| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptfvmpt | Structured version Visualization version GIF version | ||
| Description: A function in maps-to notation as the value of another function in maps-to notation. (Contributed by AV, 20-Aug-2022.) |
| Ref | Expression |
|---|---|
| mptfvmpt.y | ⊢ (𝑦 = 𝑌 → 𝑀 = (𝑥 ∈ 𝑉 ↦ 𝐴)) |
| mptfvmpt.g | ⊢ 𝐺 = (𝑦 ∈ 𝑊 ↦ 𝑀) |
| mptfvmpt.v | ⊢ 𝑉 = (𝐹‘𝑋) |
| Ref | Expression |
|---|---|
| mptfvmpt | ⊢ (𝑌 ∈ 𝑊 → (𝐺‘𝑌) = (𝑥 ∈ 𝑉 ↦ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptfvmpt.y | . 2 ⊢ (𝑦 = 𝑌 → 𝑀 = (𝑥 ∈ 𝑉 ↦ 𝐴)) | |
| 2 | mptfvmpt.g | . 2 ⊢ 𝐺 = (𝑦 ∈ 𝑊 ↦ 𝑀) | |
| 3 | mptfvmpt.v | . . . 4 ⊢ 𝑉 = (𝐹‘𝑋) | |
| 4 | 3 | fvexi 6889 | . . 3 ⊢ 𝑉 ∈ V |
| 5 | 4 | mptex 7214 | . 2 ⊢ (𝑥 ∈ 𝑉 ↦ 𝐴) ∈ V |
| 6 | 1, 2, 5 | fvmpt 6985 | 1 ⊢ (𝑌 ∈ 𝑊 → (𝐺‘𝑌) = (𝑥 ∈ 𝑉 ↦ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ↦ cmpt 5201 ‘cfv 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 |
| This theorem is referenced by: cidfval 17686 idafval 18068 grpinvfvalALT 18960 grplactfval 19022 odfvalALT 19512 asclfval 21837 ig1pval 26131 ishlg 28527 htthlem 30844 sgnsv 33117 mvrsval 35473 mvhfval 35501 msrfval 35505 lkrfval 39051 pmapfval 39721 watfvalN 39957 ldilfset 40073 ltrnfset 40082 dilfsetN 40117 trnfsetN 40120 trlfset 40125 tgrpfset 40709 tendofset 40723 tendoi 40759 erngfset 40764 erngfset-rN 40772 dvafset 40969 diaffval 40995 dvhfset 41045 docaffvalN 41086 djaffvalN 41098 dibffval 41105 dicffval 41139 dihffval 41195 dihfval 41196 dochffval 41314 djhffval 41361 lcfrlem8 41514 lcdfval 41553 mapdffval 41591 mapdfval 41592 hvmapffval 41723 hdmap1ffval 41760 hdmapffval 41791 hdmapfval 41792 hgmapffval 41850 hgmapfval 41851 hbtlem1 43094 hbtlem7 43096 |
| Copyright terms: Public domain | W3C validator |