![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendoi2 | Structured version Visualization version GIF version |
Description: Value of additive inverse endomorphism. (Contributed by NM, 12-Jun-2013.) |
Ref | Expression |
---|---|
tendoi.i | ⊢ 𝐼 = (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓))) |
tendoi.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
tendoi2 | ⊢ ((𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((𝐼‘𝑆)‘𝐹) = ◡(𝑆‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendoi.i | . . . 4 ⊢ 𝐼 = (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓))) | |
2 | tendoi.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | 1, 2 | tendoi 40271 | . . 3 ⊢ (𝑆 ∈ 𝐸 → (𝐼‘𝑆) = (𝑔 ∈ 𝑇 ↦ ◡(𝑆‘𝑔))) |
4 | 3 | adantr 479 | . 2 ⊢ ((𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝐼‘𝑆) = (𝑔 ∈ 𝑇 ↦ ◡(𝑆‘𝑔))) |
5 | fveq2 6900 | . . . 4 ⊢ (𝑔 = 𝐹 → (𝑆‘𝑔) = (𝑆‘𝐹)) | |
6 | 5 | cnveqd 5880 | . . 3 ⊢ (𝑔 = 𝐹 → ◡(𝑆‘𝑔) = ◡(𝑆‘𝐹)) |
7 | 6 | adantl 480 | . 2 ⊢ (((𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) ∧ 𝑔 = 𝐹) → ◡(𝑆‘𝑔) = ◡(𝑆‘𝐹)) |
8 | simpr 483 | . 2 ⊢ ((𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝑇) | |
9 | fvex 6913 | . . . 4 ⊢ (𝑆‘𝐹) ∈ V | |
10 | 9 | cnvex 7937 | . . 3 ⊢ ◡(𝑆‘𝐹) ∈ V |
11 | 10 | a1i 11 | . 2 ⊢ ((𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ◡(𝑆‘𝐹) ∈ V) |
12 | 4, 7, 8, 11 | fvmptd 7015 | 1 ⊢ ((𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((𝐼‘𝑆)‘𝐹) = ◡(𝑆‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3471 ↦ cmpt 5233 ◡ccnv 5679 ‘cfv 6551 LTrncltrn 39578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 |
This theorem is referenced by: tendoicl 40273 tendoipl 40274 dihjatcclem4 40898 |
Copyright terms: Public domain | W3C validator |