![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mptfvmpt | Structured version Visualization version GIF version |
Description: A function in maps-to notation as the value of another function in maps-to notation. (Contributed by AV, 20-Aug-2022.) |
Ref | Expression |
---|---|
mptfvmpt.y | ⊢ (𝑦 = 𝑌 → 𝑀 = (𝑥 ∈ 𝑉 ↦ 𝐴)) |
mptfvmpt.g | ⊢ 𝐺 = (𝑦 ∈ 𝑊 ↦ 𝑀) |
mptfvmpt.v | ⊢ 𝑉 = (𝐹‘𝑋) |
Ref | Expression |
---|---|
mptfvmpt | ⊢ (𝑌 ∈ 𝑊 → (𝐺‘𝑌) = (𝑥 ∈ 𝑉 ↦ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptfvmpt.y | . 2 ⊢ (𝑦 = 𝑌 → 𝑀 = (𝑥 ∈ 𝑉 ↦ 𝐴)) | |
2 | mptfvmpt.g | . 2 ⊢ 𝐺 = (𝑦 ∈ 𝑊 ↦ 𝑀) | |
3 | mptfvmpt.v | . . . 4 ⊢ 𝑉 = (𝐹‘𝑋) | |
4 | 3 | fvexi 6916 | . . 3 ⊢ 𝑉 ∈ V |
5 | 4 | mptex 7241 | . 2 ⊢ (𝑥 ∈ 𝑉 ↦ 𝐴) ∈ V |
6 | 1, 2, 5 | fvmpt 7010 | 1 ⊢ (𝑌 ∈ 𝑊 → (𝐺‘𝑌) = (𝑥 ∈ 𝑉 ↦ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ↦ cmpt 5235 ‘cfv 6553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 |
This theorem is referenced by: cidfval 17663 idafval 18053 grpinvfvalALT 18943 grplactfval 19004 odfvalALT 19495 asclfval 21819 ig1pval 26130 ishlg 28426 htthlem 30747 sgnsv 32902 mvrsval 35148 mvhfval 35176 msrfval 35180 lkrfval 38591 pmapfval 39261 watfvalN 39497 ldilfset 39613 ltrnfset 39622 dilfsetN 39657 trnfsetN 39660 trlfset 39665 tgrpfset 40249 tendofset 40263 tendoi 40299 erngfset 40304 erngfset-rN 40312 dvafset 40509 diaffval 40535 dvhfset 40585 docaffvalN 40626 djaffvalN 40638 dibffval 40645 dicffval 40679 dihffval 40735 dihfval 40736 dochffval 40854 djhffval 40901 lcfrlem8 41054 lcdfval 41093 mapdffval 41131 mapdfval 41132 hvmapffval 41263 hdmap1ffval 41300 hdmapffval 41331 hdmapfval 41332 hgmapffval 41390 hgmapfval 41391 hbtlem1 42578 hbtlem7 42580 |
Copyright terms: Public domain | W3C validator |