MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptfvmpt Structured version   Visualization version   GIF version

Theorem mptfvmpt 7230
Description: A function in maps-to notation as the value of another function in maps-to notation. (Contributed by AV, 20-Aug-2022.)
Hypotheses
Ref Expression
mptfvmpt.y (𝑦 = 𝑌𝑀 = (𝑥𝑉𝐴))
mptfvmpt.g 𝐺 = (𝑦𝑊𝑀)
mptfvmpt.v 𝑉 = (𝐹𝑋)
Assertion
Ref Expression
mptfvmpt (𝑌𝑊 → (𝐺𝑌) = (𝑥𝑉𝐴))
Distinct variable groups:   𝑦,𝐴   𝑥,𝑉,𝑦   𝑦,𝑊   𝑦,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑀(𝑥,𝑦)   𝑊(𝑥)   𝑋(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem mptfvmpt
StepHypRef Expression
1 mptfvmpt.y . 2 (𝑦 = 𝑌𝑀 = (𝑥𝑉𝐴))
2 mptfvmpt.g . 2 𝐺 = (𝑦𝑊𝑀)
3 mptfvmpt.v . . . 4 𝑉 = (𝐹𝑋)
43fvexi 6906 . . 3 𝑉 ∈ V
54mptex 7225 . 2 (𝑥𝑉𝐴) ∈ V
61, 2, 5fvmpt 6999 1 (𝑌𝑊 → (𝐺𝑌) = (𝑥𝑉𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  cmpt 5232  cfv 6544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552
This theorem is referenced by:  cidfval  17620  idafval  18007  grpinvfvalALT  18864  grplactfval  18924  odfvalALT  19401  asclfval  21433  ig1pval  25690  ishlg  27853  htthlem  30170  sgnsv  32319  mvrsval  34496  mvhfval  34524  msrfval  34528  lkrfval  37957  pmapfval  38627  watfvalN  38863  ldilfset  38979  ltrnfset  38988  dilfsetN  39023  trnfsetN  39026  trlfset  39031  tgrpfset  39615  tendofset  39629  tendoi  39665  erngfset  39670  erngfset-rN  39678  dvafset  39875  diaffval  39901  dvhfset  39951  docaffvalN  39992  djaffvalN  40004  dibffval  40011  dicffval  40045  dihffval  40101  dihfval  40102  dochffval  40220  djhffval  40267  lcfrlem8  40420  lcdfval  40459  mapdffval  40497  mapdfval  40498  hvmapffval  40629  hdmap1ffval  40666  hdmapffval  40697  hdmapfval  40698  hgmapffval  40756  hgmapfval  40757  hbtlem1  41865  hbtlem7  41867
  Copyright terms: Public domain W3C validator