MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptfvmpt Structured version   Visualization version   GIF version

Theorem mptfvmpt 7205
Description: A function in maps-to notation as the value of another function in maps-to notation. (Contributed by AV, 20-Aug-2022.)
Hypotheses
Ref Expression
mptfvmpt.y (𝑦 = 𝑌𝑀 = (𝑥𝑉𝐴))
mptfvmpt.g 𝐺 = (𝑦𝑊𝑀)
mptfvmpt.v 𝑉 = (𝐹𝑋)
Assertion
Ref Expression
mptfvmpt (𝑌𝑊 → (𝐺𝑌) = (𝑥𝑉𝐴))
Distinct variable groups:   𝑦,𝐴   𝑥,𝑉,𝑦   𝑦,𝑊   𝑦,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑀(𝑥,𝑦)   𝑊(𝑥)   𝑋(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem mptfvmpt
StepHypRef Expression
1 mptfvmpt.y . 2 (𝑦 = 𝑌𝑀 = (𝑥𝑉𝐴))
2 mptfvmpt.g . 2 𝐺 = (𝑦𝑊𝑀)
3 mptfvmpt.v . . . 4 𝑉 = (𝐹𝑋)
43fvexi 6875 . . 3 𝑉 ∈ V
54mptex 7200 . 2 (𝑥𝑉𝐴) ∈ V
61, 2, 5fvmpt 6971 1 (𝑌𝑊 → (𝐺𝑌) = (𝑥𝑉𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cmpt 5191  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522
This theorem is referenced by:  cidfval  17644  idafval  18026  grpinvfvalALT  18918  grplactfval  18980  odfvalALT  19470  asclfval  21795  ig1pval  26088  ishlg  28536  htthlem  30853  sgnsv  33124  mvrsval  35499  mvhfval  35527  msrfval  35531  lkrfval  39087  pmapfval  39757  watfvalN  39993  ldilfset  40109  ltrnfset  40118  dilfsetN  40153  trnfsetN  40156  trlfset  40161  tgrpfset  40745  tendofset  40759  tendoi  40795  erngfset  40800  erngfset-rN  40808  dvafset  41005  diaffval  41031  dvhfset  41081  docaffvalN  41122  djaffvalN  41134  dibffval  41141  dicffval  41175  dihffval  41231  dihfval  41232  dochffval  41350  djhffval  41397  lcfrlem8  41550  lcdfval  41589  mapdffval  41627  mapdfval  41628  hvmapffval  41759  hdmap1ffval  41796  hdmapffval  41827  hdmapfval  41828  hgmapffval  41886  hgmapfval  41887  hbtlem1  43119  hbtlem7  43121
  Copyright terms: Public domain W3C validator