| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptfvmpt | Structured version Visualization version GIF version | ||
| Description: A function in maps-to notation as the value of another function in maps-to notation. (Contributed by AV, 20-Aug-2022.) |
| Ref | Expression |
|---|---|
| mptfvmpt.y | ⊢ (𝑦 = 𝑌 → 𝑀 = (𝑥 ∈ 𝑉 ↦ 𝐴)) |
| mptfvmpt.g | ⊢ 𝐺 = (𝑦 ∈ 𝑊 ↦ 𝑀) |
| mptfvmpt.v | ⊢ 𝑉 = (𝐹‘𝑋) |
| Ref | Expression |
|---|---|
| mptfvmpt | ⊢ (𝑌 ∈ 𝑊 → (𝐺‘𝑌) = (𝑥 ∈ 𝑉 ↦ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptfvmpt.y | . 2 ⊢ (𝑦 = 𝑌 → 𝑀 = (𝑥 ∈ 𝑉 ↦ 𝐴)) | |
| 2 | mptfvmpt.g | . 2 ⊢ 𝐺 = (𝑦 ∈ 𝑊 ↦ 𝑀) | |
| 3 | mptfvmpt.v | . . . 4 ⊢ 𝑉 = (𝐹‘𝑋) | |
| 4 | 3 | fvexi 6831 | . . 3 ⊢ 𝑉 ∈ V |
| 5 | 4 | mptex 7152 | . 2 ⊢ (𝑥 ∈ 𝑉 ↦ 𝐴) ∈ V |
| 6 | 1, 2, 5 | fvmpt 6924 | 1 ⊢ (𝑌 ∈ 𝑊 → (𝐺‘𝑌) = (𝑥 ∈ 𝑉 ↦ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 ↦ cmpt 5170 ‘cfv 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 |
| This theorem is referenced by: cidfval 17574 idafval 17956 grpinvfvalALT 18884 grplactfval 18946 odfvalALT 19438 asclfval 21809 ig1pval 26101 ishlg 28573 htthlem 30887 sgnsv 33119 mvrsval 35517 mvhfval 35545 msrfval 35549 lkrfval 39105 pmapfval 39774 watfvalN 40010 ldilfset 40126 ltrnfset 40135 dilfsetN 40170 trnfsetN 40173 trlfset 40178 tgrpfset 40762 tendofset 40776 tendoi 40812 erngfset 40817 erngfset-rN 40825 dvafset 41022 diaffval 41048 dvhfset 41098 docaffvalN 41139 djaffvalN 41151 dibffval 41158 dicffval 41192 dihffval 41248 dihfval 41249 dochffval 41367 djhffval 41414 lcfrlem8 41567 lcdfval 41606 mapdffval 41644 mapdfval 41645 hvmapffval 41776 hdmap1ffval 41813 hdmapffval 41844 hdmapfval 41845 hgmapffval 41903 hgmapfval 41904 hbtlem1 43135 hbtlem7 43137 |
| Copyright terms: Public domain | W3C validator |