Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoi2 Structured version   Visualization version   GIF version

Theorem tendoi2 40789
Description: Value of additive inverse endomorphism. (Contributed by NM, 12-Jun-2013.)
Hypotheses
Ref Expression
tendoi.i 𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))
tendoi.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
tendoi2 ((𝑆𝐸𝐹𝑇) → ((𝐼𝑆)‘𝐹) = (𝑆𝐹))
Distinct variable groups:   𝐸,𝑠   𝑓,𝑠,𝑇   𝑓,𝑊,𝑠
Allowed substitution hints:   𝑆(𝑓,𝑠)   𝐸(𝑓)   𝐹(𝑓,𝑠)   𝐼(𝑓,𝑠)   𝐾(𝑓,𝑠)

Proof of Theorem tendoi2
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 tendoi.i . . . 4 𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))
2 tendoi.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
31, 2tendoi 40788 . . 3 (𝑆𝐸 → (𝐼𝑆) = (𝑔𝑇(𝑆𝑔)))
43adantr 480 . 2 ((𝑆𝐸𝐹𝑇) → (𝐼𝑆) = (𝑔𝑇(𝑆𝑔)))
5 fveq2 6858 . . . 4 (𝑔 = 𝐹 → (𝑆𝑔) = (𝑆𝐹))
65cnveqd 5839 . . 3 (𝑔 = 𝐹(𝑆𝑔) = (𝑆𝐹))
76adantl 481 . 2 (((𝑆𝐸𝐹𝑇) ∧ 𝑔 = 𝐹) → (𝑆𝑔) = (𝑆𝐹))
8 simpr 484 . 2 ((𝑆𝐸𝐹𝑇) → 𝐹𝑇)
9 fvex 6871 . . . 4 (𝑆𝐹) ∈ V
109cnvex 7901 . . 3 (𝑆𝐹) ∈ V
1110a1i 11 . 2 ((𝑆𝐸𝐹𝑇) → (𝑆𝐹) ∈ V)
124, 7, 8, 11fvmptd 6975 1 ((𝑆𝐸𝐹𝑇) → ((𝐼𝑆)‘𝐹) = (𝑆𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cmpt 5188  ccnv 5637  cfv 6511  LTrncltrn 40095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519
This theorem is referenced by:  tendoicl  40790  tendoipl  40791  dihjatcclem4  41415
  Copyright terms: Public domain W3C validator