![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mptfvmpt | Structured version Visualization version GIF version |
Description: A function in maps-to notation as the value of another function in maps-to notation. (Contributed by AV, 20-Aug-2022.) |
Ref | Expression |
---|---|
mptfvmpt.y | ⊢ (𝑦 = 𝑌 → 𝑀 = (𝑥 ∈ 𝑉 ↦ 𝐴)) |
mptfvmpt.g | ⊢ 𝐺 = (𝑦 ∈ 𝑊 ↦ 𝑀) |
mptfvmpt.v | ⊢ 𝑉 = (𝐹‘𝑋) |
Ref | Expression |
---|---|
mptfvmpt | ⊢ (𝑌 ∈ 𝑊 → (𝐺‘𝑌) = (𝑥 ∈ 𝑉 ↦ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptfvmpt.y | . 2 ⊢ (𝑦 = 𝑌 → 𝑀 = (𝑥 ∈ 𝑉 ↦ 𝐴)) | |
2 | mptfvmpt.g | . 2 ⊢ 𝐺 = (𝑦 ∈ 𝑊 ↦ 𝑀) | |
3 | mptfvmpt.v | . . . 4 ⊢ 𝑉 = (𝐹‘𝑋) | |
4 | 3 | fvexi 6934 | . . 3 ⊢ 𝑉 ∈ V |
5 | 4 | mptex 7260 | . 2 ⊢ (𝑥 ∈ 𝑉 ↦ 𝐴) ∈ V |
6 | 1, 2, 5 | fvmpt 7029 | 1 ⊢ (𝑌 ∈ 𝑊 → (𝐺‘𝑌) = (𝑥 ∈ 𝑉 ↦ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ↦ cmpt 5249 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 |
This theorem is referenced by: cidfval 17734 idafval 18124 grpinvfvalALT 19019 grplactfval 19081 odfvalALT 19575 asclfval 21922 ig1pval 26235 ishlg 28628 htthlem 30949 sgnsv 33153 mvrsval 35473 mvhfval 35501 msrfval 35505 lkrfval 39043 pmapfval 39713 watfvalN 39949 ldilfset 40065 ltrnfset 40074 dilfsetN 40109 trnfsetN 40112 trlfset 40117 tgrpfset 40701 tendofset 40715 tendoi 40751 erngfset 40756 erngfset-rN 40764 dvafset 40961 diaffval 40987 dvhfset 41037 docaffvalN 41078 djaffvalN 41090 dibffval 41097 dicffval 41131 dihffval 41187 dihfval 41188 dochffval 41306 djhffval 41353 lcfrlem8 41506 lcdfval 41545 mapdffval 41583 mapdfval 41584 hvmapffval 41715 hdmap1ffval 41752 hdmapffval 41783 hdmapfval 41784 hgmapffval 41842 hgmapfval 41843 hbtlem1 43080 hbtlem7 43082 |
Copyright terms: Public domain | W3C validator |