𝑋)
43fvexi 6920 . . 3 𝑉 ∈ V
54mptex 7242 . 2 (𝑥𝑉𝐴) ∈ V
61, 2, 5fvmpt 7015 1 (𝑌𝑊 → (𝐺𝑌) = (𝑥𝑉𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2105  cmpt 5230  cfv 6562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570
This theorem is referenced by:  cidfval  17720  idafval  18110  grpinvfvalALT  19009  grplactfval  19071  odfvalALT  19565  asclfval  21916  ig1pval  26229  ishlg  28624  htthlem  30945  sgnsv  33162  mvrsval  35489  mvhfval  35517  msrfval  35521  lkrfval  39068  pmapfval  39738  watfvalN  39974  ldilfset  40090  ltrnfset  40099  dilfsetN  40134  trnfsetN  40137  trlfset  40142  tgrpfset  40726  tendofset  40740  tendoi  40776  erngfset  40781  erngfset-rN  40789  dvafset  40986  diaffval  41012  dvhfset  41062  docaffvalN  41103  djaffvalN  41115  dibffval  41122  dicffval  41156  dihffval  41212  dihfval  41213  dochffval  41331  djhffval  41378  lcfrlem8  41531  lcdfval  41570  mapdffval  41608  mapdfval  41609  hvmapffval  41740  hdmap1ffval  41777  hdmapffval  41808  hdmapfval  41809  hgmapffval  41867  hgmapfval  41868  hbtlem1  43111  hbtlem7  43113
  Copyright terms: Public domain W3C validator