![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendoi2 | Structured version Visualization version GIF version |
Description: Value of additive inverse endomorphism. (Contributed by NM, 12-Jun-2013.) |
Ref | Expression |
---|---|
tendoi.i | ⊢ 𝐼 = (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓))) |
tendoi.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
tendoi2 | ⊢ ((𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((𝐼‘𝑆)‘𝐹) = ◡(𝑆‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendoi.i | . . . 4 ⊢ 𝐼 = (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓))) | |
2 | tendoi.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | 1, 2 | tendoi 39260 | . . 3 ⊢ (𝑆 ∈ 𝐸 → (𝐼‘𝑆) = (𝑔 ∈ 𝑇 ↦ ◡(𝑆‘𝑔))) |
4 | 3 | adantr 482 | . 2 ⊢ ((𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝐼‘𝑆) = (𝑔 ∈ 𝑇 ↦ ◡(𝑆‘𝑔))) |
5 | fveq2 6843 | . . . 4 ⊢ (𝑔 = 𝐹 → (𝑆‘𝑔) = (𝑆‘𝐹)) | |
6 | 5 | cnveqd 5832 | . . 3 ⊢ (𝑔 = 𝐹 → ◡(𝑆‘𝑔) = ◡(𝑆‘𝐹)) |
7 | 6 | adantl 483 | . 2 ⊢ (((𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) ∧ 𝑔 = 𝐹) → ◡(𝑆‘𝑔) = ◡(𝑆‘𝐹)) |
8 | simpr 486 | . 2 ⊢ ((𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝑇) | |
9 | fvex 6856 | . . . 4 ⊢ (𝑆‘𝐹) ∈ V | |
10 | 9 | cnvex 7863 | . . 3 ⊢ ◡(𝑆‘𝐹) ∈ V |
11 | 10 | a1i 11 | . 2 ⊢ ((𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ◡(𝑆‘𝐹) ∈ V) |
12 | 4, 7, 8, 11 | fvmptd 6956 | 1 ⊢ ((𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((𝐼‘𝑆)‘𝐹) = ◡(𝑆‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3446 ↦ cmpt 5189 ◡ccnv 5633 ‘cfv 6497 LTrncltrn 38567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 |
This theorem is referenced by: tendoicl 39262 tendoipl 39263 dihjatcclem4 39887 |
Copyright terms: Public domain | W3C validator |