Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendoi2 | Structured version Visualization version GIF version |
Description: Value of additive inverse endomorphism. (Contributed by NM, 12-Jun-2013.) |
Ref | Expression |
---|---|
tendoi.i | ⊢ 𝐼 = (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓))) |
tendoi.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
tendoi2 | ⊢ ((𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((𝐼‘𝑆)‘𝐹) = ◡(𝑆‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendoi.i | . . . 4 ⊢ 𝐼 = (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓))) | |
2 | tendoi.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | 1, 2 | tendoi 38795 | . . 3 ⊢ (𝑆 ∈ 𝐸 → (𝐼‘𝑆) = (𝑔 ∈ 𝑇 ↦ ◡(𝑆‘𝑔))) |
4 | 3 | adantr 481 | . 2 ⊢ ((𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝐼‘𝑆) = (𝑔 ∈ 𝑇 ↦ ◡(𝑆‘𝑔))) |
5 | fveq2 6768 | . . . 4 ⊢ (𝑔 = 𝐹 → (𝑆‘𝑔) = (𝑆‘𝐹)) | |
6 | 5 | cnveqd 5779 | . . 3 ⊢ (𝑔 = 𝐹 → ◡(𝑆‘𝑔) = ◡(𝑆‘𝐹)) |
7 | 6 | adantl 482 | . 2 ⊢ (((𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) ∧ 𝑔 = 𝐹) → ◡(𝑆‘𝑔) = ◡(𝑆‘𝐹)) |
8 | simpr 485 | . 2 ⊢ ((𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝑇) | |
9 | fvex 6781 | . . . 4 ⊢ (𝑆‘𝐹) ∈ V | |
10 | 9 | cnvex 7764 | . . 3 ⊢ ◡(𝑆‘𝐹) ∈ V |
11 | 10 | a1i 11 | . 2 ⊢ ((𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ◡(𝑆‘𝐹) ∈ V) |
12 | 4, 7, 8, 11 | fvmptd 6876 | 1 ⊢ ((𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((𝐼‘𝑆)‘𝐹) = ◡(𝑆‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3431 ↦ cmpt 5158 ◡ccnv 5585 ‘cfv 6428 LTrncltrn 38102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5210 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-iun 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5486 df-xp 5592 df-rel 5593 df-cnv 5594 df-co 5595 df-dm 5596 df-rn 5597 df-res 5598 df-ima 5599 df-iota 6386 df-fun 6430 df-fn 6431 df-f 6432 df-f1 6433 df-fo 6434 df-f1o 6435 df-fv 6436 |
This theorem is referenced by: tendoicl 38797 tendoipl 38798 dihjatcclem4 39422 |
Copyright terms: Public domain | W3C validator |