![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendoi2 | Structured version Visualization version GIF version |
Description: Value of additive inverse endomorphism. (Contributed by NM, 12-Jun-2013.) |
Ref | Expression |
---|---|
tendoi.i | ⊢ 𝐼 = (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓))) |
tendoi.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
tendoi2 | ⊢ ((𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((𝐼‘𝑆)‘𝐹) = ◡(𝑆‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendoi.i | . . . 4 ⊢ 𝐼 = (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓))) | |
2 | tendoi.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | 1, 2 | tendoi 40777 | . . 3 ⊢ (𝑆 ∈ 𝐸 → (𝐼‘𝑆) = (𝑔 ∈ 𝑇 ↦ ◡(𝑆‘𝑔))) |
4 | 3 | adantr 480 | . 2 ⊢ ((𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝐼‘𝑆) = (𝑔 ∈ 𝑇 ↦ ◡(𝑆‘𝑔))) |
5 | fveq2 6907 | . . . 4 ⊢ (𝑔 = 𝐹 → (𝑆‘𝑔) = (𝑆‘𝐹)) | |
6 | 5 | cnveqd 5889 | . . 3 ⊢ (𝑔 = 𝐹 → ◡(𝑆‘𝑔) = ◡(𝑆‘𝐹)) |
7 | 6 | adantl 481 | . 2 ⊢ (((𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) ∧ 𝑔 = 𝐹) → ◡(𝑆‘𝑔) = ◡(𝑆‘𝐹)) |
8 | simpr 484 | . 2 ⊢ ((𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝑇) | |
9 | fvex 6920 | . . . 4 ⊢ (𝑆‘𝐹) ∈ V | |
10 | 9 | cnvex 7948 | . . 3 ⊢ ◡(𝑆‘𝐹) ∈ V |
11 | 10 | a1i 11 | . 2 ⊢ ((𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ◡(𝑆‘𝐹) ∈ V) |
12 | 4, 7, 8, 11 | fvmptd 7023 | 1 ⊢ ((𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((𝐼‘𝑆)‘𝐹) = ◡(𝑆‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ↦ cmpt 5231 ◡ccnv 5688 ‘cfv 6563 LTrncltrn 40084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 |
This theorem is referenced by: tendoicl 40779 tendoipl 40780 dihjatcclem4 41404 |
Copyright terms: Public domain | W3C validator |