Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoi2 Structured version   Visualization version   GIF version

Theorem tendoi2 38796
Description: Value of additive inverse endomorphism. (Contributed by NM, 12-Jun-2013.)
Hypotheses
Ref Expression
tendoi.i 𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))
tendoi.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
tendoi2 ((𝑆𝐸𝐹𝑇) → ((𝐼𝑆)‘𝐹) = (𝑆𝐹))
Distinct variable groups:   𝐸,𝑠   𝑓,𝑠,𝑇   𝑓,𝑊,𝑠
Allowed substitution hints:   𝑆(𝑓,𝑠)   𝐸(𝑓)   𝐹(𝑓,𝑠)   𝐼(𝑓,𝑠)   𝐾(𝑓,𝑠)

Proof of Theorem tendoi2
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 tendoi.i . . . 4 𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))
2 tendoi.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
31, 2tendoi 38795 . . 3 (𝑆𝐸 → (𝐼𝑆) = (𝑔𝑇(𝑆𝑔)))
43adantr 481 . 2 ((𝑆𝐸𝐹𝑇) → (𝐼𝑆) = (𝑔𝑇(𝑆𝑔)))
5 fveq2 6768 . . . 4 (𝑔 = 𝐹 → (𝑆𝑔) = (𝑆𝐹))
65cnveqd 5779 . . 3 (𝑔 = 𝐹(𝑆𝑔) = (𝑆𝐹))
76adantl 482 . 2 (((𝑆𝐸𝐹𝑇) ∧ 𝑔 = 𝐹) → (𝑆𝑔) = (𝑆𝐹))
8 simpr 485 . 2 ((𝑆𝐸𝐹𝑇) → 𝐹𝑇)
9 fvex 6781 . . . 4 (𝑆𝐹) ∈ V
109cnvex 7764 . . 3 (𝑆𝐹) ∈ V
1110a1i 11 . 2 ((𝑆𝐸𝐹𝑇) → (𝑆𝐹) ∈ V)
124, 7, 8, 11fvmptd 6876 1 ((𝑆𝐸𝐹𝑇) → ((𝐼𝑆)‘𝐹) = (𝑆𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3431  cmpt 5158  ccnv 5585  cfv 6428  LTrncltrn 38102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5210  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-iun 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-id 5486  df-xp 5592  df-rel 5593  df-cnv 5594  df-co 5595  df-dm 5596  df-rn 5597  df-res 5598  df-ima 5599  df-iota 6386  df-fun 6430  df-fn 6431  df-f 6432  df-f1 6433  df-fo 6434  df-f1o 6435  df-fv 6436
This theorem is referenced by:  tendoicl  38797  tendoipl  38798  dihjatcclem4  39422
  Copyright terms: Public domain W3C validator