| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptfvmpt | Structured version Visualization version GIF version | ||
| Description: A function in maps-to notation as the value of another function in maps-to notation. (Contributed by AV, 20-Aug-2022.) |
| Ref | Expression |
|---|---|
| mptfvmpt.y | ⊢ (𝑦 = 𝑌 → 𝑀 = (𝑥 ∈ 𝑉 ↦ 𝐴)) |
| mptfvmpt.g | ⊢ 𝐺 = (𝑦 ∈ 𝑊 ↦ 𝑀) |
| mptfvmpt.v | ⊢ 𝑉 = (𝐹‘𝑋) |
| Ref | Expression |
|---|---|
| mptfvmpt | ⊢ (𝑌 ∈ 𝑊 → (𝐺‘𝑌) = (𝑥 ∈ 𝑉 ↦ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptfvmpt.y | . 2 ⊢ (𝑦 = 𝑌 → 𝑀 = (𝑥 ∈ 𝑉 ↦ 𝐴)) | |
| 2 | mptfvmpt.g | . 2 ⊢ 𝐺 = (𝑦 ∈ 𝑊 ↦ 𝑀) | |
| 3 | mptfvmpt.v | . . . 4 ⊢ 𝑉 = (𝐹‘𝑋) | |
| 4 | 3 | fvexi 6845 | . . 3 ⊢ 𝑉 ∈ V |
| 5 | 4 | mptex 7166 | . 2 ⊢ (𝑥 ∈ 𝑉 ↦ 𝐴) ∈ V |
| 6 | 1, 2, 5 | fvmpt 6938 | 1 ⊢ (𝑌 ∈ 𝑊 → (𝐺‘𝑌) = (𝑥 ∈ 𝑉 ↦ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ↦ cmpt 5176 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 |
| This theorem is referenced by: cidfval 17592 idafval 17974 grpinvfvalALT 18902 grplactfval 18964 odfvalALT 19455 asclfval 21826 ig1pval 26118 ishlg 28590 htthlem 30908 sgnsv 33140 mvrsval 35560 mvhfval 35588 msrfval 35592 lkrfval 39196 pmapfval 39865 watfvalN 40101 ldilfset 40217 ltrnfset 40226 dilfsetN 40261 trnfsetN 40264 trlfset 40269 tgrpfset 40853 tendofset 40867 tendoi 40903 erngfset 40908 erngfset-rN 40916 dvafset 41113 diaffval 41139 dvhfset 41189 docaffvalN 41230 djaffvalN 41242 dibffval 41249 dicffval 41283 dihffval 41339 dihfval 41340 dochffval 41458 djhffval 41505 lcfrlem8 41658 lcdfval 41697 mapdffval 41735 mapdfval 41736 hvmapffval 41867 hdmap1ffval 41904 hdmapffval 41935 hdmapfval 41936 hgmapffval 41994 hgmapfval 41995 hbtlem1 43230 hbtlem7 43232 |
| Copyright terms: Public domain | W3C validator |