Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoi2 Structured version   Visualization version   GIF version

Theorem tendoi2 39261
Description: Value of additive inverse endomorphism. (Contributed by NM, 12-Jun-2013.)
Hypotheses
Ref Expression
tendoi.i 𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))
tendoi.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
tendoi2 ((𝑆𝐸𝐹𝑇) → ((𝐼𝑆)‘𝐹) = (𝑆𝐹))
Distinct variable groups:   𝐸,𝑠   𝑓,𝑠,𝑇   𝑓,𝑊,𝑠
Allowed substitution hints:   𝑆(𝑓,𝑠)   𝐸(𝑓)   𝐹(𝑓,𝑠)   𝐼(𝑓,𝑠)   𝐾(𝑓,𝑠)

Proof of Theorem tendoi2
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 tendoi.i . . . 4 𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))
2 tendoi.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
31, 2tendoi 39260 . . 3 (𝑆𝐸 → (𝐼𝑆) = (𝑔𝑇(𝑆𝑔)))
43adantr 482 . 2 ((𝑆𝐸𝐹𝑇) → (𝐼𝑆) = (𝑔𝑇(𝑆𝑔)))
5 fveq2 6843 . . . 4 (𝑔 = 𝐹 → (𝑆𝑔) = (𝑆𝐹))
65cnveqd 5832 . . 3 (𝑔 = 𝐹(𝑆𝑔) = (𝑆𝐹))
76adantl 483 . 2 (((𝑆𝐸𝐹𝑇) ∧ 𝑔 = 𝐹) → (𝑆𝑔) = (𝑆𝐹))
8 simpr 486 . 2 ((𝑆𝐸𝐹𝑇) → 𝐹𝑇)
9 fvex 6856 . . . 4 (𝑆𝐹) ∈ V
109cnvex 7863 . . 3 (𝑆𝐹) ∈ V
1110a1i 11 . 2 ((𝑆𝐸𝐹𝑇) → (𝑆𝐹) ∈ V)
124, 7, 8, 11fvmptd 6956 1 ((𝑆𝐸𝐹𝑇) → ((𝐼𝑆)‘𝐹) = (𝑆𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3446  cmpt 5189  ccnv 5633  cfv 6497  LTrncltrn 38567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505
This theorem is referenced by:  tendoicl  39262  tendoipl  39263  dihjatcclem4  39887
  Copyright terms: Public domain W3C validator